
System z

Hardware Management Console Web Services API
Version 2.12.0
SC27-2617-01

���

System z

Hardware Management Console Web Services API
Version 2.12.0
SC27-2617-01

���

Note:
Before using this information and the product it supports, read the information in “Safety” on
page xv, Appendix B, “Notices,” on page 685, and IBM Systems Environmental Notices and User
Guide, Z125–5823.

This edition, SC27-2617-01, applies to the IBM zEnterprise System servers and all follow-on IBM System z servers.
This edition replaces SC27-2617-00.

There might be a newer version of this document in a PDF file available on Resource Link. Go to
http://www.ibm.com/servers/resourcelink and click Library on the navigation bar. A newer version is indicated by
a lowercase, alphabetic letter following the form number suffix (for example: 00a, 00b, 01a, 01b).

© Copyright IBM Corporation 2012, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/resourcelink

Contents

Figures vii

Tables xi

Safety xv
Safety notices. xv

World trade safety information xv
Laser safety information xv

Laser compliance xv

About this publication xvii
Related publications xvii
Revision bars xvii
Accessibility xvii
How to send your comments xvii

Chapter 1. Introduction 1
Overview 1

Components of the API 1
Enabling and accessing the API 2

Authentication and access control 3
Alternate HMC considerations 3

Compatibility 4
API versioning 4
Allowable changes within a major version . . . 4
Requirements on client applications. 5

Summary of API version updates 5

Chapter 2. Base definitions 9
Data types 9
Input and output representation 10

Representing API data types in JSON. 10

Chapter 3. Invoking API operations . . 13
HTTP protocol standard 13
Connecting to the API HTTP server 13
HTTP header field usage 13

Required request header fields 14
Optional request headers 14
Standard response headers 15
Additional response headers. 16

Media types 16
HTTP status codes 17
Error response bodies 18

Common request validation reason codes . . . 18
Common request processing reason codes . . . 19

Use of chunked response encoding 20
Filter query parameters 20

Regular expression syntax 21

Chapter 4. Asynchronous notification 23
JMS basics 23
Connecting to the API message broker 23
Per-session notification topics 24

Notification message formats 24
Common message characteristics 25
Status change notification. 26
Property change notification 27
Inventory change notification 28
Job completion notification 29

Chapter 5. Data model definitions . . . 31
Data model concepts 31

Objects in the data model. 31
Properties in the data model. 32

Shared data model schema elements 33
Base managed object properties schema 33

Chapter 6. General API services 37
General API services operations summary 37
Session management services 37

Query API Version 38
Logon 39
Logoff 42

Asynchronous job processing 43
Query Job Status 44
Delete Completed Job Status. 46

Chapter 7. Ensemble composition . . . 49
Ensemble composition operations summary . . . 49
Ensemble object 50

Data Model 50
Operations 53
List Ensembles 53
Get Ensemble Properties 55
Update Ensemble Properties 57
List Ensemble Nodes 59
Get Node Properties 61
Add Node (CPC) to Ensemble 63
Remove Node from Ensemble 65
Inventory service data 66
Usage notes 68

Chapter 8. zBX infrastructure elements 69
zBX physical network overview 69
zBX infrastructure operations summary 70
zBX object 71

Data model 71
Operations 72
List zBXs of a CPC 72
List zBXs of a Ensemble 74
Get zBX Properties 76
Inventory service data 78

zBX Top-of-Rack switches 79
Data model 79
Operations 81
List Top-of-Rack Switches of a zBX 81
Get Top-of-Rack Switch Properties 83
Get Top-of-Rack Switch Port Details 85

© Copyright IBM Corp. 2012, 2013 iii

Update Top-of-Rack Switch Port Properties . . . 87
Add MAC Filters to Top-of-Rack Switch Port . . 89
Remove MAC Filters from Top-of-Rack Switch
Port 91
Add Top-of-Rack Switch Port to Virtual
Networks 93
Remove Top-of-Rack Switch Port from the Virtual
Networks 95

Rack object 97
Data model 97
Operations 98
List Racks of a zBX 98
Get Rack Properties 100
Inventory service data 101

BladeCenter object. 102
Data model 102
Operations 105
List BladeCenters in a Rack. 105
List BladeCenters in a zBX 107
Get BladeCenter Properties 109
Inventory service data 111

Blade object 112
Data model 112
Operations 117
List Blades in a BladeCenter 117
List Blades in a zBX 119
Get Blade Properties 122
Activate a Blade 126
Deactivate a Blade. 128
Create IEDN Interface for a DataPower XI50z
Blade 130
Delete IEDN Interface for a DataPower XI50z
Blade 133
Inventory service data 134

Chapter 9. Energy management . . . 137
Groups 138
Special states 138
Power saving 139

Group power saving 139
Power capping 140

Group capping 140
Energy management operations summary 140
Energy management for CPC object 141

Data model 141
Set CPC Power Save 141
Set CPC Power Capping. 143
Set zCPC Power Save 146
Set zCPC Power Capping 147
Get CPC Energy Management Data 149

Energy management for BladeCenter object . . . 151
Data model 151
Set BladeCenter Power Save 151
Set BladeCenter Power Capping 153

Energy management for blade object 156
Data model 156
Set Blade Power Save. 156
Set Blade Power Capping 158

Chapter 10. Virtualization
management. 161
Virtualization host operations summary 161
Virtual server operations summary 162
Virtualization host object 163

Data model 163
Operations 173
List Virtualization Hosts of an Ensemble . . . 173
List Virtualization Hosts of a CPC 176
Get Virtualization Host Properties 179
Update Virtualization Host Properties 183
List Virtual Switches 184
Get Virtual Switch Properties 186
Create IEDN Virtual Switch 189
Create QDIO Virtual Switch 192
Get Switch Controllers 195
Update Virtual Switch 197
Delete Virtual Switch 201
Activating a Virtualization Host 202
Deactivating a Virtualization Host 203
SMAPI Error Response Body 203
Inventory Service Data 204

Virtual Server Object 206
Data Model 206
Operations 229
List Virtual Servers of an Ensemble 230
List Virtual Servers of a CPC 232
List Virtual Servers of a Virtualization Host . . 235
Create Virtual Server 237
Delete Virtual Server 242
Get Virtual Server Properties 243
Update Virtual Server Properties 251
Create Network Adapter 256
Update Network Adapter 259
Delete Network Adapter 262
Reorder Network Adapter 263
Create Virtual Disk 265
Delete Virtual Disk 268
Get Virtual Disk Properties 270
Update Virtual Disk Properties 272
Reorder Virtual Disks 274
Activate Virtual Server 277
Deactivate Virtual Server 278
Mount Virtual Media 280
Mount Virtual Media Image 283
Unmount Virtual Media 285
Migrate Virtual Server 286
Initiate Virtual Server Dump 289

Inventory service data 290

Chapter 11. Storage Management . . . 295
Terms 295
Object model overview 296
Storage management operations summary. . . . 296
Storage resource object 298

Data model 298
Operations 299
List Storage Resources 299
Get Storage Resource Properties 302
Create Storage Resource 303

iv HMC Web Services API

Update Storage Resource Properties 305
Delete Storage Resource 307
Export World Wide Port Names List. 309
Import Storage Access List 311
Inventory service data 313

Virtualization host storage resource object 314
Data model 314
Operations 316
List Virtualization Host HBA Ports 316
List Virtualization Host Storage Resources. . . 318
Get Virtualization Host Storage Resource
Properties 321
Create Virtualization Host Storage Resource . . 325
Delete Virtualization Host Storage Resource . . 328
Add Virtualization Host Storage Resource Paths 330
Remove Virtualization Host Storage Resource
Paths 333
Discover Virtualization Host Storage Resources 336
Notifications. 338
Inventory service data 338

Virtualization host storage group object 338
Data model 338
Operations 339
List Virtualization Host Storage Groups . . . 339
Get Virtualization Host Storage Group
Properties 342
List Virtualization Host Storage Resources in a
Virtualization Host Storage Group 344
Add Virtualization Host Storage Resource to
Virtualization Host Storage Group 346
Remove Virtualization Host Storage Resource
from Virtualization Host Storage Group . . . 348
Notifications. 349
Inventory service data 350
Usage notes 350

Chapter 12. Virtual network
management. 351
Virtual network management operations summary 351
Virtual network object 351

Data model 352
List Virtual Networks 352
Get Virtual Network Properties 354
Update Virtual Network Properties 355
Create Virtual Network 358
Delete Virtual Network 360
List Members of a Virtual Network 362
Inventory service data 364

Chapter 13. Workload resource group
management. 367
Overview. 367

Workload resource group operations summary 368
Workload resource group object 370

Data model 370
List Workload Resource Groups of an Ensemble 373
Get Workload Resource Group Properties . . . 375
Create Workload Resource Group 377
Delete Workload Resource Group 380
Update Workload Resource Group 381

List Virtual Servers of a Workload Resource
Group 383
Add Virtual Server to a Workload Resource
Group 386
Remove Virtual Server from a Workload
Resource Group 387
List Groups of Virtual Servers of a Workload
Resource Group 389
Add Group of Virtual Servers to a Workload
Resource Group 391
Remove Group of Virtual Servers from a
Workload Resource Group 393

Performance policy object 395
Data model 395
Notifications of property changes to
performance policies 400
List Performance Policies 400
Get Performance Policy Properties 402
Create Performance Policy 405
Delete Performance Policy 407
Update Performance Policy. 409
Activate Performance Policy 412
Import Performance Policy 413
Export Performance Policy 415

Performance management reports 418
Generate Workload Resource Groups Report 419
Generate Workload Resource Group
Performance Index Report 423
Generate Workload Resource Group Resource
Adjustments Report 426
Generate Virtual Servers Report 430
Generate Virtual Server CPU Utilization Report 434
Generate Virtual Server Resource Adjustments
Report. 437
Generate Hypervisor Report 442
Generate Hypervisor Resource Adjustments
Report. 449
Generate Service Classes Report 453
Generate Service Class Resource Adjustments
Report. 456
Generate Service Class Hops Report 461
Generate Service Class Virtual Server Topology
Report. 466
Generate Load Balancing Report 474

Get Performance Management Velocity Level
Range Mappings 476
Inventory service data 478

Chapter 14. Core System z resources 483
Operations Summary 483

Console operations summary 483
Custom groups operations summary 483
CPC operations summary 484
Logical partitions operation summary 485
Activation profile operations summary 486
Capacity record operations summary 487

Shared nested objects 487
Console object 490

Data model 490
Get Console Properties 492
Restart Console. 496

Contents v

Make Console Primary 498
Shutdown Console 499

Group Object 500
Data model 501
List Custom Groups 502
Get Custom Group Properties 504
Create Custom Group 505
Delete Custom Group 507
Add Member to Custom Group 508
Remove Member from Custom Group 510
List Custom Group Members 512

CPC object 513
Data model 513
List CPC Objects 523
List Ensemble CPC Objects 525
Get CPC Properties 527
Update CPC Properties 533
Activate CPC 535
Deactivate CPC. 537
Import Profiles 539
Export Profiles 540
Add Temporary Capacity 541
Remove Temporary Capacity 543
Swap Current Time Server 545
Set STP Configuration 546
Change STP-only Coordinated Timing Network 547
Join STP-only Coordinated Timing Network . . 549
Leave STP-only Coordinated Timing Network 550

Logical partition object 551
Data model 551
List Logical Partitions of CPC 564
Get Logical Partition Properties 566
Update Logical Partition Properties 569
Activate Logical Partition 570
Deactivate Logical Partition 572
Reset Normal 574
Reset Clear 576
Load Logical Partition 578
PSW Restart 580
Start Logical Partition 581
Stop Logical Partition 583
SCSI Load 584
SCSI Dump 586

Reset activation profile 588
Data model 588
List Reset Activation Profiles 589
Get Reset Activation Profile Properties 591
Update Reset Activation Profile Properties. . . 593

Image activation profile 594
Data model 594
List Image Activation Profiles 609
Get Image Activation Profile Properties 611
Update Image Activation Profile Properties . . 614

Load activation profile 616
Data model 616
List Load Activation Profiles 618
Get Load Activation Profile Properties 620
Update Load Activation Profile Properties . . . 621

Group profile 623

Data model 623
List Group Profiles 623
Get Group Profile Properties 625
Update Group Profile Properties 627

Capacity records 628
Data model 628
List Capacity Records 630
Get Capacity Record Properties 631

Chapter 15. Inventory and metrics
services. 635
Inventory services operations summary 635
Metrics service operations summary. 635
Inventory service 636

Get Inventory 636
Metrics service 641

Create Metrics Context 642
Get Metrics 645
Delete Metrics Context 649

Chapter 16. zManager metric groups 651
Monitors dashboard metric groups 651

BladeCenter temperature and power metric
group 651
Blade power. 652
Channels 652
CPC overview 652
Logical partitions 653
zCPC environmentals and power 654
zCPC processors 654
Blade CPU and memory metric group 655
Cryptos 655
Flash Memory Adapters 656

Performance management metrics groups 656
Virtual server CPU and memory metrics group 656
Virtualization host CPU and memory metrics
group 658
Workload service class data metrics group. . . 659

Network management metrics 660
Virtualization host and virtual server metrics 660
Optimizer network metrics 667

Physical switches 671
Top-of-rack switch ports metrics 671
ESM switch port metrics 673

Appendix A. XML document structure
of a performance policy 677
XML structure of a ServiceClasses element . . . 677
Sample XML document for a performance policy 681

Appendix B. Notices 685
Trademarks 686
Electronic emission notices 687

Glossary 691

Index 697

vi HMC Web Services API

||

Figures

1. Logon: Request 42
2. Logon: Response 42
3. Logoff: Request 43
4. Logoff: Response 43
5. Query Job Status: Request. 46
6. Query Job Status: Response 46
7. Delete Completed Job Status: Request 47
8. Delete Completed Job Status: Response 48
9. List Ensembles: Request 54

10. List Ensembles: Response 55
11. Get Ensemble Properties: Request 56
12. Get Ensemble Properties: Response 57
13. Update Ensemble Properties: Request 59
14. Update Ensemble Properties: Response 59
15. List Ensemble Nodes: Request 61
16. List Ensemble Nodes: Response 61
17. Get Node Properties: Request 63
18. Get Node Properties: Response 63
19. Ensemble object: Sample inventory data 68
20. List zBXs of a CPC: Request 74
21. List zBXs of a CPC: Response 74
22. List zBXs of a Ensemble: Request 76
23. List zBXs of a Ensemble: Response 76
24. Get zBX Properties: Request 77
25. Get zBX Properties: Response 78
26. zBX object: Sample inventory data 79
27. List Top-of-Rack Switches: Request. 83
28. List Top-of-Rack Switches: Response 83
29. Get Top-of-Rack Switch Properties: Request 84
30. Get Top-of-Rack Switch Properties: Response 85
31. Get Top-of-Rack Switch Port Details: Request 87
32. Get Top-of-Rack Switch Port Details: Response 87
33. Update Top-of-Rack Switch Port Properties:

Request 89
34. Update Top-of-Rack Switch Port Properties:

Response 89
35. Add MAC Filters to Top-of-Rack Switch Port:

Request 91
36. Add MAC Filters to Top-of-Rack Switch Port:

Response 91
37. Remove MAC Filters from Top-of-Rack Switch

Port: Request 93
38. Remove Mac Filters from Top-of-Rack Switch

Port: Response 93
39. Add Top-of-Rack Switch Port to Virtual

Networks: Request 95
40. Add Top-of-Rack Switch Port to Virtual

Networks: Response 95
41. Remove Top-of-Rack Switch Port from the

Virtual Networks: Request 97
42. Remove Top-of-Rack Switch Port from the

Virtual Networks: Response 97
43. List Racks of a zBX: Request 99
44. List Racks of a zBX: Response 100
45. Get Rack Properties: Request 101
46. Get Rack Properties: Response 101

47. Rack object: Sample inventory data 102
48. List BladeCenters in a Rack: Request 107
49. List BladeCenters in a Rack: Response 107
50. List BladeCenters in a zBX: Request 109
51. List BladeCenters in a zBX: Response 109
52. Get BladeCenter Properties: Request 110
53. Get BladeCenter Properties: Response 111
54. BladeCenter object: Sample inventory data 112
55. List Blades in a BladeCenter: Request 119
56. List Blades in a BladeCenter: Response 119
57. List Blades in a zBX: Request 121
58. List Blades in a zBX: Response 122
59. Get Blade Properties: Request 123
60. Get Blade Properties: Response for blade of

type "system-x" (similar for type "power") . . 124
61. Get Blade Properties: Response for blade of

type "dpx150z": 125
62. Get Blade Properties: Response for blade of

type "isaopt": 126
63. Activate a Blade: Request 128
64. Activate a Blade: Response 128
65. Deactivate a Blade: Request 130
66. Deactivate a Blade: Response 130
67. Activate a Blade: Sample inventory data for a

blade of type "power" 135
68. Activate a Blade: Sample inventory data for a

blade of type "system-x" 136
69. Energy management as applied throughout

layers of enterprise management 137
70. Example of a group and the objects it

contains 138
71. List Virtualization Hosts of an Ensemble:

Request 175
72. List Virtualization Hosts of an Ensemble:

Response 176
73. List Virtualization Hosts of a CPC: Request 178
74. List Virtualization Hosts of a CPC: Response 179
75. Get Virtualization Host Properties: Request 180
76. Get Virtualization Host Properties: Response

for virtualization host of type "prsm" . . . 181
77. Get Virtualization Host Properties: Response

for virtualization host of type "power-vm" . . 181
78. Get Virtualization Host Properties: Response

for virtualization host of type "x-hyp" . . . 182
79. Get Virtualization Host Properties: Response

for virtualization host of type "zvm" 183
80. List Virtual Switches: Request 186
81. List Virtual Switches: Response 186
82. Get Virtual Switch Properties: Request 188
83. Get Virtual Switch Properties: Response for

virtual switch of type "iedn" 188
84. Get Virtual Switch Properties: Response for

virtual switch of type "qdio" 189
85. Get Switch Controllers: Request 196
86. Get Switch Controllers: Response 197

© Copyright IBM Corp. 2012, 2013 vii

87. Virtualization host object: Sample inventory
data for a virtualization host of type
"power-vm" 205

88. Virtualization host object: Sample inventory
data for a virtualization host of type "prsm" . 205

89. Virtualization host object: Sample inventory
data for a virtualization host of type "x-hyp" . 206

90. List Virtual Servers of an Ensemble: Request 231
91. List Virtual Servers of an Ensemble: Response 232
92. List Virtual Servers of a CPC: Request 234
93. List Virtual Servers of a CPC: Response 235
94. List Virtual Servers of a Virtualization Host:

Request 237
95. List Virtual Servers of a Virtualization Host:

Response 237
96. Create Virtual Server: Request for a virtual

server of type "power-vm" 242
97. Create Virtual Server: Response for a virtual

server of type "power-vm" 242
98. Delete Virtual Server: Request 243
99. Delete Virtual Server: Response 243

100. Get Virtual Server Properties: Request 245
101. Get Virtual Server Properties: Response for

virtual servers of "power-vm" (Part 1) . . . 246
102. Get Virtual Server Properties: Response for

virtual servers of "power-vm" (part 2) . . . 247
103. Get Virtual Server Properties: Response for

virtual servers of type "prsm" 248
104. Get Virtual Server Properties: Response for

virtual servers of type "x-hyp" (Part 1) . . . 249
105. Get Virtual Server Properties: Response for

virtual servers of type "x-hyp" (Part 2) . . . 250
106. Get Virtual Server Properties: Response for

virtual servers of type "zvm" 251
107. Update Virtual Server Properties: Request for

a virtual server of type "x-hyp" 256
108. Update Virtual Server Properties: Response

for a virtual server of type "x-hyp" 256
109. Create Network Adapter: Request for a

virtual server of type "x-hyp" 258
110. Create Network Adapter: Response for a

virtual server of type "x-hyp" 259
111. Update Network Adapter: Request for a

virtual server of type "x-hyp" 261
112. Update Network Adapter: Response for a

virtual server of type "x-hyp" 262
113. Delete Network Adapter: Request. 263
114. Delete Network Adapter: Response 263
115. Reorder Network Adapter: Request 265
116. Reorder Network Adapter: Response 265
117. Create Virtual Disk: Request for a virtual

server of type "power-vm" 268
118. Create Virtual Disk: Response for a virtual

server of type "power-vm" 268
119. Delete Virtual Disk: Request 270
120. Delete Virtual Disk: Response 270
121. Get Virtual Disk Properties: Request for a

virtual server of type "power-vm". 271
122. Get Virtual Disk Properties: Response for a

virtual server of type "power-vm". 272

123. Update Virtual Disk Properties: Request for a
virtual server of type "x-hyp" 274

124. Update Virtual Disk Properties: Response for
a virtual server of type "x-hyp" 274

125. Reorder Virtual Disks: Request. 276
126. Reorder Virtual Disks: Response 276
127. Activate Virtual Server: Request 278
128. Activate Virtual Server: Response 278
129. Deactivate Virtual Server: Request 280
130. Deactivate Virtual Server: Response 280
131. Mount Virtual Media: Request 283
132. Mount Virtual Media: Response 283
133. Unmount Virtual Media: Request 286
134. Unmount Virtual Media: Response 286
135. Initiate Virtual Server Dump: Request 290
136. Initiate Virtual Server Dump: Response 290
137. Virtual server object: Sample inventory data

for a virtual server of type "power-vm" (Part
1) 291

138. Virtual server object: Sample inventory data
for a virtual server of type "power-vm" (Part
2) 292

139. Virtual server object: Sample inventory data
for a virtual server of type "prsm" 293

140. Virtual server object: Sample inventory data
for a virtual server of type "x-hyp" 294

141. Object model. 296
142. List Storage Resources: Request 301
143. List Storage Resources: Response 301
144. Get Storage Resource Properties: Request 303
145. Get Storage Resource Properties: Response 303
146. Create Storage Resource: Request 305
147. Create Storage Resource: Response 305
148. Update Storage Resource Properties: Request 307
149. Update Storage Resource Properties:

Response 307
150. Delete Storage Resource: Request 308
151. Delete Storage Resource: Response 309
152. Export World Wide Port Names List: WWPN

list: Request 311
153. Export World Wide Port Names List: WWPN

list: Response 311
154. Storage resource object: Sample inventory

data. 314
155. List Virtualization Host HBA Ports: Request 317
156. List Virtualization Host HBA Ports: Response 318
157. List Virtualization Host Storage Resources:

Request 321
158. List Virtualization Host Storage Resources:

Response 321
159. Get Virtualization Host Storage Resource

Properties: Request 323
160. Get Virtualization Host Storage Resource

Properties: Response for Virtualization Host
of type "power-vm" or "x-hyp" 324

161. Get Virtualization Host Storage Resource
Properties: Response for Virtualization Host
of type "zvm" 325

162. Create Virtualization Host Storage Resource:
Request 328

viii HMC Web Services API

163. Create Virtualization Host Storage Resource:
Response 328

164. Delete Virtualization Host Storage Resource:
Request 330

165. Delete Virtualization Host Storage Resource:
Response 330

166. Add Virtualization Host Storage Resource
Paths: Request 333

167. Add Virtualization Host Storage Resource
Paths: Response. 333

168. List Virtualization Host Storage Groups:
Request 341

169. List Virtualization Host Storage Groups:
Response 342

170. Get Virtualization Host Storage Group
Properties: Request 344

171. Get Virtualization Host Storage Group
Properties: Response 344

172. List Virtual Networks: Request. 354
173. List Virtual Networks: Response 354
174. Get Virtual Network Properties: Request 355
175. Get Virtual Network Properties: Response 355
176. Update Virtual Network Properties: Request 358
177. Update Virtual Network Properties: Response 358
178. Create Virtual Network: Request 360
179. Create Virtual Network: Response 360
180. Delete Virtual Network: Request 362
181. Delete Virtual Network: Response 362
182. List Members of a Virtual Network: Request 364
183. List Members of a Virtual Network: Response 364
184. Virtual network object: Sample inventory data 365
185. List Workload Resource Groups of an

Ensemble: Request 375
186. List Workload Resource Groups of an

Ensemble: Response 375
187. Get Workload Resource Group Properties:

Request 376
188. Get Workload Resource Group Properties:

Response 377
189. Create Workload Resource Group: Request 379
190. Create Workload Resource Group: Response 380
191. Delete Workload Resource Group: Request 381
192. Delete Workload Resource Group: Response 381
193. Update Workload Resource Group: Request 383
194. Update Workload Resource Group: Response 383
195. List Virtual Servers of a Workload Resource

Group: Request 385
196. List Virtual Servers of a Workload Resource

Group: Response 385
197. Add Virtual Server to a Workload Resource

Group: Request 387
198. Add Virtual Server to a Workload Resource

Group: Response 387
199. Remove Virtual Server from a Workload

Resource Group: Request 389
200. Remove Virtual Server from a Workload

Resource Group: Response 389
201. List Groups of Virtual Servers of a Workload

Resource Group: Request 391
202. List Groups of Virtual Servers of a Workload

Resource Group: Response 391

203. Add Group of Virtual Servers to a Workload
Resource Group: Request 393

204. Add Group of Virtual Servers to a Workload
Resource Group: Response 393

205. Remove Group of Virtual Servers from a
Workload Resource Group: Request 395

206. Remove Group of Virtual Servers from a
Workload Resource Group: Response . . . 395

207. List Performance Policies: Request 402
208. List Performance Policies: Response 402
209. Get Performance Policy Properties: Request 404
210. Get Performance Policy Properties: Response

(Part 1) 404
211. Get Performance Policy Properties: Response

(Part 2) 405
212. Create Performance Policy: Request 407
213. Create Performance Policy: Response 407
214. Delete Performance Policy: Request 409
215. Delete Performance Policy: Response 409
216. Update Performance Policy: Request 411
217. Update Performance Policy: Response 412
218. Activate Performance Policy: Request 413
219. Activate Performance Policy: Response 413
220. Export Performance Policy: Request 416
221. Export Performance Policy: Response 417
222. Relationship between reports and the

properties used 419
223. Generate Workload Resource Groups Report:

Request 423
224. Generate Workload Resource Group

Performance Index Report: Request 425
225. Generate Workload Resource Group Resource

Adjustments Report: Request 430
226. Generate Virtual Servers Report: Request 434
227. Generate Virtual Server CPU Utilization

Report: Request 437
228. Generate Virtual Server Resource

Adjustments Report: Request 441
229. Generate Hypervisor Report: Request 449
230. Generate Hypervisor Resource Adjustments

Report: Request 453
231. Generate Service Classes Report: Request 456
232. Generate Service Class Resource Adjustments

Report: Request 461
233. Generate Service Class Hops Report: Request 466
234. Generate Service Class Virtual Server

Topology Report: Request 474
235. Generate Load Balancing Report: Request 476
236. Get Performance Management Velocity Level

Range Mappings: Request 478
237. Workload Resource Group: Sample inventory

data (Part 1) 479
238. Workload Resource Group: Sample inventory

data (Part 2) 480
239. Workload Resource Group: Sample inventory

data (Part 3) 481
240. Workload Resource Group: Sample inventory

data (Part 4) 482
241. Get Console Properties: Request 493
242. Get Console Properties: Response (Part 1) 494
243. Get Console Properties: Response (Part 2) 495

Figures ix

244. Get Console Properties: Response (Part 3) 496
245. Shutdown Console: Request. 500
246. Shutdown Console: Response 500
247. List Custom Groups: Request 504
248. List Custom Groups: Response. 504
249. Get Custom Group Properties: Request 505
250. Get Custom Group Properties: Response 505
251. Create Custom Group: Request 507
252. Create Custom Group: Response 507
253. Delete Custom Group: Request 508
254. Delete Custom Group: Response 508
255. Add Member to Custom Group: Request 510
256. Add Member to Custom Group: Response 510
257. Remove Member from Custom Group:

Request 511
258. Remove Member from Custom Group:

Response 512
259. List Custom Group Members: Request 513
260. List Custom Group Members: Response 513
261. List CPC Objects: Request 525
262. List CPC Objects: Response 525
263. List Ensemble CPC Objects: Request 527
264. List Ensemble CPC Objects: Response 527
265. Get CPC Properties: Request 528
266. Get CPC Properties: Response (Part 1) 529
267. Get CPC Properties: Response (Part 2) 530
268. Get CPC Properties: Response (Part 3) 531
269. Get CPC Properties: Response (Part 4) 532
270. Get CPC Properties: Response (Part 5) 533
271. List Logical Partitions of CPC: Request 566
272. List Logical Partitions of CPC: Response 566
273. Get Logical Partition Properties: Request 567
274. Get Logical Partition Properties: Response

(Part 1) 568
275. Get Logical Partition Properties: Response

(Part 2) 569

276. List Reset Activation Profiles: Request 591
277. List Reset Activation Profiles: Response 591
278. Get Reset Activation Profile Properties:

Request 592
279. Get Reset Activation Profile Properties:

Response 593
280. List Image Activation Profiles: Request 611
281. List Image Activation Profiles: Response 611
282. Get Image Activation Profile Properties:

Request 613
283. Get Image Activation Profile Properties:

Response (Part 1) 613
284. Get Image Activation Profile Properties:

Response (Part 2) 614
285. List Load Activation Profiles: Request 619
286. List Load Activation Profiles: Response 619
287. Get Load Activation Profile Properties:

Request 621
288. Get Load Activation Profile Properties:

Response 621
289. List Group Profiles: Request 625
290. List Group Profiles: Response 625
291. Get Group Profile Properties: Request 626
292. Get Group Profile Properties: Response 627
293. Get Inventory: Request 640
294. Get Inventory: Response 641
295. Create Metrics Context: Request 644
296. Create Metrics Context: Response 645
297. Get Metrics: Request 648
298. Get Metrics: Response 649
299. Delete Metrics Context: Request 650
300. Delete Metrics Context: Response 650
301. Policy XML example, Part 1. 682
302. Policy XML example, Part 2. 683

x HMC Web Services API

||
||

Tables

1. Summary of updates by API version number 5
2. Primitive data types 9
3. Compound data types 9
4. Primitive data types in JSON notation . . . 10
5. Compound data types in JSON notation 11
6. General API services: operations summary 37
7. General API services: URI variables 37
8. Ensemble composition: operations summary 49
9. Ensemble composition: URI variables 50

10. Ensemble object: base managed object
properties specializations 50

11. Ensemble composition: class specific properties 51
12. Ensemble composition: energy management

related additional properties 52
13. Ensemble composition: MAC address prefix

nested object related additional properties . . 52
14. Ensemble composition: node properties 52
15. zBX infrastructure: operations summary 70
16. zBX infrastructure: URI variables 71
17. zBX object: base managed object properties

specializations 71
18. zBX object: class specific properties 72
19. zBX Top-of-Rack switches: base managed

object properties specializations 79
20. zBX Top-of-Rack switches: tor-port-info nested

object properties 80
21. Rack object: base managed object properties

specializations 97
22. Rack object: class specific properties 98
23. BladeCenter object: base managed object

properties specializations 102
24. BladeCenter object: class specific properties 103
25. BladeCenter object: energy management

related additional properties 103
26. Blade object: base managed object properties

specializations 112
27. Blade object: class specific properties 113
28. Blade object: energy management related

additional properties 114
29. Blade object: IEDN interface nested object

properties 116
30. Energy management: operations summary 140
31. Energy management: URI variables 141
32. Virtualization management - virtualization

host: operations summary 161
33. Virtualization management- virtualization

host: URI variables. 162
34. Virtualization management - virtual server:

operations summary 162
35. Virtualization management - virtual server:

URI variables 163
36. Virtualization host object: base managed

object properties specializations 163
37. Virtualization host object: class specific

additional properties 165
38. iedn-virtual-switch object properties 168

39. real-uplink object properties 170
40. qdio-virtual-switch object properties 170
41. Virtual server object: base managed object

properties specializations 207
42. Virtual server object: class specific additional

properties 210
43. Virtual Server Performance Policy Nested

Object 222
44. mac-prefix object properties 223
45. network-adapter-power object properties 223
46. network-adapter-x-hyp object properties 223
47. network-adapter-zvm object properties 224
48. network-adapter-prsm object properties 226
49. Virtual disk object properties 227
50. fullpack-virtual-disk object properties 228
51. fullpack-virtual-disk-zvm object properties 228
52. storage-group-based-virtual-disk object

properties 228
53. linked-virtual-disk object properties 229
54. Valid values for the access-modes property of

a virtual disk object 229
55. Storage management: ensemble-level storage

operations 296
56. Storage management: virtualization host

storage operations 297
57. Storage management: storage group

operations 297
58. Storage management: URI variables 298
59. Storage resource object: base managed object

properties specializations 298
60. Storage resource object: class specific

properties 299
61. Virtualization host storage resource object

properties 314
62. Virtualization host storage resource object:

path-information-fcp object properties . . . 315
63. Virtualization host storage resource object:

path-information-eckd object properties . . . 316
64. Virtualization host storage group object

properties 338
65. Virtualization host storage group object:

free-space-information object properties . . . 339
66. Virtual network management: operations

summary 351
67. Virtual network management: URI variables 351
68. Virtual network object: base managed object

properties specializations 352
69. Virtual network object: class specific

additional properties 352
70. Workload resource group management:

operations summary 368
71. Workload management: URI variables 370
72. Workload object: base managed object

properties specializations 370
73. Workload object: type-specific properties 371
74. perf-policy-summary-object 373

© Copyright IBM Corp. 2012, 2013 xi

75. Performance policy object: type-specific
properties 395

76. Performance policy object: Service class
nested object properties 398

77. Performance policy object: classification rule
nested object properties 399

78. Performance policy object: filter nested object
properties 400

79. Format of a workload-report-entry object 420
80. Format of a cpu-utilization-range object 421
81. Format of a perf-status-data-point object 421
82. Format of a service-class-pi-data object 424
83. Format of a pi-data-point object 424
84. Format of a report-hypervisor-details object 443
85. Format of a PowerVM report-hypervisor-

virtual-servers object 444
86. Format of an x Hyp report-hypervisor-virtual-

servers object 445
87. Format of a z/VM report-hypervisor-virtual-

servers object 446
88. Format of a PR/SM report-hypervisor-virtual-

servers object 447
89. Format of an equivalent-workload-service-

class object 463
90. Format of a hop-entry object 463
91. Format of a hops-report-statistics object 464
92. Format of a hop-application-env object 464
93. Format of a hop-application-env-virtual-

server object 465
94. Format of an equivalent-workload-service-

class object 468
95. Format of a topo-hop object. 468
96. Format of a topo-virtual-server-node object 468
97. Format of an appl-env-vs-response-entry

object 470
98. Format of an appl-env-vs-utilization-entry

object 471
99. Format of a child-virtual-server-node-link

object 472
100. Core System z resources - Console: operations

summary 483
101. Core System z resources - Custom groups:

operations summary 483
102. Core System z resources - Custom groups:

URI variables 484
103. Core System z resources - CPC: operations

summary 484
104. Core System z resources - CPC: URI variables 485
105. Core System z resources - Logical partitions:

operations summary 485
106. Core System z resources - Logical partitions:

URI variables 485
107. Core System z resources - Reset activation

profile: operations summary 486
108. Core System z resources - Image activation

profile: operations summary 486
109. Core System z resources - Load activation

profile: operations summary 486
110. Core System z resources - Group profile:

operations summary 486

111. Core System z resources - Activation profile:
URI variables 486

112. Core System z resources - Capacity record:
operations summary 487

113. Core System z resources - Capacity record:
URI variables 487

114. ec-mcl-description object 487
115. action object 487
116. ec object 488
117. mcl object 488
118. stp-config object 488
119. stp-node object 489
120. psw-description object 489
121. zaware-network object 489
122. ip-info object. 489
123. network-ip-info object. 490
124. Console object: base managed object

properties specializations 490
125. Console object: class specific additional

properties 491
126. network-info object properties 491
127. detailed-network-info properties 491
128. paired-ip-info properties 491
129. ipv4-info properties 492
130. ipv6-info properties 492
131. machine-info properties 492
132. Group object: base managed object properties

specializations 501
133. Group object: class specific additional

properties 502
134. match-info object properties. 502
135. CPC object: base managed object properties

specializations 514
136. CPC object: class specific additional

properties 514
137. ipv6-info object properties 518
138. CPC object: energy management related

additional properties 519
139. Logical Partition object: base managed object

properties specializations 551
140. Logical Partition object: class specific

additional properties 552
141. Reset activation profile: type-specific

properties 589
142. Image activation profile: type-specific

properties 595
143. Load activation profile: type-specific

properties 616
144. Group profile: type-specific properties 623
145. Capacity records: type-specific properties 629
146. caprec-proc-info object 630
147. caprec-target object 630
148. Inventory service: operations summary 635
149. Metrics service: operations summary 635
150. Metrics service: URI variables 635
151. BladeCenter temperature and power metric

group 651
152. Blade power metric group 652
153. Channels metric group 652
154. CPC overview metric group 653
155. Logical partitions metric group 654

xii HMC Web Services API

156. zCPC environmentals and power metric
group 654

157. zCPC processors metric group 655
158. Blade CPU and memory metric group 655
159. Crypto metric group 655
160. Flash memory adapters metric group 656
161. Virtual server CPU and memory metric group 656
162. Virtualization host CPU and memory metric

group 658
163. Workload metrics group - service class data

metric group 660
164. Virtualization host (vSwitch) uplink metric

group 662
165. Virtualization host (vSwitch) by virtual

network metric group. 664
166. Attached virtual server network adapters

metric group 666

167. Optimizer IEDN virtual network interface
metric group 668

168. Optimizer IEDN physical network adapter
metric group 670

169. Top-of-rack switch port metrics group 672
170. Optimizer IEDN physical network adapter

metric group 673
171. Performance policy XML elements 677
172. Performance policy XML: Elements in a

ServiceClass element 678
173. Performance policy XML: Elements required

for a Velocity element 678
174. Performance policy XML: Elements in a Filter

element 680

Tables xiii

xiv HMC Web Services API

Safety

Safety notices
Safety notices may be printed throughout this guide. DANGER notices warn you of conditions or
procedures that can result in death or severe personal injury. CAUTION notices warn you of conditions
or procedures that can cause personal injury that is neither lethal nor extremely hazardous. Attention
notices warn you of conditions or procedures that can cause damage to machines, equipment, or
programs.

World trade safety information
Several countries require the safety information contained in product publications to be presented in their
translation. If this requirement applies to your country, a safety information booklet is included in the
publications package shipped with the product. The booklet contains the translated safety information
with references to the US English source. Before using a US English publication to install, operate, or
service this IBM® product, you must first become familiar with the related safety information in the
Systems Safety Notices, G229-9054. You should also refer to the booklet any time you do not clearly
understand any safety information in the US English publications.

Laser safety information
All System z® models can use I/O cards such as PCI adapters, FICON®, Open Systems Adapter (OSA),
InterSystem Coupling-3 (ISC-3), or other I/O features which are fiber optic based and utilize lasers or
LEDs.

Laser compliance
All lasers are certified in the US to conform to the requirements of DHHS 21 CFR Subchapter J for Class
1 or Class 1M laser products. Outside the US, they are certified to be in compliance with IEC 60825 as a
Class 1 or Class 1M laser product. Consult the label on each part for laser certification numbers and
approval information.

CAUTION: Data processing environments can contain equipment transmitting on system links with
laser modules that operate at greater than Class 1 power levels. For this reason, never look into the
end of an optical fiber cable or open receptacle. (C027)

CAUTION: This product contains a Class 1M laser. Do not view directly with optical instruments.
(C028)

© Copyright IBM Corp. 2012, 2013 xv

xvi HMC Web Services API

About this publication

This publication defines, for reference purposes, the external interface of the Hardware Management
Console (HMC) Web Services Application Programming Interface (Web Services API) for IBM
zEnterprise®, Version 2.12.0. This document specifies the capabilities, input and output formats, and
behaviors of the Web Services API as viewed by an application external to the HMC that is leveraging
that interface.

Related publications
The following publications provide information which supplements the information found within this
document:
v System z Hardware Management Console Operations Guide, SC28-6919
v zEnterprise System Capacity On Demand User's Guide, SC28-2605
v zEnterprise System Ensemble Performance Management Guide, GC27-2607
v zEnterprise System Ensemble Planning and Configuring Guide, GC27-2608
v zEnterprise System Processor Resource/Systems Manager Planning Guide, SB10-7156
v zEnterprise System Support Element Operations Guide, SC28-6920
v z/VM CP Planning and Administration Guide, SC24-6178
v z/VM CP Commands and Utility Reference, SC24-6175
v zEC12 Installation manual for Physical Planning, GC28-6914-00
v zBX Model 003 Installation Manual for Physical Planning, GC27-2619-00
v zBX Model 002 Installation Manual for Physical Planning, GC27-2611-03

Revision bars
A technical change to the text is indicated by a vertical line to the left of the change.

For more information about what has changed since the last publication, see “Summary of API version
updates” on page 5.

Accessibility
This publication is in Adobe Portable Document Format (PDF) and should be compliant with accessibility
standards. If you experience difficulties using this PDF file you can request a web-based format of this
publication. Go to Resource Link® at http://www.ibm.com/servers/resourcelink and click Feedback from
the navigation bar on the left. In the Comments input area, state your request, the publication title and
number, choose General comment as the category and click Submit. You can also send an email to
reslink@us.ibm.com providing the same information.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

How to send your comments
Your feedback is important in helping to provide the most accurate and high-quality information. Send
your comments by using Resource Link at http://www.ibm.com/servers/resourcelink. Click Feedback
on the navigation bar on the left. You can also send an email to reslink@us.ibm.com. Be sure to include
the name of the book, the form number of the book, the version of the book, if applicable, and the
specific location of the text you are commenting on (for example, a page number, table number, or a
heading).

© Copyright IBM Corp. 2012, 2013 xvii

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

xviii HMC Web Services API

Chapter 1. Introduction

This chapter provides an overview of IBM zEnterprise Unified Resource Manager (zManager) APIs, how
to enable and access them, and considerations for compatibility.

Overview
The Unified Resource Manager (zManager) is a collection of advanced hardware and virtualization
management functions delivered as System z firmware. The functions of zManager are implemented as a
cooperating set of components hosted on the Hardware Management Console (HMC), the Support
Element (SE), the blades of a zEnterprise BladeCenter® Extension (zBX) , and as extensions to z/VM®. It
provides a uniform, integrated and workload-oriented administrative model for the heterogeneous
computing configuration provided by a zEnterprise system. The functions provided by zManager include:
v Hardware inventory, initialization, configuration, monitoring and problem analysis for the components

of a System z CPC, including both the traditional System z computing resources as well as the zBX.
v Firmware installation and update for the HMC, SE, traditional CPC components, zBX infrastructure,

Intra-ensemble data network (IEDN) elements, and zBX blades.
v Operational control and energy management for these hardware elements.
v Configuration of function-specialized workload accelerators available as blade optimizers in the zBX.
v Provisioning, configuration, control and monitoring of virtualized computing systems (virtual servers)

on the firmware-managed IBM blade and z/VM environments.
v Secure management of the IEDN through the provisioning and control of IEDN virtual networks.
v Automatic and workload-oriented performance optimization of the heterogeneous, virtualized

environment.

The HMC serves as the administrative access point for zManager. In that capacity, the HMC provides a
web-based, remote-able graphical user interface (UI) to make the zManager functions available to users.
In addition, it hosts the implementation of zManager Web Service API (Web Services API) that is
described in this document.

The Web Services API is a web-oriented programming interface that makes the underlying zManager
capabilities available for use by higher level management applications, system automation functions, or
custom scripting. The functions that are exposed through the API support several important usage
scenarios in virtualization management, including resource inventory, provisioning, monitoring,
automation and workload-based optimization among others.

Components of the API
The Web Services API consists of two major components. Both components are accessed by client
applications by establishing TCP/IP network connections with the HMC.

Web services interface
The web services interface is a request-and-response oriented programming interface by which client
applications obtain information about the system resources managed by zManager, and by which those
applications can perform provisioning, configuration or control actions on those resources.

As is the case for any web-oriented interface, client applications interact with this interface by means of
the Hypertext Transfer Protocol (HTTP), an application protocol that flows over TCP/IP socket
connections. Client applications request operations by forming and sending text-oriented request
messages as defined by HTTP, and the Web Services API responds with text-oriented HTTP response
messages. The use of HTTP makes the API client-programming-language neutral, and thus accessible to a

© Copyright IBM Corp. 2012, 2013 1

wide variety of client applications. Client applications can be developed in programming languages such
as Java™, or in scripting languages such as Perl or Python that include extensive support for performing
HTTP operations.

The design of the API's mapping to HTTP has been influenced by the Representational State Transfer
(REST) style of interface design. The manageable resources of the system are associated with and
identified by durable URIs, and the basic get, update, create and delete operations on those manageable
resources are mapped directly to the HTTP GET, PUT, POST and DELETE methods. Request and
response data is provided using JavaScript Object Notation (JSON), a simple, open and portable transfer
representation. Mapping the functions of the API to HTTP in this way simplifies client application
development and allows access to the API without the need for extensive client side tooling or libraries
as is often the case in other approaches to web services interface design.

Broadly speaking, the web service interface provides two categories of operations:
v Resource (or object) oriented operations, in which a particular request is targeted at a single

manageable resource instance and typically affects just that single resource instance. The majority of
the API has this orientation, for example providing functions for interacting with the virtual servers,
virtualization hosts, virtual networks and workloads of the system.

v Service oriented operations, in which a particular request operates across many or all manageable
resources of the system. The service-oriented operations are provided to support usage scenarios that
cannot be accomplished efficiently using an object-by-object sequence of individual requests. The
operations provided by the Metrics and Inventory services of the API are examples of service-oriented
operations.

Asynchronous notification facility
The web services interface described above is useful to satisfy many usage scenarios, particularly those in
which the client application's interest in and interaction with zManager is focused on performing a
short-term task. In these kinds of applications (typical of automation or simple provisioning), the client
application forms a request, gets a response, processes the response and then “forgets” about the
zManager resource it interacted with. That is, the application does not attempt to retain (or cache)
information about zManager resources long term and then keep that cache up to date.

However, more sophisticated management applications, including those for discovery, monitoring and
advanced provisioning, are not single-request-and-forget with respect to their interest in zManager.
Rather, such applications have a need to obtain and retain (i.e., cache) information about the inventory,
configuration and status of many zManager resources, and to keep that cached information up to date.

In order to support these more sophisticated applications, the Web Services API provides an
asynchronous notification facility by which zManager can inform interested client applications about
changes to the resources managed by zManager.

The API's asynchronous notification facility is designed around the Java Message Service (JMS), an open,
standard framework and API for sending messages between two or more applications.

Enabling and accessing the API
The Web Services API is provided on an HMC that is running with firmware version 2.11.1 or later. The
API can be used to query, configure and control Central Processing Complexes (CPCs) containing a
Support Element (SE) that is running with firmware version 2.11.1 or higher.

By default, the Web Services API is disabled on the HMC. When disabled, the HMC internal firewall is
configured to prohibit connections to any of the TCP/IP ports used by the API. When in this state,
requests to connect to the API network ports are completely ignored by the HMC without a
connection-refused response.

2 HMC Web Services API

The Web Services API can be enabled and the scope of access to it configured using the Customize API
Settings task in the HMC UI. This task, which previously provided configuration settings for the SNMP
APIs, has been extended with new controls for the Web Services API as well.

The Customize API Settings task allows an installation to enable the API via an overall enabled/disabled
setting. When enabled, the HMC internal firewall is reconfigured to allow access to the relevant network
ports. When the API is enabled with default settings, the HMC allows connections to the API functions
from client applications accessing the HMC from any TCP/IP address. For additional security, an
installation can configure the HMC to permit connections to the API ports only from selected network
addresses or subnets. These addresses or subnets are specified by the Customize API Settings task as
well. If specified, these connection restrictions are enforced by the HMC internal firewall.

In addition to the overall enablement on/off control and the optional client network address filtering,
access to the API is further secured by the requirement for per-user authorization.

The HMC User Profiles and Manage Users Wizard tasks define access and other characteristics of an
HMC user. These tasks have been extended to provide a new property (Allow access to management
interfaces) to indicate whether a particular HMC user is to be permitted to use the API or not. By
default, this setting is disabled for an HMC user profile and thus attempts to establish an API session by
that user are rejected. The installation can use the Customize API Settings, User Profiles, or Manage
Users Wizard tasks of the HMC to set this property for one or more HMC users and thus allow those
users to access the API.

Once a user is permitted to establish API sessions, its actions within those sessions are subject to the
HMC's access control model, as is described in the section that follows.

Authentication and access control
The HMC provides a built-in access control model in which an HMC user authenticates itself to the HMC
to establish its identity, and then based on that identity is permitted or denied the ability to perform
certain operations as specified by the access control configuration. These operations, and the objects on
which they are permitted, are managed with object and task/action permissions that are grouped into
roles that are assigned to HMC users. Roles are managed with the Customize User Controls task on the
HMC. Roles are assigned to users with the User Profiles or Manage Users Wizard tasks.

Use of the Web Services API is subject to the same access control policy as is used for UI operations.

Establishing an API session with the HMC requires the initiating application to provide a valid HMC
logon ID and corresponding password in order to authenticate and establish the identity under which its
requests will be performed. (See “Logon” on page 39 for more information.) The API requires the use of
SSL connections so that these login credentials can be flowed securely. The user credentials are validated
by the HMC in the same way they are validated for a logon to the UI, either via the HMC's built-in user
registry or by use of an LDAP directory server.

Once a client application has established an API session, its ability to access various managed object
instances and the operations that can be performed on those instances is regulated based on the identity
associated with the API session and the access control policy configured in the HMC for those managed
object instances. Access control requirements vary based on the class of managed object and the operation
for the managed object. These access control requirements for API actions mirror the requirements for
corresponding tasks in the HMC user interface. Details on the authorization requirements for an
operation are specified in the description of that operation.

Alternate HMC considerations
A zEnterprise ensemble is managed by a pair of HMCs that operate in a primary/alternate configuration
rather than by a single HMC. At any point in time, one HMC of the pair is designated as the primary
HMC and has active management responsibility for the resources of the ensemble. The other HMC is

Chapter 1. Introduction 3

designated as the alternate HMC, and when in this role acts only as a standby for the primary HMC and
mirrors configuration updates from the primary in case the primary fails, but does not otherwise perform
active management.

The Web Services API can and should be enabled on both the primary and alternate HMCs of the pair.

However, client applications should generally connect only with the primary HMC for API purposes.
Because the alternate HMC is not performing active management, it is unable to perform the
management actions implied by API requests, and thus most API operations are designed to be rejected if
directed to the alternate HMC (with HTTP status code 404, reason code 3). The API operations supported
on the alternate HMC are limited to those that control the alternate HMC function itself. The description
of an operation specifically indicates that it is supported on the alternate HMC if this is the case.

Compatibility
The capabilities of the Web Services API will evolve as additional management functionality is added to
zManager. Over time, this evolution could result in a mixture of HMC and client application versions
coexisting in a customer environment. The principles and guidelines outlined in this section are intended
to maximize the compatibility and interoperability among HMC and client applications in such a mixed
environment.

API versioning
Since the functionality of the Web Services API may evolve over time, each functional level of the API is
identified by a version number. This version number is represented in major.minor form, with the initial
version of the API designated as version 1.1.

The API version offered by an HMC can be determined before API logon by using the Query API Version
operation (GET /api/version). The version number of the API is also provided in the response from the
Logon operation.

Enhancements to the API specification that maintain compatibility with previous versions (see principles
below) are indicated by incrementing the minor portion of the version number. So, for example, the first
set of compatible changes to the API would be designated as version 1.2, following the initial 1.1 version.

Because the minor versions within a major version stream (e.g. the 1.x versions) are considered
compatible, the HMC always offers and behaves according to the latest minor version of the API
specification it supports. That means, for example, the API does not offer any facility by which a client
can request version 1.1 behaviors on an HMC that offers version 1.2 level of functionality.

While reasonable effort will be made to preserve compatibility, it may become necessary to make changes
to zManager (and thus the API) that do not maintain compatibility with the previous version. If this
occurs, the introduction of this new (incompatible) behavior is indicated by incrementing the major part
of the version number, and starting the minor part of the version number again at 1. The first such
version would thus be identified as version 2.1.

Allowable changes within a major version
The following kinds of changes to the API specification are allowable within a major version, and thus
result in changes to the minor but not major parts of the API version number.
v Adding new object classes or new operations on existing object classes.
v Adding new properties to the data model of an existing object class.
v Changing existing properties of an existing object class from read-only or mutable to writable using the

API.
v Adding new URIs and operations related to those URIs.

4 HMC Web Services API

v Adding new optional query parameters to existing URIs where the behavior in the absence of this
query parameter is unchanged.

v Adding new optional fields into input bodies where the behavior in the absence of these new fields is
unchanged.

v Adding new fields to the response bodies of existing operations.
v Adding additional header or body fields to existing notification messages.
v Adding data for new classes of objects to the results provided by the Inventory service.
v Generating new types of notification messages.
v Generating property change notifications for new properties, or for existing properties that did not

provide those notifications previously.
v Adding new enumeration values to enumeration-type fields returned in response bodies without

removing or changing the meaning of any existing enumeration values.
v Adding new error status and reason codes.
v Adding new metric groups.
v Adding new metric fields to the end of existing metric groups.

Requirements on client applications
In order for a client application to correctly interoperate with an HMC that may be offering a higher
minor version of the API, client applications must be designed and developed following the simple
principle of “ignore what you don't understand” when interpreting responses or messages received from
the HMC. This is necessary because the principles of allowable changes specified in the preceding section
allow new fields to be added to preexisting responses or messages.

More specifically, a client application must:
v Ignore, without error, any field in a response body that is not recognized by the application.
v Ignore, without error, any header or body field in a notification message that is not recognized by the

application.
v Ignore, without error, any notification message of an unrecognized type that may be received by the

application.
v Ignore, without error, any object appearing in the response to an Inventory request that are of a class

not recognized by the application.
v Tolerate receiving a value in a field with an enumeration data type that is an unexpected value. If the

application is attempting to display this field, it might consider mapping the unrecognized
enumeration value to some value indicating “other” or “unknown”.

v Ignore, without error, extra values provided in a row of metric group data that reside beyond the last
field currently expected by the application.

These conditions can arise as a result of API extensions that are considered allowable within a given
major version. Following the “ignore what you don't understand” principle prepares a client application
to tolerate these API additions should they occur.

Summary of API version updates
The following functions were introduced in the respective API version:

Table 1. Summary of updates by API version number

API
Ver Description HMC MCL SE MCL

HMC/SE Version 2.11.1

1.1 Added reason codes 0, 105 and 108 as possible HTTP status code 400 (Conflict)
error conditions reported by the Migrate Virtual Server operation.

N48180.278 N48168.275

Chapter 1. Introduction 5

Table 1. Summary of updates by API version number (continued)

API
Ver Description HMC MCL SE MCL

1.1 Changed the backing-virtualization-host-storage-resource property of the Virtual
Server data model (in the fullpack-virtual-disk nested object) from a read-only
property to a writeable property.

N48180.287 None

1.1 Increased the maximum request body size for the Import Storage Access List
operation to 1 MB, and increased the maximum request body size for most other
operations to 64KB.

N48180.288 N48168.294

1.1 Added the cores-per-processor property to the Blade object data model
(read-only).

N48180.296 None

1.1 Added inventory and property-change notification support for the Virtualization
Host Storage Resource object.

N48180.308 N48168.315

1.1 Added the inventory-error-details field and related inventory-error-info nested
object to the inventory-error document returned by the Get Inventory operation
when error condition 5 is encountered.

N48180.314 N48168.321

1.1 v Added the properties=common query parameter to the Get Virtual Server
Properties operation.

v Added the virtual-server-common category and power-vm-virtual-server-
common, prsm-virtual-server-common, x-hyp-virtual-server-common and
zvm-virtual-server-common classes to the Get Inventory operation.

N48180.319 N48168.325

1.1 Changed the resources field in the request body for the Get Inventory operation
from required to optional.

N48180.340 None

1.1 Corrected the range checking for the load-address field of the Load Logical
Partition operation so that the operation correctly supports loading from an
alternate subchannel.

N48180.360 None

1.2 v Added the Mount Virtual Media Image operation.
v Increased API version number from 1.1 to 1.2.

N48180.361 None

1.2 Corrected the format of the URI returned by the List Members of Virtual
Network operation for a zBX TOR port to reflect the correct canonical URI
format for zBX TOR port elements.

N48180.363 None

1.2 Added the power-vm-partition-id property to the Virtual Server object data
model for PowerVM virtual servers (read-only)

N48180.363 N48168.378

1.2 Added HTTP status code 409 (Conflict) as a possible error condition for the List
Virtualization Host Storage Resources and Get Virtualization Host Storage
Resource Properties operations.

N48180.376 None

1.2 Added the feature-list property to the Virtualization Host object data model.
This property is provided for virtualization hosts on all CPCs supported by the
Web Services API, but the particular features provided by a given virtualization
host will differ based on the release and MCL level of the CPC.

N48180.380 N48168.402

HMC/SE Version 2.12.0

6 HMC Web Services API

|
|
|

|
|
|
|

Table 1. Summary of updates by API version number (continued)

API
Ver Description HMC MCL SE MCL

1.3 The following extensions are provided by the HMC Web Services API for HMCs
at version 2.12.0, and apply to all CPCs supported by the Web Services API:
v Increased API version number from 1.2 to 1.3.
v Added the power-saving-state property to the for BladeCenter and Blade

objects data models, and added the cpc-power-saving-state and
zcpc-power-saving-state properties to the CPC object data model.

v Added "not-supported" as a possible enumeration value for the
power-save-allowed and power-cap-allowed properties of BladeCenter and
Blade objects, and added "not-supported" as a possible enumeration value of
the cpc-power-save-allowed, cpc-power-cap-allowed, zcpc-power-save-
allowed and zcpc-power-cap-allowed properties of the CPC object.

v Added the status (read-only), acceptable-status (writeable), perf-status
(read-only) and compliant-perf-status (writable) properties to the Workload
Resource Group object data model.

v Added most-severe-perf-status and perf-status-data-points fields, and related
perf-status-data-point nested object to the response from the Generate
Workload Resource Groups Report operation.

v Added the perf-policies property to the Virtual Server object data model, and
also added related virtual server performance policy nested object.

v Added "data-retrieval-error" as a possible enumeration value for the
status-detailed field in the response for the Generate Load Balancing Report
operation.

v Added an optional request body containing an optional force input field to the
Unmount Virtual Media operation.

v Changed the Create Virtual Server operation for a zVM virtual server to
require the password field on input rather than allowing it to be optional. This
change has been made to improve security.

v Added HTTP status code 409 (Conflict) as a possible error response reported
by the following Storage Management operations:
– Import Storage Access List
– Create Virtualization Host Storage Resource
– Delete Virtualization Host Storage Resource
– Add Virtualization Host Storage Resource Paths
– Remove Virtualization Host Storage Resource Paths
– Discover Virtualization Host Storage Resources.

H09182.023 H09173.028

Chapter 1. Introduction 7

Table 1. Summary of updates by API version number (continued)

API
Ver Description HMC MCL SE MCL

1.3 The following extensions are provided by the HMC Web Services API for HMCs
at version 2.12.0, but apply only to CPCs with SE version 2.12.0:
v Added cp-cpu-consumption-percent, ifl-cpu-consumption-percent and

other-cpu-consumption-percent fields to the response from the Generate
Hypervisor Report operation for zVM virtualization hosts. These new fields
are provided for zVM virtualization hosts running at version 6.2 or greater.

v Added the following in support of IBM zAware partitions. These changes
apply only for partitions of the new "zaware" type:
– Added "zaware" as a possible value of the activation-mode property of

Logical Partition and Image Activation Profile objects.
– Added the zaware-network, network-ip-info and ip-info nested objects as

common nested object definitions used for new properties of Logical
Partition objects.

– Added the zaware-host-name, zaware-master-userid, zaware-master-pw,
zaware-network-info, zaware-gateway-info and zaware-dns-info properties
to the Logical Partition and Image Activation Profile object data models.

– Added HTTP status 400 reason code 306 as a possible error response from
the Load Logical Partition, PSW Restart, Start Logical Partition, Stop Logical
Partition, and Update Image Activation Profile Properties operations when
these operations are attempted on an IBM zAware partition.

v Added the Cryptos and Flash Memory Adapters metric groups for CPC
objects. Data entries are provided for a CPC in these metric groups if the CPC
has one or more Cryptos or Flash Memory Adapters installed.

v Added new cp-cpu-time, ifl-cpu-time, zaap-cpu-time, ziip-cpu-time and
icf-cpu-time metrics to the Virtualization Host CPU and Memory metric group
(for zVM virtualization hosts).

H09182.023 H09173.028

1.3 Added HTTP status code 409 (Conflict) as a possible error condition for the List
Virtualization Host Storage Resources and Get Virtualization Host Storage
Resource Properties operations.

H09182.062 None

1.3 Added property change support for the unique-device-id property of the Storage
Resource object.

H09182.102 None

1.3 Added the feature-list property to the Virtualization Host object data model.
This property is provided for virtualization hosts on all CPCs supported by the
Web Services API, but the particular features provided by a given virtualization
host will differ based on the release and MCL level of the CPC.

H09182.119 H09173.149

8 HMC Web Services API

|
|
|

|
|

|
|
|
|

Chapter 2. Base definitions

This chapter provides basic definitions of data types, representation formats and other fundamental
syntactic elements that apply across the Web Services API.

Data types
The following data types are used in the definition of the management data model, input and output
parameters and notification message formats in the Web Services API.

Table 2. Primitive data types

Data type Description

Boolean A logical truth value: either the value true or the value false.

Byte An integer value in the range -2^7 to (2^7)-1 (the range of a signed 8-bit integer)

Float An IEEE 754 floating point number in the range +/-4.9E-324 to +/-3.4028235E+38. Note
that, although IEEE 754 provides for representations of positive or negative Infinity and
NaN, such values are not used within the API.

Long An integer value in the range -2^63 to (2^63)-1 (the range of a signed 64-bit integer)

Integer An integer value in the range -2^31 to (2^31)-1 (the range of a signed 32-bit integer)

Short An integer value in the range -2^15 to (2^15)-1 (the range of a signed 16-bit integer)

String A sequence of Unicode characters. When the number of characters in the string is bounded,
the length or length range is provided in parenthesis, for example String (16) for a 16
character string, or String (0-256) for a string that may range in length from 0 (empty) to 256
characters.

String Enum A String enumeration, i.e. a String for which the possible values are constrained to be one of
a specified set of choices.

String/URI A String that contains a URI path used to designate object instances or operations within the
API.

String/IPV4 Address A String that contains an Internet Protocol Version 4 address presented in dotted-decimal
notation.

Example: “127.0.0.1”

String/IPV6 Address A string that contains an Internet Protocol Version 6 address presented in
colon-separated-hexadecimal notation. Leading and consecutive groups of zeros may be
omitted in the representation as is conventional for IPV6 addresses presented in this form.

Example: “2001:db8:85a3::8a2e:370:7334”

Timestamp A Long integer quantity where the value represents a date and time expressed as the
number of milliseconds since midnight on January 1, 1970 UTC.

Table 3. Compound data types

Data type Description

Array of <T> A ordered sequence of zero or more elements each of data type <T>. An array may be
empty, i.e. have no elements contained within it.

Object A nested data structure providing a set of fields, each field having a name, data type and
value. Object types do not formally have names. However, descriptions of these nested
objects will often assign reference names to allow connections to be made in the
documentation between points of use and definition for a given nested object.

© Copyright IBM Corp. 2012, 2013 9

Input and output representation
Except for a few special cases, the operations provided by the Web Services API expect their input and
provide their output using a representation known as JavaScript Object Notation, or JSON for short. The
JSON representation is also used within the bodies of notification messages emitted by the API. Unless
some different representation is specifically mentioned in the description of an operation or message, all
operations and messages should be understood to use JSON notation.

JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data interchange
format that defines a small set of formatting rules for the portable representation of structured data. JSON
can represent four primitive types (strings, numbers, booleans, and the value null) and two structured
types (objects and arrays) that together provide sufficient expressive power to represent the manageable
resource configuration, state, inputs, and outputs that appear in this API.

A JSON string is a sequence of zero or more Unicode characters enclosed in quotes.

A JSON object is an unordered collection of zero or more name/value pairs (sometimes referred to in this
document as fields or properties), where a name is a string and a value is a primitive type (string,
number, boolean, or null), an array, or a nested object. Each name/value pair is represented in the form
"name": value and is separated from the next name/value pair by a comma. The collection of
name/value pairs comprising the object is enclosed by left and right braces e.g. { ... }).

An array is an ordered sequence of zero or more values separated from each other by commas and
enclosed in left and right square brackets e.g. [10,20,30]). The values in the array can be primitive or
structured types, i.e. arrays of objects or arrays of arrays are permitted.

The precise BNF syntax of JSON notation is not provided in this document, but can be found in the IETF
information document RFC 4726, The application/json Media Type for JavaScript Object Notation (JSON), July
2006. This RFC can be found in text format on the World Wide Web at:

http://www.ietf.org/rfc/rfc4627.txt

Representing API data types in JSON
The following tables define the mapping between the API data types and their corresponding
representation in JSON notation.

Table 4. Primitive data types in JSON notation

API data type JSON representation

Boolean A JSON boolean with keywords true and false

Byte, Integer, Long,
Short

A JSON number with a sign and integer component, but no fraction or exponent part.

Float A JSON number, possibly including fraction or exponent parts.

On output, values with a magnitude greater than or equal to 10^-3 and less than 10^7 are
representation in floating-point format with a fraction part but not exponent part (e.g. 1.7,
-32.467). Values with magnitudes outside that range are represented in scientific notation
with both fraction and exponent parts (e.g. -4.23E127).

String, String Enum Represented as a JSON string enclosed in quotes.

Timestamp An unsigned JSON number with integer component, but no fraction or exponent part.

10 HMC Web Services API

http://www.ietf.org/rfc/rfc4627.txt

Table 5. Compound data types in JSON notation

Data type Description

Array of <T> A JSON square-bracket-enclosed array with elements represented according to the data type
<T>.

Object A JSON curly-brace-enclosed object, with the fields/properties of the nested object
represented as name/value members of the object. The name of a property/field is used
directly as the name part of the JSON object member, and the value of the field/property is
provided as the value part of the member.

All strings in the JSON representation (object member names, and string values) are encoded in UTF-8.

Chapter 2. Base definitions 11

12 HMC Web Services API

Chapter 3. Invoking API operations

The Web Services API provides an extensive set of operations that client applications can invoke to obtain
information about the manageable resources of the system, to change those resources' characteristics, and
to take action on them. Because the API is designed using a web services orientation, these operations are
accessed by means of Hypertext Transport Protocol (HTTP) protocol messages flowing across TCP/IP
network connections.

Most aspects of HTTP protocol usage required to invoke API operations or receive responses apply
universally across all of the operations of the API. Rather than repeat these details in the description of
each and every operation, this common information is instead provided in this chapter. The material in
this chapter should be considered to apply to each and every operation of the API unless the
operation-specific description indicates otherwise. Thus, the information in his chapter should be
consulted in conjunction with the operation-specific descriptions elsewhere in this document when
determining how to invoke a specific API operation.

HTTP protocol standard
The Web Services API has been designed in accordance with the HTTP version 1.1 protocol, as defined in
the W3C internet standards document RFC 2616, Hypertext Transfer Protocol – HTTP/1.1, June 1999. This
RFC can be found in HTML format on the World Wide Web at: http://www.w3.org/Protocols/rfc2616/
rfc2616.html

The API requires that all clients interact using the HTTP/1.1 protocol. The API does not support clients
that use HTTP/1.0.

Note: While the API does not specifically assume or exclude any particular client user agent, its use and
interpretation of HTTP elements has been designed presuming that the client application interacting with
the API is a programmatic web application client or HTTP-capable scripting client rather than a standard
browser-based application.

Connecting to the API HTTP server
When the Web Services API is enabled, the HMC API HTTP server listens for SSL-based socket
connections on TCP port 6794. The HMC is enabled for both the SSL version 3 and TLS version 1
protocols on this SSL port. It does not accept non-SSL connections.

The listening port for the API HTTP server is a fixed port number and is not subject to customer
reconfiguration. Thus, client applications can treat this as a well-known port number rather than
requiring customer input when configuring the networking parameters the client will use to connect to
the HMC.

HTTP header field usage
HTTP request and response messages include elements known as headers fields (often referred to simply
as headers for short) that provide request metadata. Certain headers are required or provided in all HTTP
messages, while others are present in selected messages depending on content.

This section describes the use of header fields by the Web Services API.

© Copyright IBM Corp. 2012, 2013 13

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html

Required request header fields
The following HTTP request headers are relevant to all request methods (GET, PUT, POST, DELETE) and
are required on all API requests (except as indicated for the Logon and Query API Version operations).

HTTP header name Rqd/Opt Description

Host Required Specifies the Internet host and port number of the HMC to which the request is
being directed, as obtained from the original URI given by the client
application. The Web Services API enforces that this header is provided as
required by the HTTP protocol, but does not check or use the value of the
header in any way.

X-API-Session Required1 An opaque string that provides a cryptographically strong identifier of the API
session (known as a session id) under which this request is executed. This
header is required on all requests that require authentication. The Login
operation begins a new HMC session and includes credentials identifying the
HMC user for the session. Upon successful authentication, the Login operation
returns the value to be used in the X-API-Session header for all subsequent
requests of the same session. Failure to include this header on a request
requiring authentication results in status code 403 (Forbidden) with reason code
4. Specifying an invalid session id results in status code 403 (Forbidden) with
reason code 5.

Note:

1. Not required on requests to the Query API Version and Logon operations since these operations can be
performed before an API session has been established.

For requests made using the HTTP PUT or POST methods, the following additional request headers are
required if a request body is being provided. If an operation being requested via POST method does not
require a request body, these headers can be omitted.

HTTP header name Rqd/Opt Description

Content-Length Required if
request
body
present

When used in a request, specifies the length of the request body. If omitted, the
request is presumed to not contain a body.

The API limits the size of request bodies in order to control usage of memory
resources on the HMC. Unless a different limit is specified for a particular
operation, in general the largest request body accepted by the API is 64KB.
Requests with bodies that exceed this maximum are rejected with an HTTP
status 413 (Request Entity Too Large) response.

Content-Type Required if
request
body
present

When used in a request, specifies the MIME media type of the request body
contained in the request. This header is required if the Content-Length header
is supplied and specifies a non-zero request body length, otherwise status code
400 (Bad Request) will result.

Optional request headers
The following HTTP request headers are relevant to all request methods (GET, PUT, POST, DELETE) and
may be specified on these method requests but are not required. If present, they are interpreted by the
API in the indicated way.

14 HMC Web Services API

HTTP header name Rqd/Opt Description

Accept Optional Specifies the list of response MIME media types that the client application is
prepared to accept for the response to the request. This header is provides for
content negotiation between the client and the server in cases where the Web
Services API supports multiple possible response media types for a given
operation.

In the current implementation, the Web Services API supports only a single
response media type for each operation. For the majority of operations, that
media type is JSON (application/json), but selected operations support a
different media type (indicated in the descriptions of those special operations).

If this header is omitted, the Web Services API responds using the (single)
media type supported for the operation. If the header is included, it must allow
for the single media type that the operation supports, otherwise the request
will fail with HTTP status code 406 (Not Acceptable).

If an operation is extended to support multiple media types, compatibility will
be maintained for existing clients that request the operation without specifying
an Accept header.

X-Audit-Id Optional A string that provides additional client identity information that is included in
all audit records created for this request, in addition to the API user's HMC
login identity. This header is intended to provide improved audit logging in the
case of clients that make requests on behalf of multiple upstream users while
logged into the API under a single HMC login identity. Such clients should
provide the identity of their upstream user in this header so that the requests
of different upstream users can be distinguished in the HMC audit logs. The
HMC will use up to the first 64 characters of information from this header if
present, and silently ignore the remainder of the header's value if it is longer
than 64 characters.

X-Client-Correlator Optional A string that provides diagnostic information pertaining to this request that is
of significance to the client, such as a client request number or the like. The
HMC will record this information in selected diagnostic trace or log data it
collects so as to allow better cross-correlation of this information with similar
information maintained by the client. This data supplied in this header is
intended to assist in product problem determination and does not otherwise
affect the operation of the API. The HMC will use up to the first 64 characters
of information from this header if present, and silently ignore the remainder of
the header's value if it is longer than 64 characters.

Standard response headers
The following HTTP response headers are always provided in the response to all requests.

HTTP header
name Description

Date The date and time, from the perspective of the HMC's clock, at which the response message was
generated. As required by the HTTP protocol specification, this date is an HTTP full date sent in
the RFC 1123-defined fixed length format.

Example: Sun, 08 Oct 1961 10:08:00 GMT

The following HTTP response headers are provided in the response to all requests except those that result
in a 204 (No Content) HTTP status code.

Chapter 3. Invoking API operations 15

HTTP header
name Description

Content-Length When used in a response, specifies the length of the response body. If omitted, the response does
not contain a body.

Content-Type When used in a response, specifies the MIME media type of the response body. This response
header is provided any time the Content-Type header is provided and specifies a non-zero
length.

Additional response headers
Some operations may return additional response headers beyond those described in “Standard response
headers” on page 15. The following table describes these possible additional response headers.
Operations that return these additional headers indicate that they do so in the operation description.

HTTP header
name Description

Location The URI of the resources that was created by the operation.

This header is provided for operations that complete successfully with an HTTP status code of
201 (Created).

X-API-Session An opaque string that provides a cryptographically strong identifier of the API session that was
created for the client.

This header is provided in the response to a successful Logon operation.

X-Request-Id A string that provides diagnostic information identifying the request from the perspective of the
HMC. This same information is included in the API log entries that are recorded by the HMC for
the request. If captured by the client from a response, a client application developer or support
technician can use this information to locate the HMC API log entry corresponding to a particular
request. The value of this header will be 64 characters or less.

This header is provided in the responses to all requests.

Media types
The following media types are applicable to the use of the Web Services API, and thus may appear in the
values of Accept or Content-Type header fields.

MIME media type Description

application/json JavaScript Object Notation (JSON), as described by RFC
4627. This media type is used by the Web Services API
for both request and response representation for the
majority of the operations in the API. The JSON text is
encoded using the UTF-8 charset.

application/vnd.ibm-z-zmanager-metrics Custom output format used for providing the results to
the Get Metrics operation of the metrics service. The
result text is encoded using the UTF-8 charset.

application/xml Extensible Markup Language, used for the input and
output formats for the Export Performance Policy and
Import Performance Policy operations of the workload
object. The XML text is encoded using the UTF-8 charset.

application/octet-stream Binary data. This media type is used by the Web Services
API for the request representation for the Mount Virtual
Media Image operation of the virtual server object.

16 HMC Web Services API

HTTP status codes
The HMC API provides standard HTTP status codes in the response to requests to indicate the success or
failure of the request. Unless stated otherwise in the description of an operation, the following general
interpretations of the status code values apply.

HTTP status code Description/Causes

200 (OK) The request has succeeded completely. A response body is provided that contains the results of
the request.

201 (Created) The request has succeeded completely and resulted in the creation of a new managed
resource/object. The URI for the newly created managed resource is provided in a Location
header. (POST methods only)

202 (Accepted) The request was successfully validated and has been accepted to be carried out asynchronously.

204 (No Content) The request succeeded completely, and no additional response information is provided.

400 (Bad Request) The request was missing required input, had errors in the provided input, or included
extraneous input. Additional information regarding the error is provided in an error response
body that includes a reason code with additional information.

403 (Forbidden) Multiple error conditions result in this status code:

v The request requires authentication but no X-API-Session header was provided, or one was
provided but the session ID was invalid.

v The user under which the API request was authenticated is not authorized to perform the
requested operation.

v The ensemble is not operating at the management enablement level required to perform this
operation.

404 (Not Found) Multiple error conditions result in this status code:

v The URI does not designate an extant resource, or designates a resource for which the API
user does not have object-access permission.

v The URI designates a resource or operation that is not supported by the HMC because it is
currently the alternate HMC.

405 (Method Not
Allowed)

The request specifies an HTTP method that is not valid for the designated URI.

406 (Not
Acceptable)

The Accept header for the request does not include at least one content representation
supported by the Web Services API.

409 (Conflict) The managed resource is in an incorrect state (status) for performing the requested operation.
Additional information regarding the error is provided in an error response body that includes
a reason code with additional information.

413 (Request
Entity Too Large)

The request includes a request body that is too large.

Unless a different limit is specified for a particular operation, in general the largest request
body accepted by the API is 64 KB.

415 (Unsupported
Media Type)

The Content-Type header for the request specifies a representation that is not supported by the
Web Services API.

500 (Server Error) A server error occurred during processing of the request.

501 (Not
Implemented)

The request specifies an HTTP method that is not recognized by the server (for any resource).
Note: The response body that accompanies this error is not a JSON response body as defined
in “Error response bodies” on page 18.

503 (Service
Unavailable)

The request could not be carried out by the HMC due to some temporary condition.

505 (HTTP Version
Not Supported)

The request specifies an HTTP protocol version that is not supported by the Web Services API.

Chapter 3. Invoking API operations 17

Error response bodies
For most 4xx and 5xx HTTP error status codes, additional diagnostic information beyond the HTTP status
code is provided in the response body for the request. This information is provided in the form of a
JSON object containing the following fields:

Field name Type Description

http-status Integer HTTP status code for the request.

request-method String The HTTP method (DELETE, GET, POST, PUT) that caused this error response.

request-uri String The URI that caused this error response.

reason Integer Numeric reason code providing more details as to the nature of the error) than is
provided by the HTTP status code itself. This reason code is treated as a sub-code of
the HTTP status code and thus must be used in conjunction with the HTTP status
code to determine the error condition. Standard reason codes that apply across the
entire API are described in“Common request validation reason codes.” Additional
operation-specific reason codes may also be documented in the description of the
specific API operations.

message String Message describing the error. This message is not currently localized.

stack String Internal HMC diagnostic information for the error. This field is supplied only on
selected 5xx HTTP status codes.

error-details Object A nested object that provides additional operation-specific error information. This field
is provided by selected operations, and the format of the nested object is as described
by that operation.

Usage notes:

v The message provided in the message field is primarily intended as a convenience for use by
developers when developing and testing client applications. Because it is not localized, it may not be
appropriate for client applications to simply pass this message on to their clients when reporting errors
to those upstream clients. Instead, client applications can use the value in the reason field as a key in
obtaining a client-provided message that may be more appropriate to use.

v Because the reason code is treated as a sub-code of the HTTP status code, the same reason code value
is often defined for multiple different HTTP status codes and has a different meaning in each case. For
example, reason code 1 when considered for a 400 (Bad Request) status code has a different meaning
than when considered for a 403 (Forbidden) status code. For this reason, client applications that make
decisions based on the reason codes should always include checking the HTTP status code as part of
the relevant logic (e.g.test for status code == 400 AND reason code == 1, not just reason code == 1
alone).

Common request validation reason codes
The Web Services API performs request validation on each request it receives to ensure the request is
correctly formed and appropriate before it begins processing the request. Many errors of basic request
syntax can occur on all or a large number of the operations provided by the API. Validation for these
kinds of errors is done in a common way across all of the operations and results in a common (not
request-specific) reason code being reported if errors are detected. Other validation operation-specific by
nature, and results in operation-specific reason codes when errors are detected.

The following table provides the HTTP status codes and reason codes for common request validation.
These status and reason codes may be reported on any of the operations of the API.

18 HMC Web Services API

|

HTTP status code
Reason
code Description

400 (Bad Request) 1 The request included an unrecognized or unsupported query parameter.

2 A required request header is missing or invalid.

3 A required request body is missing.

4 A request body was specified when not expected.

5 A required request body field is missing.

6 The request body contains an unrecognized field (i.e. one that is not listed as either
required or optional in the specification for the request body format for the
operation).

7 The data type of a field in the request body is not as expected, or its value is not in
the range permitted.

8 The value of a field does not provide a unique value for the corresponding data
model property as required.

9 The request body is not a well-formed JSON document.

10 An unrecognized X-* header field was specified.

11 The length of the supplied request body does not match the value specified in the
Content-Length header.

403 (Forbidden) 1 The user under which the API request was authenticated does not have the required
authority to perform the requested action.

3 The ensemble is not operating at the management enablement level required to
perform this operation.

4 The request requires authentication but no X-API-Session-header was specified in the
request.

5 An X-API-Session header was provided but the session id specified in that header is
not valid.

404 (Not Found) 1 The request URI does not designate an existing resource of the expected type, or
designates a resource for which the API user does not have object-access permission.

2 A URI in the request body does not designate an existing resource of the expected
type, or designates a resource for which the API user does not have object-access
permission.

3 The request URI designates a resource or operation that is not available on the
Alternate HMC.

409 (Conflict) 1 The operation cannot be performed because the object designated by the request URI
is not in the correct state.

2 The operation cannot be performed because the object designated by the request URI
is currently busy performing some other operation.

3 The operation cannot be performed because the object designated by the request URI
is currently locked to prevent disruptive changes from being made.

Common request processing reason codes
Certain common error conditions can be encountered during the processing of many of the operations of
the API. When they are encountered they are reported using the same HTTP status and reason code by
any operation of the API that may encounter them.

These common request processing reason codes are listed in the following table:

Chapter 3. Invoking API operations 19

HTTP status code
Reason
code Description

500 (Server Error) 19 An Asynchronous operation was terminated while running because the host HMC
was restarted, or a failover to the alternate HMC occurred.

Other in
range 0 -
39

An internal processing error has occurred and no additional details are documented.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently communicating
with an SE needed to perform the requested operation.

2 The request could not be processed because the SE is not currently communicating
with an element of a zBX needed to perform the requested operation.

3 This request would exceed the limit on the number of concurrent API requests
allowed.

Use of chunked response encoding
For most API operations, the size of the response data is modest and therefore standard HTTP response
payload transfer encoding is used. In this encoding, the length of the entire payload of the response
message is provided in the response before any of the contents of the response payload are written to the
socket connection. But some operations, such as the Get Inventory operation of the Inventory service and
the Get Metrics operation of the Metrics service, can produce very large responses. Use of standard
transfer encoding for these kinds of operations is inefficient for the HMC because it requires the entire
response be generated and buffered before any of it is sent in order to compute and send the total length
of the response body before sending any of the contents of the response data.

To avoid the need for the buffering the entire response, and to instead allow the response to be
transmitted in smaller segments as they are prepared, operations that return large responses use HTTP
chunked response encoding instead. Chunked transfer encoding is an HTTP V1.1 data transfer feature
that allows the payload of the response message to be split into a sequence of smaller parts known as
chunks, with the size of each chunk transmitted as part of the chunk rather than requiring the
transmission of the size of the full response payload.

Chunked transfer encoding is defined in the HTTP/1.1 protocol standard, RFC 2616, cited earlier in this
section.

The HTTP protocol standard requires that all HTTP/1.1 applications (client or server) be capable of
receiving and handling chunked transfer-encoded messages, so the use of this encoding by the API HTTP
server is within the options allowed by the protocol standard. However, since this format may be
unexpected to naively-written applications, its use is limited by the API HTTP server to the special
circumstances that warrant its use to improve performance or efficiency. Therefore, a client application
can safely assume that an operation will not use chunked transfer encoding for its responses unless the
use of this encoding is specifically mentioned in the description of the operation.

Filter query parameters
Some operations allow for the (optional) use of designated query parameters for conveying additional
request parameters. Although query parameters can be used to convey various kinds of additional
request information, most operations that make use of query parameters do so for the purpose of filtering
the response entries to a subset of what would otherwise be returned. For example, this kind of filtering
is typically provided on operations that are described as List operations (e.g. List Virtual Servers of
Ensemble). This section describes the interpretation/handling of filter-type query parameters across all of
the operations of the API.

20 HMC Web Services API

As would be expected, if an operation is invoked without specifying any of its possible filter-type query
parameters, the operation returns all of the result entries applicable to the request. For example, the List
Virtual Servers of Ensemble operation invoked with no filtering query parameters returns all of the
virtual server objects in the Ensemble to which the API user has access.

If one or more filter-type query parameters are specified, the combination of those parameters specifies a
logical match expression that is evaluated against each entry that is a candidate for inclusion in the result
to determine if the entry is included or not. Within that expression, there may be multiple occurrences of
the same-named query parameter and/or there may be occurrences if differently-named query
parameters. The query parameters are interpreted as a logical expression using the following rules:
v Multiple occurrences of the same-named query parameter are interpreted as a group that is connected

by a logical OR operation among all of query parameters with the same name. An entry remains a
candidate for inclusion in the result as long as it matches at least one of the values specified for this
particular query parameter.

v Occurrences of differently-named query parameters are first organized into OR'ed groups as mentioned
above, and then these groups are interpreted as being connected by logical AND operations. Thus an
entry is included in the result only if it matches at least one value from each of the differently-named
groups of parameters.

v As an example, a query string of “name=fee&type=fie&name=foe&type=fum” is interpreted as
specifying the expression (name=fee OR name=foe) AND (type=fie OR type=fum). Note that the order
in which the query parameters appear in the string is not important.

As a filter-type query parameter is applied against a candidate entry, it is determined to match or not as
follows:
v If the query parameter is of data type String, the parameter's value is interpreted as a regular

expression pattern and is considered to match if the corresponding String property of the candidate
entry matches the pattern.

v If the query parameter is of data type String Enum, the parameter's value is compared against the
corresponding Enum property of the candidate entry and is considered to match if they are exactly the
same value.

Regular expression syntax
The values of String-type filtering query parameters are interpreted as regular expressions. The regular
expression syntax used is the same as that used by the Java programming language, as specified for the
java.util.regex.Pattern class. Documentation on that syntax can be found at on the following web page:
http://download.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html

Chapter 3. Invoking API operations 21

http://download.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html

22 HMC Web Services API

Chapter 4. Asynchronous notification

The Web Services API includes an asynchronous notification facility by which client applications may
subscribe to and receive notification messages regarding a set of predefined management events. These
events include:
v Addition and removal of managed objects to/from the inventory of resources that are managed by the

HMC.
v Changes to specified properties of managed object instances.
v Changes to the operational status of managed objects.
v Completion of asynchronously processed jobs.

The zManager notification facility is based on the Java Message Service (JMS) architecture and API for
exchanging messages among two or more applications.

JMS basics
In the JMS model, message-based communication between producing and consuming applications is
coordinated by an intermediate component known as a message broker that acts as the clearinghouse for
message exchange. The message broker provides as a registry of the available destinations to which
messages can be posted, and a store for messages that have been posted but not yet consumed.

Applications acting in the role of message producer create messages and post them (via the broker) to the
destination appropriate for the type of message. The messages are associated with the destination and
retained by the broker until they have been consumed by interested applications.

Applications acting in the role of message consumer connect to a message destination (again, via the
broker) in order to express interest in receiving messages posted to it. As messages are posted to the
destination by producers, the broker makes the messages available to interested consumers which then
receive and process the message.

In the Web Services API notification facility, the HMC acts both as the message broker and the message
producer for API notification messages. API client applications act as message consumers.

For the broker function, the HMC includes an integrated JMS message broker implementation based on
Apache ActiveMQ, an open, standards-based implementation of JMS. This integrated broker is configured
to allow internal HMC function to act as message producers, and to allow external applications to
connect as message consumers. However, external applications cannot produce and send message using
the HMC integrated broker.

Connecting to the API message broker
As part of the Web Services API, the HMC provides an integrated JMS message broker based on Apache
ActiveMQ Version 5.2.0. This message broker is active on the HMC whenever the Web Services API is
enabled.

When active, the integrated broker listens for client connections using the following transports supported
by ActiveMQ:
v OpenWire flowing over SSL connections, listening port: 61617.
v STOMP (Streaming Text Oriented Messaging Protocol) flowing over SSL connections, listening port

61612.

© Copyright IBM Corp. 2012, 2013 23

The broker is enabled for the SSL version 3 and TLS version 1 protocols on these SSL ports.

The listening ports for the message broker are fixed port numbers and are not subject to customer
reconfiguration. Thus, client applications can treat them as well-known port numbers rather than
requiring customer input when configuring the networking parameters the client will use to connect to
the HMC.

In order to connect to the integrated message broker, clients must provide a valid HMC user name and
password in order to identify the HMC user making the connection. This information is validated using
the standard HMC user authentication mechanisms before allowing the connection to succeed. The
integrated message broker does not allow any anonymous or unauthenticated connections.

Per-session notification topics
As part of its access control enforcement, the Web Services API limits the distribution of notification
messages to clients that have object-access permission to the managed object for which the notification
was generated.

In order to accomplish this, the API does not define a single (or fixed number of) notification topic to
which all messages are posted and from which any or all client can receive message. Rather, the API uses
per-session notification topics.

In this approach, each API session is associated with two JMS destinations that are created by the HMC
when the session is created and are used for providing notifications destined to that session. The names
of these destinations are returned as part of the results from the Login operation. Each session has the
following per-session notification destinations:
v An object notification topic, used by the HMC to send notifications that pertain to the inventory and

status of managed objects that this session has permission to access.
v A job notification topic, used by the HMC to send notifications that pertain to the status of

asynchronous operations that are initiated by this session.

The session is also associated with an HMC user (identified during API session login) that in turn has a
set of object access permissions defined for it that determine the managed resources that it is authorized
to access.

As notifications messages are created for managed resource changes or job completions, they are
distributed to sessions according to the object access permissions of those sessions. More specifically,
when a notification is generated pertaining to some managed resource, it is published to the object
notification topics of all sessions for which the related API user has object-access permission to that
managed resource, and is omitted from the object notification topics of sessions for which the user does
not have object-access permission. As a result, a particular API session will have access to all notifications
for all managed resources to which its API user has access permission, but will not have access to
notifications for managed resources that it does not.

Notification messages for job completion are sent only to the job notification topic of the API session that
initiated the asynchronous processing represented by the job.

Notification message formats
Four types of notification messages are provided by the API: property change notifications, status change
notifications, inventory change notifications, and job completion notifications.

The JMS messages created for all types of notifications share a common set of message characteristics and
header fields, which are extended with additional header fields and message body formats that vary by
the type of notification.

24 HMC Web Services API

Common message characteristics
The characteristics described in this section apply to all notification messages published by the Web
Services API.

Message format
The following JMS message characteristics apply to all notification messages sent by the Web Services
API. These characteristics are echoed in the message themselves in the values of the standard JMS
message header fields.

Characteristic Description

Destination The per-session object or job notification topic as indicated below for each type of notification.

Message type Text message. The contents of the body vary by the type of notification.

Delivery mode Nonpersistent.

Expiration No expiration.

Priority 4 (highest normal priority)

Message ID A unique message ID for the message.

Correlation ID Not set by the API.

Timestamp The time, from the HMC's perspective, that this message was sent.

In addition to the standard JMS message headers, the following additional message properties are
provided in all notification messages to allow for message selection:

Message
Property Name Description

notification-
type

The type of notification contained in this message, varies by notification type.

session-
sequence-nr

The sequence number of this notification within the session. This number starts at 0 when the API
session is created, and is incremented each time a notification message is published to this
session.

global-
sequence-nr

The sequence number of this notification from the HMC. This number starts at 0 when the HMC
is started, and is incremented each time a notification message is published to any API session.

object-uri The current value of the object-uri property (canonical URI) of the managed object for which the
notification is being emitted.

object-id The current value of the object-id property (durable unique identifier) of the managed object.

element-uri The current value of the element-uri property of the element object for which the notification is
being emitted. This message property is included only when the message pertains to an element
object of a managed object.

element-id The current value of the element-id property (local identifier) of the element object. This message
property is included only when the message pertains to an element object of a managed object.

class The current value of the class property (kind of object) of the managed object, i.e. the kind of
object for which the notification is being emitted.

name The current value of the name property (display name) for the object for which the notification
pertains.
Note: Note: In some circumstances the name property may be unavailable, in which case this
field is set to an empty string. This may occur, for example, if a property change occurs and is to
be reported on very shortly before (essentially concurrently) with the removal of that object from
the inventory.

When a notification message pertains to an element object, the message includes element-uri and
element-id fields in addition to object-uri and object-id fields. The element-* fields identify the element

Chapter 4. Asynchronous notification 25

object instance while the object-* fields identify the containing managed object instance. In this case, the
class field provides the class of the element object, and the name field provides the name of the element
object.

When a notification message pertains to a managed object, the message contains object-uri and object-id
fields but not the element-* fields and the class field provides the class of the managed object and the
name field provides the name of the managed object.

Grouping of notifications
A particular managed resource may often experience a series of changes that occur in rapid succession.
This might occur, for example, when a user uses an object's Details task in the HMC UI to make a set of
changes to the object's properties and then selects the Finish button to complete the task. All of the
pending property changes collected by the task will be made on the managed object in very quick
succession in response to the Finish button is selected, rather than before as the user was interacting with
the task.

In order to reduce the notification traffic in these situations, the notification messages have been designed
to allow the HMC to report multiple changes of the same type (e.g. property changes, status changes) for
the same managed resource in a single message rather than generating a distinct message for each
change. In order to do such grouping, the HMC may delay generation of a notification message for a
change for a brief period of time in order to allow coalescing of that change report with others that occur
for the same managed resource within the coalescing time window. This optimization will be performed
while maintaining the following characteristics:
v Grouping of notifications may be done for property change and status change notifications, but will

not be done for other notification types.
v Notifications will be buffered for a maximum of 1 second.
v The grouping of change reports will not obscure a client's ability to correctly observe the temporal

ordering of the individual changes made to a particular object or between objects based on the
messages sent to a session. That is, notification messages will always be generated so that the ordering
of the messages as determined by their session sequence numbers reflects the temporal order in which
the changes were actually made. All of the changes reported to a session in a message with a lower
session sequence number will have occurred before any of the changes reported in a message with a
higher session sequence number. Further, the ordering of change reports within a particular message
reflects the order in which they occurred to that object as well.

v Coalescing of multiple changes into a single notification message will occur for at most a single
pending notification message (thus, of a single type) at a time. If a need arises to report a change of a
different type than is currently pending (for example, a need to report a status change when there is
currently a set of pending property change reports), coalescing will end for that pending message and
it will be posted to notification topics as appropriate. This is necessary in order to maintain the API
client's ability to correctly observe temporal ordering.

v The grouping of change reports into notification messages occurs independently for each session, so
that one session may receive a different distribution of change reports across notification messages than
another session.

The degree to which message grouping occurs or not depends on the timing of changes and possibly
other considerations and thus is to be strictly considered an optimization and not guaranteed behavior.
Client applications should infer no particular semantic significance to change reports being delivered in a
single message vs. a sequence of messages.

Status change notification
A Status Change notification is emitted by the API to report changes to the status property of a managed
object.

26 HMC Web Services API

Characteristic Description

Destination The per-session object notification topic for each API session that is authorized to receive
the notification.

In addition to the common JMS message headers described above, the following additional message
properties are provided for this type of notification:

Message property name Description

notification-type Contains the value "status-change".

The body of a Status Change notification message is a JSON representation of an object that contains the
following fields and values:

Field name Type Description

change-reports Array of
objects

An array of nested change-report objects, the format of which is described in
the next table. The order in which these objects appear in this array reflects
the temporal order in which the changes occurred.

Each nested change-report object has the following fields and values:

Field name Type Description

old-status String The old (previous) value of the status property for the object. The value of
this field will be one of the possible enumeration values for the status
property as defined for this class of object.

old-additional-status String The old (previous) value of the additional-status property for the object. The
value of this field will be one of the possible enumeration values for the
additional-status property as defined for this class of object.

new-status String The new (current) value of the status property for the object. The value of
this field will be one of the possible enumeration values for the status
property as defined for this class of object.

new-additional-status String The new (current) value of the additional-status property for the object. The
value of this field will be one of the possible enumeration values for the
additional-status property as defined for this class of object.

has-unacceptable-
status

Boolean The value of the has-unacceptable-status property of the object, based on its
new status. If true, the object is now considered to have unacceptable status
because its current status is not one of the configured acceptable status
values for this object.

Property change notification
A Property Change notification is emitted by the API to report changes to the properties of a managed
object where the data model description indicates that modification notification support (qualifier “pc”) is
available for that property.

Characteristic Description

Destination The per-session object notification topic for each API session that is authorized to receive the
notification.

In addition to the common JMS message headers described above, the following additional message
properties are provided to allow for message selection:

Chapter 4. Asynchronous notification 27

Message property
name Description

notification-type Contains the value "property-change".

property-names Blank-separated list of the names of the properties for which change reports are provided in
body of this notification message. The list always includes a leading and trailing blank so
that a property name can be specified as a blank-delimited word in a message selector to
avoid matching unintended properties that have the desired property name as a substring.

The body of a Property Change notification message is a JSON representation of an object that contains
the following fields and values:

Field name Type Description

change-reports Array of
objects

An array of nested change-report objects, the format of which is described in the
next table. The order in which these objects appear in this array reflects the
temporal order in which the changes occurred.

Each nested change-report object has the following fields and values:

Field name Type Description

property-name String The name of the property (as specified in the object's data model) that has
changed.

old-value Based on
model

If the property is not a container-type property, this field contains the old
(previous) value of the property for the object. The value of this field will be of
the data type indicated for this property in the object's data model.

If the property is a container-type property (i.e. marked with the (c) qualifier),
this field does not provide the complete previous value. Rather, it provides an
array of entries that have been removed from the value of the container property.
The value of these entries will be of the data type indicated for the property in
the object's data model. If no entries have been removed, null is provided.

new-value Based on
model

If the property is not a container-type property, this field contains the new
(current) value of the property for the object. The value of this field will be of the
data type indicated for this property in the object's data model.

If the property is a container-type property (i.e. marked with the (c) qualifier),
this field does not provide the complete new value. Rather, it provides an array
of entries that have been added to the value of the container property. The value
of these entries will be of the data type indicated for the property in the object's
data model. If no entries have been added, null is provided.

Inventory change notification
An Inventory Change notification is emitted by the API to report the addition or removal of a managed
object to/from the current inventory of resources that are being managed by zManager. This occurs when
managed resources are created or deleted, but also may occur in other situations, such as when zManager
reestablishes its inventory of (already-existing) managed resources upon restart of the primary HMC.

For some kinds of managed objects, an Inventory Change notification is also be emitted by the API to
report the addition or removal of an element of a managed object. Such notifications do not occur for all
elements, but rather only when specifically described in the documentation for a class of managed object.

Because an Inventory Change notification may be generated more than once for the same conceptual
object, these notifications cannot be interpreted as designating a resource creation action.

28 HMC Web Services API

Characteristic Description

Destination The per-session object notification topic for each API session that is authorized to receive the
notification.

In addition to the common JMS message headers described above, the following additional message
properties are provided to allow for message selection:

Message property
name Description

notification-type Contains the value "inventory-change".

name Not provided for this notification. Always an empty string.

action The value "add" when the object has been added to the inventory, or "remove" when it is
being removed.

The body of an inventory change notification is null.

Job completion notification
A Job Completion notification is emitted by the API to report that an operation that runs asynchronously
to the client application has completed its processing.

Asynchronous operations are those that response with an HTTP status code of 202 (Accepted) when
requested by the client. A Job Completion Notification message is sent to the API session that initiated
the job when such an operation completes, and provides to the client application the URI of the job that
has completed so the client application can use the Query Job Status operation to obtain results for the
job.

Characteristic Description

Destination The per-session object notification topic for each API session that is authorized to receive the
notification.

In addition to the common JMS message headers described above, the following additional message
properties are provided to allow for message selection:

Message property
name Description

notification-type The value "job-completion".

job-uri The URI identifying the asynchronous job that has just completed execution.

The body of a job completion notification is null.

Chapter 4. Asynchronous notification 29

30 HMC Web Services API

Chapter 5. Data model definitions

This chapter covers data model concepts and shared data model schema elements.

Data model concepts
zManager provides resource management and control functions for the various resources that comprise a
System z ensemble environment. In performing these functions, zManager establishes a separation
between those aspects of resource management that are handled entirely by system firmware, and the
other aspects for which customer or installation visibility, configuration and control is appropriate.

In order to specify the external aspects in a succinct way, the web Services API is described in this
document in terms of a conceptual data model that it offers for the resources that it manages. This data
model is an information structuring technique that conceptually defines the kinds of resources that are
managed by zManager and for each, the information that is available for and the operations that can be
performed on resources of that kind. This data model is intended to provide the complete perspective
that clients of the API can have regarding the logical resources of the system while insulating them from
implementation details.

Objects in the data model
The manageable resources of the environment are represented in the management system as entities
referred to as objects. Each distinct manageable resource is represented by a separate object instance, and
the life cycle of an instance corresponds with the lifecycle of the manageable resource it represents. For
example, for physical entities, such as an IBM blade in a zBX, the object that represents it are created
implicitly when the physical entity is attached to and configured to be (or entitled to be) part of the
system. This object continues to exist so long as the IBM blade remains entitled on the system. For some
logical entities, such as the virtualization management functions on an IBM blade, the object that
represents it (virtualization host) is also implicitly rather than explicitly created. For other logical entities,
such as a virtual server on an IBM blade, the creation of the management model object instance for it is,
in fact, the mechanism that triggers the creation of the corresponding manageable resource in the system.

There are different kinds of manageable physical or logical resources in the system, and each kind
manifests different observable characteristics. As a result, there are different classes of objects in the data
model. Objects of the same class represent the same kind of resource and provide a defined set of
properties that capture the attributes of that kind of resource that the Web Services API exposes.

Managed objects and element objects
The object classes defined in the data model fall into one of two main categories: managed object classes
(or simply managed objects), and element object classes (element objects).

These two categories are very similar in that they are both, ultimately, unordered collections of named
properties that capture the key attributes of a resource instance. The categories differ primarily in how
prominently they are handled in the API: the way that instances of them are designated to perform
operations on them, and the degree to which API facilities such as inventory and change notification can
be offered for objects in that category.

Managed objects are the first-class entities in the data model and the API. They represent the primary
manageable resources of the system, such as ensembles, blades, virtual servers and workloads. These
kinds of objects typically appear prominently in the main displays of the HMC user interface.

Instances of managed objects are registered and indexed in the zManager managed object registry, and
thus can be directly referenced by URIs that form a relatively "flat" namespace. The URI of a managed

© Copyright IBM Corp. 2012, 2013 31

object designates its object instance based on its class and a unique, durable, UUID-based identifier called
an object ID. For example, the URI of a virtual server is of the form /api/virtual-servers/{vs-object-
id} where the identifier at the end of the URI is globally unique. Inventory change, property change, and
status change notifications can be generated for managed objects.

In comparison, element objects represent the secondary or more-detailed aspects of the system. Examples
include the virtual network adapters of a virtual server, or the performance policies of a workload. These
kinds of entities do not generally appear in the main displays of the HMC user interface, but rather are
displayed only within particular management tasks offered by the UI.

Instances of element objects are not directly registered in the zManager object registry, but rather are
associated with or “attached to” some containing or related managed object instance. As a result, access
to these elements is indirect, through the containing managed object. The URIs that designate element
objects are hierarchical in nature, with the leftmost part of the URI identifying the managed object to
which the element is attached. For example, the URI for a virtual disk of a virtual server is of the form
/api/virtual-servers/{vs-object-id}/virtual-disks/{disk-id} in which the {disk-id} at the end is only
necessarily unique within the context of the related virtual server. Inventory, property and status change
notifications are not provided for element objects. Instead, when changes to elements are reported, those
changes are done via property change notifications emitted for the associated managed object.

Properties in the data model
Object in the management system contain, fundamentally, unordered collections of name/value pairs
called properties that capture the key characteristics of the manageable resources they represent. The
defined set of named properties that are maintained for a particular kind of resource constitutes the
specification of the data model class for that kind of resource.

As a result, in the chapters that follow, the description of the management interfaces for a class of
resource begins with a Data Model section that specifies the properties that are exposed by the API for
that kind of resource.

Each property has a name, a data type, and a semantic description in prose.

The property name is the programmatic identifier of the property. This identifier is used within requests
and responses to indicate that a field represents a particular property of the data model. It is the “name”
part of the name/value pair that is the property.

The property data type indicates the kind of information that can be represented by the property, just as a
variable's data type indicates the kind of information that can be stored in a variable. The data type
provides information on the nature of the “value” part of the name/value pair that is the property.

Property characteristics
Properties are classified as being either writeable or read-only from the perspective of an API client
application.

Writeable properties are ones that can have their values read by Get <class> Properties or similar
operations and can also have their values directly changed by Update <class> Properties operations.
Properties that are classified as read-only can have their values read by using Get <class> Properties or
similar operations, but cannot have their values changed directly.

Although properties that are classified as read-only cannot have their values changed directly, their
values may nonetheless be affected by other operations supported by a class of object. For example, a
class of object might include an is-enabled property that is classified as read-only because the enabled
state of the resource cannot be affected by a simple Update <class> Properties operation on that
is-enabled property. However, this object might also define a Change State or Enable operation that can
perform this enabling, and as a side effect will alter the value of the is-enabled property.

32 HMC Web Services API

In addition to the read-only vs. writeable classification, properties defined for managed object also can
differ in whether changes to them result in property change or status change notifications being emitted
for the managed or not. For properties that have property or status change support, these notifications
are emitted asynchronously by the API any time the value of the property changes, whether that change
was made via this API, the HMC UI, or implicitly by the system. Changes to the values of properties for
which change notification support is not provided do not result in such notifications.

In the tables of properties that appear within this document, the characteristics of properties are indicated
by qualifier annotations in parenthesis following the property name. The qualifiers have the following
meanings:

Qualifier
notation Description

(w) The property is a writeable property. Any property that lacks this qualifier is considered read-only
and thus is not directly modifiable.

(ro) Although this property is writable when present in other managed object classes, it is read only in
this class. This qualifier is only used when a managed object class specializes the definition of a
Base Managed Object Property and overrides the writeable characteristic of the base definition.

(pc) Change to this property's value will result in Property Change notifications.

(c) The property is a container-type property for which deltas (changes) are reported in Property
Change notifications rather than complete old and new values.

(sc) Change to this property will result in Status Change notifications.

(mg) This property represents a performance or utilization metric of the object that is included in a
metric group available via the Metrics Service of this API. The value of this property may change
very frequently and, therefore, property change notifications are not emitted for changes to this
property. Client applications interested in obtaining metric information frequently should obtain
this information through use of the Metrics Service of this API.

Shared data model schema elements
The data-model schema fragments in this section define groups of properties that are used in common
ways in specifying the data models for the managed object classes defined in the API.

The description of the data model for a specific object class specifies the shared schema elements it is
incorporating within the Data Model section of that description, if any. It will also include a description
of the specializations that apply to that class's use of the shared schema, such as additional constraints on
properties, class-specific values for properties, etc.

Base managed object properties schema
This data-model fragment contains the basic properties that are present in the representation of many of
the managed object types that represent manageable resources.

Name Qualifier Type Description

object-uri — String
(1-255)

The canonical URI path that designates this managed object instance and
serves as the primary reference and retrieval key for this instance. The
URI path is formed based on a unique and permanently-assigned object
ID (see the object-id property in the next row of this table), and as
result, an object's URI path will not change as a result of changes to
properties of the object. Further, this canonical URI path is independent
of the containment hierarchy and thus will not change if this object
instance is moved within the hierarchy.

Chapter 5. Data model definitions 33

Name Qualifier Type Description

object-id — String (36) The object identifier for the managed object instance. This value is
unique in space and time, and is permanently associated with this
instance while it is managed by this HMC or its associated alternate
HMC. (If the instance is removed from this HMC and later managed by
another HMC, it will have a new and different object identifier when
managed by that other HMC.) It is generated by zManager and assigned
when the managed resource is created or first discovered, and is
immutably thereafter. As example, a managed object's object ID will not
change as a result of changes to display name, changes in the location of
this resource in the containment hierarchy, or across restarts of the HMC.

parent — String
(1-255)

The canonical URI path of the managed object that is conceptually the
parent of this object in the containment hierarchy. This property is null
for objects that do not have a parent.

class — String
(1-32)

The class of resource represented by this managed object. Each distinct
class of resource has a different type name, while all instances of the
same type share the same type name. The specific value used for a class
of object is specified in the Data Model section for that object type.
Example: "virtual-server".

name (w)(pc) String
(1-64)

The current display name of the managed object as defaulted or
specified for the object. This is the simple name of this object, not
qualified by containment hierarchy. This name is required to be
non-blank and non-null. Some resource types do not support the setting
of a user-assigned display name. For such objects, this property is not
settable, and instead always provides a name assigned by zManager.

description (w)(pc) String
(0-1024)

Arbitrary text providing additional descriptive information about this
managed resource. This information is retained for the resource and may
be shown as part of the object's details on the user interface, but is
otherwise not generally used by zManager. This property may be null.

is-locked (pc) Boolean The object is locked and thus disruptive actions or tasks cannot be
performed on it.

Operational status properties
Many (but not all) classes of managed objects support the concept of operational status. That is they
maintain information about the current functional state (Not Communicating, Not Operating, etc.) of the
managed resource and whether that current functional state is considered acceptable (not alert causing) or
not. If a class of object supports the operational status concept, it provides the standard properties
defined in the following table (referred to as the operational status properties) in addition to those
defined earlier in this section.

Unless stated to the contrary, any object class data model that includes the Base Managed Object
Properties schema should be understood to also provide these operational status properties as well. For
object classes for which that is not the case, the data mode description will specifically point out that
operational status and thus these operational-status-related properties are not provided for that object.

The operational status properties are as follows:

Name Qualifier Type Description

status (sc) String
Enum

The current operational status of the managed resource. The possible
status values vary by managed object class and are specified in the
description of each managed object class that provides this property.

additional-
status

(sc) String
Enum

A qualifier to the status property used by selected object classes to
provide finer grained operational status tracking.

34 HMC Web Services API

Name Qualifier Type Description

acceptable-
status

(w)(pc) Array of
String
Enum

The set of operational status values that the managed resource can be in
and be considered to be in an acceptable (not alert causing) state.

has-
unacceptable-
status

(sc) Boolean If true, the current operational status of the managed resource is not one
of the acceptable statuses for this resource.

Chapter 5. Data model definitions 35

36 HMC Web Services API

Chapter 6. General API services

This chapter describes the services that are provided by the Web Services API for creating and deleting
API sessions and performing other general functions.

General API services operations summary
Table 6. General API services: operations summary

Operation name HTTP method and URI path

“Query API Version”
on page 38

GET /api/version

“Logon” on page 39 POST /api/sessions

“Logoff” on page 42 DELETE /api/sessions/this-session

“Query Job Status”
on page 44

GET /api/jobs/{job-id}

“Delete Completed
Job Status” on page
46

DELETE /api/jobs/{job-id}

Table 7. General API services: URI variables

Variable Description

{job-id} The identifier of an asynchronous job associated with this user, as returned in the
response of the operation that initiated the job.

Session management services
Almost all operations of the Web Services API are requested and carried out in the context of an API
session that is used for determining the client's authority to access managed resources and perform
requested operations, and is also used to scope the delivery of asynchronous notifications. An API session
is an HMC concept that is independent of and layers on top of network-related considerations such as a
TCP/IP socket connection. As a result, a single API session may span multiple TCP/IP socket
connect/disconnect sequences from the same client.

Sessions are created upon request from a client by using the Logon operation, and may be explicitly
terminated by a client using the Logoff operation. Sessions may also be terminated by the HMC due to
inactivity when no requests are made using the session over a period of 6 hours. (This session timeout is
not configurable.) However, termination of a session due to inactivity will not occur as long as a client
application uses the API's notification facility to maintain a JMS subscription to one or more of the
session's JMS notification topics. The existence of such a subscription is considered by the HMC to
indicate that a client is still using the session and thus it is not terminated even if no requests are made
using it.

The scope of a session is the particular HMC instance on which it was created via a Logon operation.
That is, an API session created on one HMC of a primary/alternate HMC pair is not also available on the
alternate HMC of that pair. Nor will that session (and its associated session-id) be available on the other
HMC should a primary/alternate role switch occur due to a failure of the primary HMC. After a
primary/alternate role switch, client applications will need to establish new sessions by making Logon
requests again.

© Copyright IBM Corp. 2012, 2013 37

Sessions are identified by clients using a session-id, which is a string of up to 64 characters in length that
is returned to the client in the results from a successful Logon operation. This string is generated in a
cryptographically-secure manner. A session-id string is a form of authentication credentials for a user
equivalent in power to a user's user ID and password. Because of this, a session-id should be transmitted
only within SSL connections.

In order to indicate that subsequent requests are to be performed in the context of a designated session,
the client supplies the appropriate session-id to the HMC in each such subsequent request. This is done
by supplying the session-id as the value of the X-API-Session HTTP header which is an
application-specific header defined by and recognized by the HMC.

The Logon and Query API Version operations are the only two operations in the Web Services API that
can be performed without an API session so requests for these operations do not need to provide the
X-API-Session HTTP header. All other operations are valid only in the context of an API session and thus
requests for all other operations must supply an X-API-Session header with a valid session-id in order to
be successfully executed.

Query API Version
The Query API Version operation returns information about the level of Web Services API supported by
the HMC.

HTTP method and URI
GET /api/version

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

api-major-version Integer The major-version part of the API version in effect for this session

api-minor-version Integer The minor-version part of the API version in effect for this session

hmc-version String (5-8) The version number of the HMC firmware. This is a string of the form v.r.m,
where each of v, r and m can be one or two digits. Example: "2.11.1".

hmc-name String (1-16) The name assigned to the HMC

Description

This operation returns name and version information for the HMC and the HMC API.

This operation can be requested without an API session being open, i.e. no X-API-Session header, and
session-id is required on input.

This operation can be invoked on the alternate HMC.

For more information about the function included in each API version, see “Summary of API version
updates” on page 5.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described
in“Response body contents.”

38 HMC Web Services API

Under normal conditions, no error response codes are returned by this request. (HTTP Status code 500
could possibly result if internal HMC errors occur.)

Example HTTP interaction

Request:

Response:

Logon
The Logon operation establishes an API session with the Web Services API.

HTTP method and URI
POST /api/sessions

Request body contents

The request body is expected to contain a JSON object with the following fields:

Field name Type Rqd/Opt Description

userid String Required The name of the HMC user to be associated with the new API
session. This name may be of arbitrary length, i.e. the HMC does
not have a defined maximum length.

password String Required The password used to authenticate the HMC user identified by the
userid field. The required length and valid characters are
determined by the password policy in effect for the user ID.

new-password String Optional A new password to be established for the user defined by the
userid field. The required length and valid characters are
determined by the password policy in effect for the user ID.

The largest request body accepted by this operation is 512 bytes. Requests with bodies that exceed this
maximum are rejected with an HTTP status 413 (Request Entity Too Large) response.

GET /api/version HTTP/1.1

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Wed, 20 Jul 2011 17:22:23 GMT
content-type: application/json;charset=UTF-8
content-length: 119
{

"api-major-version": 1,
"api-minor-version": 1,
"hmc-name": "HMCR32PRI",
"hmc-version": "2.11.1"

}

Chapter 6. General API services 39

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

api-session String (1-64) The session-id of the newly created session. The client must specify this
value in the X-API-Session header of all subsequent requests that are to be
performed in the session.

notification-topic String
(1-128)

The name of the JMS topic the HMC will use to send object-related
notification messages to this session.

job-notification-
topic

String
(1-128)

The name of the JMS topic the HMC will use to send job-related notification
messages to this session.

api-major-version Integer The major-version part of the API version in effect for this session

api-minor-version Integer The minor-version part of the API version in effect for this session

password-expires Integer The time interval, in days, until the user's current password expires. A value
of 0 indicates that the password will expire within the next 24 hours. A
value of -1 indicates that the HMC does not enforce password expiration for
this user, however, if this user is authenticated with an external
authentication mechanism (e.g. LDAP) such expiration might be enforced by
that mechanism.

Description

This operation opens a new API session with the Web Services API. Authentication is performed as part
of this process.

The characteristics and permissions of an HMC user are specified in an HMC User Profile or User
Template. The user name provided in the userid field of the request body is used to select a
corresponding User Profile/Template based on the name. If such a User Profile/Template is found, the
client's authority to operate as this HMC user is authenticated by validating the password provided in
the password field using the authentication method specified in the User Profile/Template. If the
password authentication is successful, a new API session is created and the session-id for the new session
is provided in the api-session field in the response from this operation. This same value is also provided
by an X-API-Session HTTP header field in the response.

If the request specifies an X-API-Session HTTP header field on input (indicating that this operation be
performed under some designed session), the logon request fails and status code 400 (Bad Request) is
returned.

If an HMC User Profile/Template corresponding to the user ID field does not exist, or if the password
validation fails, the logon request fails and status code 403 (Forbidden) is returned. There is no reason
code to distinguish these reasons for the failure. If the User Profile/Template is marked as disabled or the
associated password has expired, or if the or if the User Profile/Template is not configured to allow use
of the API, the login request also fails with status code 403 (Forbidden) and a reason code identifying the
specific cause.

If user authentication is successful and the request body contains the optional new-password field, the
password associated with the User Profile/Template is changed to the specified new value as part of the
Logon operation. If the new password does not meet the requirements of the password policy in effect
for this User Profile/Template or if the User Profile/Template password is not changeable because it is
managed by an external authentication mechanism, the request fails with status code 400 (Bad Request)
and a reason code indicating the cause of the failure.

40 HMC Web Services API

As part of establishing the new API session, JMS topics are created that will be used by the HMC to send
object-related and job-related notification messages to this session and the names of these topics are
provided in fields of the response body. The name of the topic used for object-related notifications is
provided in the notification-topic field of the response, and the name of the topic used for job-related
notifications is provided in the job-notification-topic field.

This operation can be invoked on the alternate HMC, however password changes cannot be requested
(i.e. the new-password field cannot be provided) in this case.

Authorization requirements

This operation has the following authorization requirement:
v The HMC User Profile or User Template selected by the userid field must be configured to allow use

of the Web Services API.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 40.

The following HTTP status codes are returned for the indicated operation-specific errors, and the
response body is a standard error response body providing the reason code indicated and associated
error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

12 The request specified an X-API-Session header, which is interpreted as an
attempt to unnecessarily logon again when already logged on.

42 Password changes cannot be requested when logging on to the alternate
HMC.

43 The password for this user cannot be changed, for example because it is
managed in an external authentication mechanism such as LDAP.

44 The new password does not conform to the requirements of the password
policy in effect for this user.

45 The user's password has expired and no new-password field was specified.

403 (Forbidden) 0 User authentication failed.

40 The user is disabled.

41 The user is not authorized to use the HMC Web Services interface.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Usage notes

The Logon operation checks for and prevents requests that specify an X-API-Session header on input in
order to detect client applications that unnecessarily log on again when already logged on. It is valid to
have multiple sessions, but in order to more explicitly indicate that this is desired, the client application
needs to request each logon without referencing any existing session.

Chapter 6. General API services 41

Example HTTP interaction

Logoff
The Logoff operation closes an API session with the Web Services API.

HTTP method and URI
DELETE /api/sessions/this-session

Description

This operation closes an API session with the Web Services API.

The session to be closed is indicated by the session-id in the X-API-Session header of the request. If the
session-id designates an open session, the API session is closed and status code 204 (No Content) is
returned. Closing of the API session includes closing/deleting any Metrics Service retrieval contexts or
JMS notification topics associated with the session. However, asynchronous actions initiated by the
session continue to run.

Once a session is closed, its session-id is no longer valid for use in subsequent Web Services API
requests. Attempts to do so will result in the same errors as any other attempt to use a session-requiring
operation without providing a valid session-id.

This operation can be invoked on the alternate HMC.

Authorization requirements

This operation has the following authorization requirement:

POST /api/session HTTP/1.1
content-type: application/json
content-length: 58
{

"password": "12345678",
"userid": "APIUSER"

}

Figure 1. Logon: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Wed, 02 Nov 2011 18:41:27 GMT
x-api-session: 4hy7c4nogldz4b59ajegzb1dulec641ziyv6uf73zs43205edv
content-type: application/json;charset=UTF-8
content-length: 207
{

"api-major-version": 1,
"api-minor-version": 1,
"api-session": "4hy7c4nogldz4b59ajegzb1dulec641ziyv6uf73zs43205edv",
"job-notification-topic": "APIUSER.229job",
"notification-topic": "APIUSER.229",
"password-expires": 29

}

Figure 2. Logon: Response

42 HMC Web Services API

v No explicit authorization is required, however the client application must possess and present a valid
session-id of the session to be closed.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned with no response body.

The following HTTP status codes are returned for the indicated operation-specific errors, and the
response body is a standard error response body providing the reason code indicated and associated
error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Asynchronous job processing
Some of the operations provided in the Web Services API may take a significant amount of elapsed time
to complete. In order to optimize the usage of HMC session resources and to allow the client application
the opportunity to perform other processing, such long-running operations are structured to be executed
asynchronously (rather than synchronously) from the perspective of the client application.

In a synchronous operation, the Web Services API does not respond to the client application's request
until all of the processing associated with the request is complete (successfully or in error) and the API
can provide a final result status for the operation. The client application thread is typically blocked (not
running) during this time.

By contrast, in a function that operates asynchronously, the Web Services API performs just the minimal
front-end validation and set up work needed to accept the request to perform the indicated operation,
and then quickly returns an HTTP 202 (Accepted) result to the client indicating that the operation request
has been started but is not yet finished. Along with the HTTP 202 (Accepted) result, the client application
is provided with a URI that represents the asynchronous job that is in progress. This URI is of the form
/api/job/{job-id}.

DELETE /api/session/this-session HTTP/1.1
x-api-session: zkspmapxgtcasy5uixmtwuaudqe8ha6fy0006bzmxsm2bd8yo

Figure 3. Logoff: Request

204 No Content
date: Wed, 20 Jul 2011 18:33:56 GMT
x-request-id: Sx32 Rx0
server: zSeries management console API web server / 1.0
cache-control: no-cache

Figure 4. Logoff: Response

Chapter 6. General API services 43

At any point after receiving the HTTP 202 (Accepted) result, the client application can invoke the Query
Job Status operation described in this section to determine if the job is complete or not. If the job is not
yet complete, the Query Job Status request returns an indication that the job is still running. If the job is
complete, the Query Job Status request returns an indication that the job is now complete along with the
final status code, reason code and result data associated with the now-completed asynchronous
processing. Once complete, job status is retained by the HMC for a minimum of 4 hours to allow the
client application time to retrieve the results, but this status and results are not held indefinitely.

Since the major reason an API operation is structured to be asynchronous is that it will take significant
time to complete, very frequent polling for completion via calls to Query Job Status can lead to
significant unproductive use of client application and HMC resources. In order to eliminate the need to
poll at all, the Web Services API also provides asynchronous notifications of job completion via its JMS
notification capability. IBM recommends that client applications use this notification facility to determine
when a job is complete rather than polling for completion. See “Job completion notification” on page 29
for details on this notification mechanism.

If it is not practical for a client application to use asynchronous notification of job completion, the
application should introduce elapsed-time delays between successive Query Job Status requests to poll
for job completion in order to reduce unproductive use of resources.

Query Job Status
The Query Job Status operation returns the status associated with an asynchronous job.

HTTP method and URI
GET /api/jobs/{job-id}

In this request, the URI variable {job-id} is the identifier of an asynchronous job associated with this user,
as returned in the response of the operation that initiated the job.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

status String
Enum

An indication of the current disposition of the job. The possible values are as
follows:

v "running" - indicates that the job was found and has not run to
completion at the time of the query.

v "complete" - indicates that the job was found and has completed running.
The successful or error completion of the job is indicated by the
job-status-code and job-reason-code fields.

job-status-code Integer;
Field
provided
only if
status is
"complete"

The job completion status code. This field is provided only if the status field
is set to "complete".

This field provides the major status code describing the success or failure
completion of the asynchronous action represented by the job. It is expressed
in terms of an HTTP status code (i.e. the HTTP status code that would have
been returned for the operation had it been performed synchronously).

The values provided here and their meaning depend on the particular action
that is being performed asynchronously. The description of these values is
provided as part of the description for the operation that initiated the
asynchronous job.

44 HMC Web Services API

Field name Type Description

job-reason-code Integer;
Field
provided
only if
status is
"complete"

The job completion reason code. This field is provided only if the status field
is set to "complete" and only if the job-status-code field indicates an error
completion (status code other than 2XX).

When present, this field provides a more detailed reason code describing the
success or failure completion of the asynchronous action represented by the
job. It is expressed in terms of the API reason code as are returned in
standard error response bodies provided by the API.

The values provided here and their meaning depend on the particular action
that is being performed asynchronously. The description of these values is
provided as part of the description or the operation that initiated the
asynchronous job.

job-results Object;
Field
provided
only if
status is
"complete"

A nested object that provides results for the job. This field is provided only
if the status field is set to "complete" but is optional even for complete jobs.
If the asynchronous operation has no result information (beyond the job
status and reason codes) then this field is omitted.

The structure of the nested object provided by this field and its meaning
depends on the particular action that is being performed asynchronously.
The description of this object's structure is provided as part of the
description or the operation that initiated the asynchronous job.

Description

The Query Job Status operation returns the status associated with an asynchronous job. The results
depend on whether the job is still running or is complete.

If the job designated by the URI is still running, the operation sets the status field in the response body
to "running" and provides no other information about the job. The client application may repeat the
query at a later time, but should avoid frequent polling since that can lead to unproductive use of client
and HMC resources. In order to eliminate the need to poll at all, the client application can (and should)
use the asynchronous notifications facility provided by the API to receive notification of job completion
via a JMS-based message. See “Job completion notification” on page 29 for details on this notification
mechanism.

If the job is complete, the operation sets the status field in the response body to "complete" and provides
the other completion-related fields defined in the Response Body Contents section above to report the
results to the client application. Once complete, job status is retained by the HMC for a minimum of 4
hours to allow the client application time to retrieve the results, but this status and results are not held
indefinitely.

If the URI does not designate a job associated with the current API session HTTP status code 404 (Not
Found) is returned to the client.

Authorization requirements

This operation has the following authorization requirement:
v The user must be correctly authenticated.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 44.

Chapter 6. General API services 45

The following HTTP status codes are returned for the indicated operation-specific errors, and the
response body is a standard error response body providing the reason code indicated and associated
error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The URI does not designate an asynchronous job associated with the API
user.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Delete Completed Job Status
The Delete Completed Job Status operation deletes the job status and results associated with a job that
has been completed.

HTTP method and URI
DELETE /api/jobs/{job-id}

In this request, the URI variable {job-id} is the identifier of an asynchronous job associated with this
session, as returned in the URI of the operation that initiated the job.

Description

The Delete Completed Job Status operation deletes the job status and results associated with a job that
has been completed.

If the job designated by the request URI is complete, its completion status and results are deleted from
the HMC and status code 204 (No Content) is returned to the client.

GET /api/jobs/86e44546-107f-11e1-bde0-0010184c8334 HTTP/1.1
x-api-session: 2ltfe2c2q3ti2b2pwq1wfwuzifoi4rymqa8ktzjep7dbyrll0k

Figure 5. Query Job Status: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Wed, 16 Nov 2011 18:19:35 GMT
content-type: application/json;charset=UTF-8
content-length: 63
{

"job-reason-code": 0,
"job-status-code": 200,
"status": "complete"

}

Figure 6. Query Job Status: Response

46 HMC Web Services API

If the job is still running, the operation fails and HTTP status code 409 (Conflict) is returned to the client.

If the URI does not designate a job associated with the current API user, or if the job's status has already
been deleted (either explicitly, or due to expiration of the status retention interval), HTTP status code 404
(Not Found) is returned to the client.

Authorization requirements

This operation has the following authorization requirement:
v The user must be correctly authenticated.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated operation-specific errors, and the
response body is a standard error response body providing the reason code indicated and associated
error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The URI does not designate an asynchronous job associate with this session.

409 (Conflict) 40 The URI designates an asynchronous job that is not yet complete.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Usage notes
v This operation is defined to operate only on jobs that have been completed, i.e. have a status field with

value "complete". As a result, this operation cannot be used to cancel an in-progress asynchronous
operation. The ability to cancel an in-progress asynchronous operation is not provided by the API.

v Once an asynchronous job is complete, job status is retained by the HMC for a minimum of 4 hours to
allow the client application time to retrieve the results, but this status and results are not held
indefinitely. At the expiration of the retention interval, job status is deleted as if the Delete Complete
Job Status operation were called.

Example HTTP interaction

DELETE /api/jobs/86e44546-107f-11e1-bde0-0010184c8334 HTTP/1.1
x-api-session: 2ltfe2c2q3ti2b2pwq1wfwuzifoi4rymqa8ktzjep7dbyrll0k

Figure 7. Delete Completed Job Status: Request

Chapter 6. General API services 47

204 No Content
date: Wed, 16 Nov 2011 18:19:35 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 8. Delete Completed Job Status: Response

48 HMC Web Services API

Chapter 7. Ensemble composition

A zEnterprise ensemble is a grouping of one or more computing systems, referred to as nodes, that are
managed in a coordinated way for purposes of virtualization and workload management. Currently, the
ensemble can be comprised of zEnterprise (or later) Central Processing Complexes (CPCs) and their
associated system resources. Each such node consists of the traditional System z elements (processors,
memory, I/O, LPARs) along with an optional processor feature termed a zEnterprise Blade Extension
(zBX) that provides blade-based computing resources for the node. In addition to the per-member
resources, the ensemble also encompasses certain ensemble-wide resources that are shared by all of the
members of the ensemble, including a secure, platform-managed data network.

An ensemble will typically consist of at least one node. However, when initially created, an ensemble
starts out with no nodes, so an empty ensemble is a legitimate configuration that may sometimes exist.
CPCs are explicitly added as nodes to, or removed from, an ensemble using operations provided in the
API or using management tasks on the HMC UI.

Not all models of System z processors support ensembles and ensemble-based management. Platform
support for ensembles and ensemble-based management was first delivered with the zEnterprise system
family, and thus initially only zEnterprise models can participate as ensemble nodes. Follow-on processor
models to zEnterprise may also support ensemble management.

For purposes of controlling the configuration and operational state of the elements of an ensemble, each
ensemble is managed from a customer-designated primary/alternate pair of Hardware Management
Consoles (HMC) that is referred to as the ensemble HMCs for that ensemble. At any one point in time,
only one HMC of the pair is in an active primary role, with the second of the pair acting strictly as a
passive backup or alternate. The primary ensemble HMC may manage at most one ensemble. The
primary ensemble HMC is the component that provides the main administrative user interface for the
ensemble, and it is the component that acts as the access point for the majority of the Web Services API.
However, a selected set of API function is also available from the alternate HMC.

For purposes of this definition, it is usually sufficient to focus on the primary ensemble HMC only, except
when specifically considering aspects that pertain to the setup of the primary/alternate pair or handling
the failover mechanism. Therefore, use of the term “ensemble HMC” without further primary or alternate
qualification should be interpreted as indicating the primary ensemble HMC.

Note: Properties related to the identity and addressing of the alternate HMC for the ensemble managed
by the current HMC are provided as part of the data model for the Console object.

Ensemble composition operations summary
The following tables provide an overview of the ensemble composition operations provided.

Table 8. Ensemble composition: operations summary

Operation name HTTP method and URI path

“List Ensembles” on
page 53

GET /api/ensembles

“Get Ensemble
Properties” on page 55

GET /api/ensembles/{ensemble-id}

“Update Ensemble
Properties” on page 57

POST /api/ensembles/{ensemble-id}

© Copyright IBM Corp. 2012, 2013 49

Table 8. Ensemble composition: operations summary (continued)

Operation name HTTP method and URI path

“List Ensemble
Nodes” on page 59

GET /api/ensembles/{ensemble-id}/nodes

“Get Node Properties”
on page 61

GET /api/ensembles/{ensemble-id}/nodes/{node-id}

“Add Node (CPC) to
Ensemble” on page 63

POST /api/ensembles/{ensemble-id}/nodes

“Remove Node from
Ensemble” on page 65

DELETE /api/ensembles/{ensemble-id}/nodes/{node-id}

Table 9. Ensemble composition: URI variables

Variable Description

{ensemble-id} Object ID (UUID) of an Ensemble object

{node-id} Element ID of a node of an Ensemble.

Ensemble object
An ensemble object represents a single zEnterprise ensemble.

Data Model
This object includes the properties defined in the “Base managed object properties schema” on page 33,
including the operational-status properties, with the following class-specific specialization:

Table 10. Ensemble object: base managed object properties specializations

Name Qualifier Type Description of specialization

object-uri — String/
URI

The canonical URI path for an ensemble object is of the form
/api/ensembles/{ensemble-id} where {ensemble-id} is the value of the
object-id property of the ensemble object.

parent — String/
URI

An ensemble object is conceptually a root object and has no parent, so
this property is always null.

class — String The class of an ensemble object is "ensemble".

name (w)(pc) String
(1-16)

The display name specified for the ensemble. Alphanumeric, space, or
any of “+<=>%&*\"'(),_-./:;?” are valid characters.

description (w)(pc) String
(0-128)

Text describing the Ensemble. Alphanumeric, space, or any of
“+<=>%&*\"'(),_-./:;?” are valid characters.

status (sc) String
Enum

The status of the ensemble representing the current communication
status between the primary and alternate HMC:

v "alternate-communicating" – The primary is communicating to the
alternate

v "alternate-not-communicating" - The primary is not communicating
to the alternate

additional-status — String
Enum

An ensemble object has no additional-status.

Class specific additional properties
In addition to the properties defined in included schemas, this object includes the following additional
class-specific properties:

50 HMC Web Services API

Table 11. Ensemble composition: class specific properties

Name Qualifier Type Description

management-
enablement-level

(pc) String
Enum

The zManager management enablement level for this ensemble.
The level determines which zManager advanced management
functions are available for use. Values:

v "manage"- Gives you the basics for managing an ensemble. It
includes HMC operational controls for IBM zEnterprise
BladeCenter Extension (zBX), change management of firmware
across the ensemble, energy monitoring, virtual networking with
automated provisioning, virtual server management, and a base
level of performance management.

v "automate"- Provides more leverage from the ensemble by
managing workloads and energy. This level of support includes
power capping, power savings mode, and platform performance
management.

cpu-perf-mgmt-
enabled-power-vm

(w)(pc) Boolean If true, management of processor performance is enabled for
PowerVM® virtualization hosts. Management of processor
performance is also available for virtual servers.

Performance management properties may be updated if the
ensemble management-enablement-level is "automate".

cpu-perf-mgmt-
enabled-zvm

(w)(pc) Boolean If true, management of processor performance is enabled for z/VM
virtualization hosts. Management of processor performance is also
available for virtual servers.

Performance management properties may be updated if the
ensemble management-enablement-level is "automate".

unique-local-unified-
prefix

(pc) String Unique local address (ULA) prefix applied to addresses used for
management communication between virtual servers and their
virtualization hosts.

The ULA prefix of the form fdXX:XXXX:XXXX::/48 is formed by
substituting the X's with a pseudo-random 40-bit global ID using
the algorithm defined in RFC 4193.

The prefix may not be updated through the API.

load-balancing-
enabled

(w)(pc) Boolean If true, Load Balancing is enabled for this ensemble.

Load Balancing properties may be updated if the ensemble
management-enablement-level is "automate".

load-balancing-port (w)(pc) Integer
(1024-
65535)

The Load Balancing port value in the range 1024-65534. The
default port is 3860.

Load Balancing properties may be updated if the ensemble
management-enablement-level is "automate".

load-balancing-ip-
addresses

(w)(pc) Array of
String

The IPV4 address or IPV6 addresses of Load Balancers allowed
access to the Load Balancing function.

The strings are in dotted-decimal form (“nnn.nnn.nnn.nnn”) for
IPV4 addresses.

The strings are in eight groups of four hexadecimal digits
separated by colons (e.g.
2001:0db8:85a3:0000:0000:8a2e:0370:7334), for IPV6 addresses.

Load Balancing properties may be updated if the ensemble
management-enablement-level is "automate".

Chapter 7. Ensemble composition 51

Table 11. Ensemble composition: class specific properties (continued)

Name Qualifier Type Description

mac-prefix (pc) String (2) The Prefix Address xx:00:00:00:00:00/8 is the ensemble mac prefix.
All Mac addresses dynamically generated by zManager will be
within the ensemble mac prefix. xx defaults to 02.

The MAC prefix may not be updated through the API.

reserved-mac-address-
prefixes

(pc) Array of
objects

The list of reserved MAC address prefixes. Each reserved MAC
address prefix will be an object in the form of a MAC address
prefix nested object, as described in “MAC address prefix nested
object.”

MAC address prefixes may not be updated through the API.

Energy management related additional properties: In addition to the properties defined above, this
object includes the following additional class-specific properties related to energy management. For
further explanation of the various states involved, please see “Special states” on page 138,

Table 12. Ensemble composition: energy management related additional properties

Name Qualifier Type Description

power-rating — Integer Specifies the maximum power usage in watts (W) of this ensemble. This
is a calculated value as indicated by the electrical rating labels or system
rating plates of the ensemble components.

power-
consumption

(mg) Integer Specifies the current power consumption in watts (W) for this ensemble.

MAC address prefix nested object: A MAC address prefix object is a nested object of an ensemble
object. An ensemble may contain zero or more MAC address prefixes. MAC address prefix properties
may not be updated through the API.

The following properties are supported:

Table 13. Ensemble composition: MAC address prefix nested object related additional properties

Field name Type Description

mac-address String The MAC address represented as 6 groups of two hexadecimal digits separated by
colons, e.g. 01:23:45:67:89:ab. The MAC address uses the ensemble prefix.

prefix-length Integer The bit length of the MAC address prefix. This is a 2-digit value with these
parameters in the range 12-44.

Node object
A node is an element of the ensemble object that represents a system that is currently a member of the
ensemble. Each node contains the following properties:

Table 14. Ensemble composition: node properties

Field name Type Description

element-uri String/
URI

The URI path for a node of an ensemble is of the form /api/ensembles/{ensemble-
id}/nodes/{node-id} where {ensemble-id} is the value of the object-id property of the
ensemble, and {node-id} is a locally unique element ID for the node. For nodes of
type "cpc", {node-id} is the value of the object-id property of the CPC that is
represented by the node.

parent String/
URI

The canonical URI path of the ensemble containing this node.

52 HMC Web Services API

Table 14. Ensemble composition: node properties (continued)

Field name Type Description

class String The value "node".

type String
Enum

The type of node. Currently this is always the value "cpc".

member String/
URI

The canonical URI path of the system element that is represented as a member of the
ensemble by this object. For nodes of type "cpc", this is the URI path of the CPC
object.

Operations

List Ensembles
The List Ensembles operation lists the ensembles managed by the HMC.

HTTP method and URI
GET /api/ensembles

Query parameters

Name Type Rqd/Opt Description

name String Optional Filter pattern (regular expression) used to limit returned objects. If
matches are found, the response will be an array with all ensembles
that match. If no match is found, the response will be an empty
array.

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

ensembles Array of
objects

Array of nested ensemble-info objects (described in the next table). If the
HMC is not a primary HMC, an empty array is provided.

Each nested ensemble-info object contains the following fields:

Field name Type Description

object-uri String/
URI

Canonical URI path of the Ensemble object, in the form /api/ensembles/
{ensemble-id}.

name String Display name of the Ensemble object.

status String
Enum

The status property of the Ensemble object.

Description

This operation lists the ensembles that are managed by this HMC. The object URI, display name, and
status are provided for each.

If the name query parameter is specified, the returned list is limited to those ensembles that have a name
property matching the specified filter pattern. If the name parameter is omitted, this filtering is not done.

Chapter 7. Ensemble composition 53

An ensemble is included in the list only if the API user has object-access permission for that object. If an
HMC is a manager of an ensemble but the API user does not have permission to it, that object is simply
omitted from the list but no error status code results.

If the HMC does not manage any ensembles, an empty list is provided and the operation completes
successfully.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to any ensemble object to be included in the result.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 53.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Usage notes

This operation, as well as other aspects of the Web Services API, has been structured to allow for the
possibility that an HMC might be the manager of multiple ensembles. However, in the current
implementation, an HMC can be the manager of at most one ensemble, so the resulting list of ensembles
will contain either zero or one entries.

Example HTTP interaction

GET /api/ensembles HTTP/1.1
x-api-session: 1f2g70m2e9b4sawt53ydp1oc9nzzs4sduc2wr2bzgmy5dhs7pz

Figure 9. List Ensembles: Request

54 HMC Web Services API

Get Ensemble Properties
The Get Ensemble Properties operation retrieves the properties of a single Ensemble object that is
designated by its object ID.

HTTP method and URI
GET /api/ensembles/{ensemble-id}

In this request, the URI variable {ensemble-id} is the object ID of the Ensemble object for which properties
are to be obtained.

Response body contents

On successful completion, the response body contains a JSON object that provides the current values of
the properties for the ensemble object as defined in the Data Model section above. Field names and data
types in the JSON object are the same as the property names and data types defined in the data model.

Description

The operation returns the current properties for the ensemble object specified by {ensemble-id}.

On successful execution, all of the current properties as defined by the Data Model for the ensemble
object are provided in the response body, and HTTP status code 200 (OK) is returned.

The URI path must designate an existing ensemble object and the API user must have object-access
permission to it. If either of these conditions is not met, status code 404 (Not Found) is returned.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the Ensemble object designated by {ensemble-id}.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is provided and the response body is as described in “Response
body contents.”

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Wed, 20 Jul 2011 18:41:03 GMT
content-type: application/json;charset=UTF-8
content-length: 207
{

"ensembles": [
{

"name": "R32Ensemble",
"object-uri": "/api/ensembles/87d73ffc-75b2-11e0-9ba3-0010184c8026",
"status": "alternate-communicating"

}
]

}

Figure 10. List Ensembles: Response

Chapter 7. Ensemble composition 55

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object-id in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object-access permission to
the object.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/ensembles/87d73ffc-75b2-11e0-9ba3-0010184c8026 HTTP/1.1
x-api-session: 1f2g70m2e9b4sawt53ydp1oc9nzzs4sduc2wr2bzgmy5dhs7pz

Figure 11. Get Ensemble Properties: Request

56 HMC Web Services API

Update Ensemble Properties
The Update Ensemble Properties operation modifies simple writeable properties of an ensemble object.

HTTP method and URI
POST /api/ensembles/{ensemble-id}

In this request, the URI variable {ensemble-id} is the object ID of the Ensemble object for which properties
are to be updated.

Request body contents

The request body is expected to contain a JSON object with one or more of the following fields. Only
fields that are being changed are necessary to supply.

200 OK
x-request-id: Sx3a Rx1
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Wed, 20 Jul 2011 18:41:03 GMT
content-type: application/json;charset=UTF-8
content-length: 959
{

"acceptable-status": [
"alternate-communicating"

],
"class": "ensemble",
"cpu-perf-mgmt-enabled-power-vm": true,
"cpu-perf-mgmt-enabled-zvm": true,
"description": "",
"has-unacceptable-status": false,
"is-locked": false,
"load-balancing-enabled": true,
"load-balancing-ip-addresses": [

"1.1.1.1"
],
"load-balancing-port": 9876,
"mac-prefix": "02:00:00:00:00:00",
"management-enablement-level": "automate",
"name": "R32Ensemble",
"object-id": "87d73ffc-75b2-11e0-9ba3-0010184c8026",
"object-uri": "/api/ensembles/87d73ffc-75b2-11e0-9ba3-0010184c8026",
"parent": null,
"power-consumption": 8311,
"power-rating": 46522,
"reserved-mac-address-prefixes": [

{
"mac-address": "02:c1:00:00:00:00",
"prefix-lenght": 16

}
],
"status": "alternate-communicating",
"unique-local-unified-prefix": "fd07:8c9:1ba3:0:0:0:0:0"

}

Figure 12. Get Ensemble Properties: Response

Chapter 7. Ensemble composition 57

Field name Type Description

name String (1-16) The new name to give the ensemble, as described in “Data Model” on page
50.

description String
(0-128)

The new description to give the ensemble, as described in “Data Model” on
page 50.

cpu-perf-mgmt-
enabled-power-vm

Boolean The PowerVM virtualization host processor performance management
enablement setting, as described in “Data Model” on page 50.

cpu-perf-mgmt-
enabled-zvm

Boolean The z/VM virtualization host processor performance management
enablement setting, as described in “Data Model” on page 50.

load-balancing-
enabled

Boolean The Load Balancing enablement setting for this ensemble, as described in
“Data Model” on page 50.

load-balancing-port Integer The Load Balancing port for this ensemble, as described in “Data Model” on
page 50.

load-balancing-ip-
address

Array of
Strings

The Load Balancing ip addresses, as described in “Data Model” on page 50.

Description

This operation updates one or more simple writeable properties of the ensemble object identified by
{ensemble-id}.

On successful execution, the ensemble object has been updated with the supplied property values and
status code 204 (No Content) is returned without supplying a response body.

If the update changes the value of any property for which property-change notifications are due, those
notifications are emitted asynchronously to this operation.

The URI path must designate an ensemble object and the API user must have object-access permission to
it. If either of these conditions is not met, status code 404 (Not Found) is returned. In addition, the API
user must also have permission to the Ensemble Details task as well, otherwise status code 403
(Forbidden) is returned.

The request body is validated against the schema described in the Request Body Contents section. If the
request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the Ensemble object designated by {ensemble-id}
v Action/task permission to the Ensemble Details task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

58 HMC Web Services API

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

228 The ensemble's management-enablement-level property does not allow the
updating of a property specified in the request body.

404 (Not Found) 1 The object ID in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object access permission to
the object.

409 (Conflict) 2 The operation cannot be performed because the object designated by the
request URI is currently busy performing some other operation.

3 The operation cannot be performed because the object designated by the
request URI is currently locked.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

List Ensemble Nodes
The List Ensemble Nodes operation lists the nodes of an ensemble managed by the HMC.

HTTP method and URI
GET /api/ensembles/{ensemble-id}/nodes

In this request, the URI variable {ensemble-id} is the object ID of the Ensemble object for which nodes are
to be listed.

POST /api/ensembles/f8fc3a9c-03f2-11e1-ba83-0010184c8334 HTTP/1.1
x-api-session: 297n8iun1251svgcju9tvsai0rrew4ieawx97ykucbxy69bwr2
content-type: application/json
content-length: 34
{

"name": "SS-Ensemble-1"
}

Figure 13. Update Ensemble Properties: Request

204 No Content
date: Wed, 07 Dec 2011 04:54:01 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 14. Update Ensemble Properties: Response

Chapter 7. Ensemble composition 59

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

nodes Array of
objects

Array of nested node-info objects (described in the next table). If the
ensemble has no nodes, an empty array is provided.

Each nested node-info object contains the following fields:

Field name Type Description

element-uri String/URI URI path of the ensemble node object, in the form /api/ensembles/
{ensemble-id}/nodes/{node-id}. For a node of type "cpc", the node object
represents a CPC as a member of the node, and the {node-id} component of
this URI path is the object-id property of the underlying CPC object.

type String
Enum

The type of the ensemble node. Currently this is always "cpc".

name String The name property of the underlying object that is represented by the node

status String
Enum

The status property of the underlying object that is represented by the node

Description

This operation lists the nodes of an ensemble specified by its {ensemble-id}. The element URI and type are
provided for each.

A node is included in the list only if the API user has object-access permission to the underlying object
that is represented by the node. For a node of type "cpc", the underlying object is a CPC. If an ensemble
contains a node but the API user does not have permission to the related object, that object is simply
omitted from the list but no error status code results.

If the ensemble is empty (has no nodes), an empty list is provided and the operation completes
successfully.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the ensemble designated in the request URI
v Object access permission to the underlying object that is represented by a node included in the result.

For nodes of type "cpc", the underlying object is a CPC.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

60 HMC Web Services API

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object access permission to
the object.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Get Node Properties
The Get Node Properties operation retrieves the properties of a single Node object.

HTTP method and URI
GET /api/ensembles/{ensemble-id}/nodes/{node-id}

URI variables

Variable Description

{ensemble-id} Object ID of the ensemble containing the node for which properties are to be obtained.

{node-id} Element ID of the node which for which properties are to be obtained.

GET /api/ensembles/87d73ffc-75b2-11e0-9ba3-0010184c8026/nodes HTTP/1.1
x-api-session: 1f2g70m2e9b4sawt53ydp1oc9nzzs4sduc2wr2bzgmy5dhs7pz

Figure 15. List Ensemble Nodes: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Wed, 20 Jul 2011 18:41:03 GMT
content-type: application/json;charset=UTF-8
content-length: 250
{

"nodes": [
{

"element-uri": "/api/ensembles/87d73ffc-75b2-11e0-9ba3-0010184c8026/nodes/37c6f8a9-8d5e-3e5d-
8466- be79e49dd340",

"name": "R32",
"status": "operating",
"type": "cpc"

}
]

}

Figure 16. List Ensemble Nodes: Response

Chapter 7. Ensemble composition 61

Response body contents

On successful completion, the response body contains a JSON object that provides the current values of
the properties for the node object as defined in “Data Model” on page 50. Field names and data types in
the JSON object are the same as the property names and data types defined in the data model.

Description

The operation returns the current properties for the node object specified by the request URI.

On successful execution, all of the current properties as defined by the Data Model for the ensemble
object are provided in the response body, and HTTP status code 200 (OK) is returned.

The URI path must designate an existing node object and the API user must have object-access
permission to it. If either of these conditions is not met, status code 404 (Not Found) is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the ensemble designated in the request URI
v Object access permission to the underlying object that is represented by a node included in the result.

For nodes of type "cpc", the underlying object is a CPC.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is provided and the response body is as described in “Response
body contents.”

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object access permission to
the object.

225 The element-id in the URI ({node-id}) does not designate an existing node of
the ensemble designed by {ensemble-id}.

227 The element-id in the URI ({node-id}) does not designate an existing object, or
the API user does not have access permission to it.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

62 HMC Web Services API

Example HTTP interaction

Add Node (CPC) to Ensemble
The Add Node to Ensemble operation adds a CPC to an ensemble, creating a new Node object to
represent the membership as a result.

HTTP method and URI
POST /api/ensembles/{ensemble-id}/nodes

In this request, the URI variable {ensemble-id} is the object ID of the ensemble object to which the CPC is
to be added as a node.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Description

cpc String/URI The canonical URI path identifying the CPC to be added to the targeted
ensemble as a new node.

Response body contents

Field name Type Description

node-uri String/URI The canonical URI path identifying the node that was created in the targeted
ensemble, in the form /api/ensembles/{ensemble-id}/nodes/{node-id}.

Description

This operation adds a CPC to the ensemble targeted by the request URI and creates a new Node object to
represent the membership. Refer to the zEnterprise System Ensemble Planning and Configuring Guide for
details on managing members of an ensemble.

GET /api/ensembles/87d73ffc-75b2-11e0-9ba3-0010184c8026/nodes/37c6f8a9-8d5e-3e5d-8466-e79e49dd340 HTTP/1.1
x-api-session: 1f2g70m2e9b4sawt53ydp1oc9nzzs4sduc2wr2bzgmy5dhs7pz

Figure 17. Get Node Properties: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Wed, 20 Jul 2011 18:41:03 GMT
content-type: application/json;charset=UTF-8
content-length: 295
{

"class": "node",
"element-uri": "/api/ensembles/87d73ffc-75b2-11e0-9ba3-0010184c8026/nodes/37c6f8a9-8d5e-3e5d-8466-
be79e49dd340",
"member": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340",
"parent": "/api/ensembles/87d73ffc-75b2-11e0-9ba3-0010184c8026",
"type": "cpc"

}

Figure 18. Get Node Properties: Response

Chapter 7. Ensemble composition 63

Upon successful completion, HTTP status code 201 (Created) is returned and the response body includes
the URI of the node that was created to represent the membership. This URI is also provided as the value
of the Location header in the response.

If the CPC is already a node of an ensemble (either the targeted ensemble or another one) HTTP status
code 400 (Bad Request) is returned with associated reason code 224.

The URI path must designate an existing ensemble and the API user must have object-access permission
to it. If either of these conditions is not met, status code 404 (Not Found) is returned. In addition, the API
user must also have action/task permission to the Add Member to Ensemble task as well, otherwise
status code 403 (Forbidden) is returned. Additionally if the CPC is ineligible to be added to the ensemble
a status code 409 (Conflict) is returned.

The request body is validated against the schema described in “Request body contents” on page 63. If the
request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the ensemble object passed in the request URI
v Object access permission to the CPC object passed in the request body.
v Action/task permission to the Add Member to Ensemble task.

HTTP status and reason codes

On success, HTTP status code 201 (Created) is returned and the response body is provided as described
in “Response body contents” on page 63.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

221 The operation cannot be performed because the CPC to be added as a
member is not an eligible machine model.

222 The operation cannot be performed because the CPC does not have the
Ensemble without zBX Feature or the zBX Feature installed.

224 The operation cannot be performed because the CPC is a member of another
ensemble or already a member of the ensemble targeted in the request URI.

229 The operation cannot be performed because the maximum number of CPCs
would be exceeded for the ensemble.

230 A CPC may be added to an Ensemble only, if the LICCC QoS value of the
CPC is the same as the aggregated QoS of the Ensemble.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object access permission to
the object.

227 The object-id in the URI of the CPC object in the request body does not
designate an existing object, or the API user does not have access permission
to it.

64 HMC Web Services API

HTTP error status
code

Reason
code Description

409 (Conflict) 2 The operation cannot be performed because the object designated by the
request URI is currently busy performing some other operation.

3 The operation cannot be performed because the object designated by the
request URI is currently locked to prevent disruptive changes from being
made.

220 The operation cannot be performed because the CPC to be added as a
member is currently busy performing some other operation.

223 The operation cannot be performed because the CPC to be added as a
member is not in the correct state to be added to the ensemble. The CPC
cannot be added if the CPC operational status is "not-communicating".

226 The operation cannot be performed because the CPC object to be added as a
member is currently locked to prevent disruptive changes from being made.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Remove Node from Ensemble
The Remove Node from Ensemble operation removes a node from an ensemble.

HTTP method and URI
DELETE /api/ensembles/{ensemble-id}/nodes/{node-id}

URI variables

Variable Description

{ensemble-id} Object ID of the ensemble from which the targeted node is to be removed as a member.

{node-id} Element ID of the node which is to be removed from the targeted ensemble.

Description

This operation removes a specified node from the specified ensemble. The node is identified by the
{node-id} variable in the URI, and the ensemble is identified by the {ensemble-id} variable in the request
URI.

Refer to the zEnterprise System Ensemble Planning and Configuring Guide for details on managing members
of an ensemble.

Upon successfully removing the node as a member, HTTP status code 204 (No Content) is returned.

The URI path must designate an existing ensemble object and the API user must have object-access
permission to it. Furthermore, the URI path must designate an existing node element. If any of these
conditions is not met, status code 404 (Not Found) is returned. In addition, the API user must also have
Remove Member from Ensemble action/task permission as well, otherwise status code 403 (Forbidden) is
returned. Additionally if the CPC is ineligible to be removed from the ensemble a status code 409
(Conflict) is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the ensemble object passed in the request URI

Chapter 7. Ensemble composition 65

v Object access permission to the system element represented by the node element. For nodes of type
"cpc", this is a CPC object

v Action/task permission to the Add Member to Ensemble task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

225 The operation cannot be performed because the node ({node-id}) to be
removed is not a member of the ensemble ({ensemble-id}) designated by the
request URI.

231 The operation cannot be performed because the node ({node-id}) to be
removed has entitled blades

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object access permission to
the object.

227 The element-id in the URI ({node-id}) does not designate an existing object, or
the API user does not have access permission to it.

409 (Conflict) 2 The operation cannot be performed because the object ({ensemble-id})
designated by the request URI is currently busy performing some other
operation.

3 The operation cannot be performed because the object ({ensemble-id})
designated by the request URI is currently locked to prevent disruptive
changes from being made.

220 The operation cannot be performed because the node ({node-id}) to be
removed as a member is currently busy performing some other operation.

223 The operation cannot be performed because the node ({node-id}) to be
removed as a member is not in the correct state to be removed to the
ensemble. For nodes of type "cpc", the node cannot be removed if the CPC
operational status is "not-communicating".

226 The operation cannot be performed because the node to be removed as a
member is currently locked to prevent disruptive changes from being made.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Inventory service data
Information about the Ensembles managed by the HMC and the associated nodes can be optionally
included in the inventory data provided by the Inventory Service.

Inventory entries for ensemble and node objects are included in the response to the Inventory Service's
Get Inventory operation when the request specifies (explicitly by class, implicitly via a containing

66 HMC Web Services API

category, or by default) that objects of class "ensemble" are to be included. Information for a particular
ensemble (and associated node) is included only if the API user has object-access permission to that
object.

For each ensemble to be included, the inventory response array includes the following:
v An array entry for the ensemble object itself. This entry is a JSON object with the same contents as is

specified in the Response Body Contents section for the Get Ensemble Properties operation. That is,
the data provided is the same as would be provided if a Get Ensemble Properties operation were
requested targeting this object.

v An array entry for each node associated with the ensemble. For each such node, an entry is included
that is a JSON object with the same contents as specified in the Response Body Contents section of the
Get Ensemble Properties operation. As a result, the data provided is the same as would be obtained if
a Get Node Properties operation were requested for each node listed by a List Ensemble Nodes
operation targeting the ensemble.

The array entry for an ensemble object will appear in the results array before entries for associated nodes.

Sample inventory data

The following fragment is an example of the JSON object that would be included in the Get Inventory
response to describe a ensemble (named "R32Ensemble") with a single node as member. These objects
would appear as a sequence of array entries in the response array:

Chapter 7. Ensemble composition 67

Usage notes
When configured as recommended by IBM, the process of recovering from the failure of the primary
ensemble-management HMC by takeover by the alternate HMC includes movement of the IP address of
the former primary to the new primary. When this occurs, explicit redirection of API requests to the
newly designated primary HMC is not needed. However, the IP address swapping may not be possible
in certain network configurations. The address of the alternate ensemble-management HMC for the
current Ensemble is provided as properties of the Console object (representing the current HMC) to allow
applications to explicitly redirect requests to the other HMC of the pair in these cases.

{
"acceptable-status": [

"alternate-communicating"
],
"class": "ensemble",
"cpu-perf-mgmt-enabled-power-vm": false,
"cpu-perf-mgmt-enabled-zvm": true,
"description": "FVT Test",
"has-unacceptable-status": false,
"is-locked": false,
"load-balancing-enabled": true,
"load-balancing-ip-addresses": [

"1.1.1.1"
],
"load-balancing-port": 9876,
"mac-prefix": "02:00:00:00:00:00",
"management-enablement-level": "automate",
"name": "R32Ensemble",
"object-id": "87d73ffc-75b2-11e0-9ba3-0010184c8026",
"object-uri": "/api/ensembles/87d73ffc-75b2-11e0-9ba3-0010184c8026",
"parent": null,
"power-consumption": 8298,
"power-rating": 46288,
"reserved-mac-address-prefixes": [],
"status": "alternate-communicating",
"unique-local-unified-prefix": "fd07:8c9:1ba3:0:0:0:0:0"

},
{

"class": "node",
"element-uri": "/api/ensembles/87d73ffc-75b2-11e0-9ba3-0010184c8026/nodes/37c6f8a9-8d5e-3e5d-8466-
be79e49dd340",
"member": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340",
"parent": "/api/ensembles/87d73ffc-75b2-11e0-9ba3-0010184c8026",
"type": "cpc"

}

Figure 19. Ensemble object: Sample inventory data

68 HMC Web Services API

Chapter 8. zBX infrastructure elements

A zEnterprise ensemble is a grouping of one or more CPCs and their associated system resources that are
managed in a coordinated way for purposes of virtualization and workload management. Each member
of the ensemble may have a zEnterprise Blade Extension (zBX) attached to the CPC to provide
blade-based computing resources for the member.

The zBX has the following key components: BladeCenter chassis, Blades and VLAN capable switches all
mounted in dedicated racks. The zBX is connected to the CPC through two dedicated integrated
networks. Within the ensemble, advanced management capabilities are provided for the blades housed
within the zBX. The zBX components are configured, managed and serviced in the same way as the other
components of the CPC. Management of the zBX is provided only if the associated CPC is a member of
an Ensemble.

zBX physical network overview
The zBX contains physical network switches that provide the connectivity between the blades and CPCs
in the zEnterprise Intra-Ensemble Data Network (IEDN). There are two types of Ethernet switches within
each zBX:
v Top-of-Rack Switches (TORs) – A pair of TORs reside in each zBX and act as a primary and backup.

TORs connect the blades in the zBX to System z network interfaces, and to other external networking
equipment, such as routers.

v Ethernet Switch Modules (ESMs) – A pair of ESMs reside in each BladeCenter chassis and connect the
blades in the zBX to the IEDN and provide the links to the TORs.

The initial configuration and setup of the physical switches are provided by zManager. The ESMs are not
accessible for configuration changes through the Web Services API, however, performance metrics are
provided through the Metrics Service. Some TOR management will typically be required by an external
administrator; therefore, when managing virtual networks, administrators must consider requirements for
configuring the Top-of-Rack switch ports. Only certain types of TOR ports support configuration by the
zManager user, these are:
v External - Ports that connect to a customer's external network.
v Internal - Ports are internal ports that extend to the ESMs which connect to the blades. The

configuration of this type of port is intended only to support the ISAOPT Coordinator. In this case,
VLAN- tagging is required to allow traffic from ISAOPT to System z to be tagged with the proper
VLAN ID.

The configuration properties supported by these ports are:
v Virtual networks - The following port types can be configured to a virtual network:

– External
– Internal

v MAC Filters – The following port types support MAC filters:
– External

© Copyright IBM Corp. 2012, 2013 69

zBX infrastructure operations summary
The following tables provide an overview of the operations provided.

Table 15. zBX infrastructure: operations summary

Operation name HTTP method and URI path

“List zBXs of a CPC” on page
72

GET /api/cpcs/{cpc-id}/zbxs

“List zBXs of a Ensemble” on
page 74

GET /api/ensembles/{ensemble-id}/zbxs

“Get zBX Properties” on page
76

GET /api/zbxs/{zbx-id}

“List Top-of-Rack Switches of
a zBX” on page 81

GET /api/zbxs/{zbx-id}/top-of-rack-switches

“Get Top-of-Rack Switch
Properties” on page 83

GET /api/zbxs/{zbx-id}/top-of-rack-switches/{tor-id}

“Get Top-of-Rack Switch Port
Details” on page 85

GET /api/zbxs/{zbx_id}/top-of-rack-switches/{tor-id}/ports/{port-id}

“Update Top-of-Rack Switch
Port Properties” on page 87

POST/api/zbxs/{zbx-id}/top-of-rack-switches/{tor-id}/ports/{port-id}

“Add MAC Filters to
Top-of-Rack Switch Port” on
page 89

POST /api/zbxs/{zbx-id}/top-of-rack-switches/{tor-id}/ports/{port-id}/
operations/add-mac-filters

“Remove MAC Filters from
Top-of-Rack Switch Port” on
page 91

POST /api/zbxs/{zbx-id}/top-of-rack-switches/{tor-id}/ports/{port-id}/
operations/remove-mac-filters

“Add Top-of-Rack Switch
Port to Virtual Networks” on
page 93

POST /api/zbxs/{zbx-id}/top-of-rack-switches/{tor-id}/ports/{port-id}/
operations/add-virtual-networks

“Remove Top-of-Rack Switch
Port from the Virtual
Networks” on page 95

POST /api/zbxs/{zbx-id}/top-of-rack-switches/{tor-id}/ports/{port-id}/
operations/remove-virtual-networks

“List Racks of a zBX” on
page 98

GET /api/zbxs/{zbx-id}/racks

“Get Rack Properties” on
page 100

GET /api/racks/{rack-id}

“List BladeCenters in a Rack”
on page 105

GET /api/racks/{rack-id}/bladecenters

“List BladeCenters in a zBX”
on page 107

GET /api/zbxs/{zbx-id}/bladecenters

“Get BladeCenter Properties”
on page 109

GET /api/bladecenters/{bladecenter-id}

“List Blades in a
BladeCenter” on page 117

GET /api/bladecenters/{bladecenter-id}/blades

“List Blades in a zBX” on
page 119

GET /api/zbxs/{zbx-id}/blades

“Get Blade Properties” on
page 122

GET /api/zbxs/{zbx-id}/blades

“Activate a Blade” on page
126

POST /api/blades/{blade-id}/operations/activate

70 HMC Web Services API

Table 15. zBX infrastructure: operations summary (continued)

Operation name HTTP method and URI path

“Deactivate a Blade” on page
128

POST /api/blades/{blade-id}/operations/deactivate

“Create IEDN Interface for a
DataPower XI50z Blade” on
page 130

POST /api/blades/{blade-id}/iedn-interface

“Delete IEDN Interface for a
DataPower XI50z Blade” on
page 133

DELETE /api/blades/{blade-id}/iedn-interface/{iedn-interface-id}

Table 16. zBX infrastructure: URI variables

Variable Description

{cpc-id} Object ID of a CPC

{zbx-id} Object ID of a zBX

{tor-id} Element ID of a TOR object

{port-id} Element ID of a TOR port

{rack-id} Object ID of a Rack

{bladecenter-id} Object ID of a BladeCenter

{blade-id} Object ID of a Blade

{iedn-interface-id} Element ID of an IEDN Interface

{hardware-message-id} Element ID of a Hardware Message

zBX object
A zBX object represents the single zBX of a CPC. There is at most one zBX object for each CPC that is a
member of an ensemble.

Data model
This object includes the properties defined in the “Base managed object properties schema” on page 33,
but does not provide the operational-status-related properties defined in that schema because it does not
maintain the concept of an operational status.

The following class-specific specializations apply to the other Base Managed Object properties:

Table 17. zBX object: base managed object properties specializations

Name Qualifier Type Description of specialization

name (ro) String
(1-64)

The name of the ZBX. Currently assigned by zManager as 21
characters of the form <Machine type>-<machine model>-<machine
serial number> of the zBX object.1

description — String This field is not provided.

object-uri — String/
URI

The canonical URI path for a zBX object is of the form
/api/zbxs/{zbx-id}.

parent — String/
URI

The canonical URI path of the parent CPC object.

class — String The value "zbx".

Chapter 8. zBX infrastructure elements 71

Table 17. zBX object: base managed object properties specializations (continued)

Name Qualifier Type Description of specialization

Note: 1 This name property is currently assigned by zManager and is not writeable. However, it is possible that the
API could be extended to allow this property to be writeable, in which case an API or User-Interface user could
change the name to contain arbitrary data. Therefore, API client applications should not rely on the contents and
format of the name property always being in the form of the zManager-assigned name.

Class specific additional properties
In addition to the properties defined via included schemas, this object includes the following additional
class-specific properties:

Table 18. zBX object: class specific properties

Name Qualifier Type Description

machine-type — String 4 characters.

machine-model — String 3 characters.

machine-serial — String 12 characters.

current-isaopt-
entitlements

— Integer Number of blades entitled as ISAOPT blades.

max-isaopt-
entitlements

— Integer Maximum licensed to be entitled as ISAOPT blades.

current-power-
entitlements

— Integer Number of blades entitled as POWER® IBM blades.

max-power-
entitlements

— Integer Maximum licensed to be entitled as POWER IBM blades.

current-systemx-
entitlements

— Integer Number of blades entitled as System x® IBM blades.

max-systemx-
entitlements

— Integer Maximum licensed to be entitled as System x IBM blades.

current-dpxi50z-
entitlements

— Integer Number of blades entitled as DPXI50Z blades.

max-dpxi50z-
entitlements

— Integer Maximum licensed to be entitled as DPXI50Z blades.

Operations

List zBXs of a CPC
The List zBXs of a CPC operation lists the zBXs associated with the CPC. The CPC must be a member of
an ensemble.

HTTP method and URI
GET /api/cpcs/{cpc-id}/zbxs

In this request, the URI variable {cpc-id} is the object ID of the CPC object whose zBXs are to be obtained.

Query parameters:

Name Type Rqd/Opt Description

name String Optional Filter pattern (regular expression) used to limit returned objects

72 HMC Web Services API

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

zbxs Array of
objects

Array of nested zbx-info objects, described in the next table. If the CPC
does not have a zBX associated with it, an empty array is provided.

Each nested zbx-info object contains the following fields:

Field name Type Description

object-uri String/
URI

Canonical URI path of the zBX object in the form /api/zbxs/{zbx-id}.

name String The name property of the zBX object (based on its machine type, machine
model, and machine serial number).

Description

The List zBXs of a CPC operation lists the zBXs that are associated with this CPC. The object URI and
name are provided for each zBX.

If the name query parameter is specified, then a zBX is included in the list only if the name pattern
matches the name property of the object.

A zBX is included in the list only if the API user has object-access permission for the CPC with which the
zBX is associated. If the HMC is a manager of a zBX, but the API user does not have permission to it,
that object is omitted from the list, but no error status code results.

If the CPC does not have a zBX, an empty list is provided and the operation completes successfully. Note
that if the CPC is not a member of an ensemble, it cannot have a zBX. Therefore, an empty list is
provided.

Authorization requirements

This operation has the following authorization requirement:
v Object-access permission to the CPC object specified by the request URI.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

241 CPC object ({cpc-id}) is not a member of an ensemble.

404 (Not Found) 1 The object ID {cpc-id} does not designate an existing CPC object, or the API
user does not have object access permission to it.

Chapter 8. zBX infrastructure elements 73

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Usage notes
v This operation has been structured to allow for the possibility that an HMC might be the manager of

multiple zBXs on a CPC. However, in the current implementation, each CPC can have at most one
zBX. Therefore, the resulting list of zBXs will contain either zero or one entry.

Example HTTP interaction

List zBXs of a Ensemble
The List zBXs of a Ensemble operation lists the zBXs, which are associated with each CPC in the
ensemble.

HTTP method and URI
GET /api/ensembles/{ensemble-id}/zbxs

In this request, the URI variable {ensemble-id} is the object ID of the ensemble object whose zBXs are to be
obtained.

Query parameters:

Name Type Rqd/Opt Description

name String Optional Filter pattern (regular expression) used to limit returned objects

GET /api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/zbxs HTTP/1.1
x-api-session: 5q07hx6jgp2ngn2cypq1zxot76sfwnzky0ih8nddd5hz6bpiue

Figure 20. List zBXs of a CPC: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Thu, 21 Jul 2011 17:48:58 GMT
content-type: application/json;charset=UTF-8
content-length: 160
{

"zbxs": [
{

"name": "2458-002-0000000ZBX26",
"object-uri": "/api/zbxs/54a9716c-a326-11e0-9469-001f163805d8"

}
]

}

Figure 21. List zBXs of a CPC: Response

74 HMC Web Services API

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

zbxs Array of
objects

Array of nested zbx-info objects, described in the next table. If the
ensemble does not have any CPCs or zBXs associated with it, an empty
array is provided.

Each nested zbx-info object contains the following fields:

Field name Type Description

object-uri String/
URI

Canonical URI path of the zBX object in the form /api/zbxs/{zbx-id}.

name String The name property of the zBX object (based on its machine type, machine
model, and machine serial number).

Description

The List zBXs of a Ensemble operation lists the zBXs that are part of the ensemble. The object URI and
name are provided for each zBX.

If the name query parameter is specified, then a zBX is included in the list only if the name pattern
matches the name property of the object.

A zBX is included in the list only if the API user has object-access permission for the CPC object with
which it is associated. If the HMC is a manager of a zBX, but the API user does not have permission to
the CPC with which the zBX is associated, that object is omitted from the list, but no error status code
results.

If the HMC does not manage any zBXs, an empty list is provided and the operation completes
successfully.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the CPC object passed in the request URI
v Object-access permission to the CPC objects with which a zBX is associated.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

Chapter 8. zBX infrastructure elements 75

HTTP error status
code

Reason
code Description

404 (Not Found) 1 The object ID {ensemble-id} does not designate an existing ensemble object, or
the API user does not have object access permission to it.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Get zBX Properties
The Get zBX Properties operation retrieves the properties of a single zBX object that is designated by its
object ID.

HTTP method and URI
GET /api/zbxs/{zbx-id}

In this request, the URI variable {zbx-id} is the object ID of the zBX object for which properties are to be
obtained.

Response body contents

On successful completion, the response body is a JSON object that provides the current values of the
properties for the zBX object as defined in the “Data model” on page 71. Field names and data types in
the JSON object are the same as the property names and data types defined in the data model.

Description

The Get zBX Properties operation returns the current properties for the zBX object specified by {zbx-id}.

GET /api/ensembles/87d73ffc-75b2-11e0-9ba3-0010184c8026/zbxs HTTP/1.1
x-api-session: 5q07hx6jgp2ngn2cypq1zxot76sfwnzky0ih8nddd5hz6bpiue

Figure 22. List zBXs of a Ensemble: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Thu, 21 Jul 2011 17:48:58 GMT
content-type: application/json;charset=UTF-8
content-length: 160
{

"zbxs": [
{

"name": "2458-002-0000000ZBX26",
"object-uri": "/api/zbxs/54a9716c-a326-11e0-9469-001f163805d8"

}
]

}

Figure 23. List zBXs of a Ensemble: Response

76 HMC Web Services API

On successful execution, all of the current properties as defined in “Data model” on page 71 for the
storage resource object are provided in the response body, and HTTP status code 200 (OK) is returned.

The URI path must designate an existing zBX object and the API user must have object-access permission
to the CPC with which the zBX is associated.

Authorization requirements

This operation has the following authorization requirement:
v Object-access permission to the CPC objects with which the zBX is associated.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 76.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID {zbx-id} does not designate an existing zBX object, or the API
user does not have object access permission to the CPC with which the zBX
is associated.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/zbxs/54a9716c-a326-11e0-9469-001f163805d8 HTTP/1.1
x-api-session: 5q07hx6jgp2ngn2cypq1zxot76sfwnzky0ih8nddd5hz6bpiue

Figure 24. Get zBX Properties: Request

Chapter 8. zBX infrastructure elements 77

Inventory service data
Information about the zBXs managed by the HMC can be optionally included in the inventory data
provided by the Web Services API Inventory Service.

Inventory entries for zBX objects are included in the response to the Inventory Service's Get Inventory
operation when the request specifies (explicitly by class, implicitly via a containing category, or by
default) that objects of class "zbx" are to be included. An entry for a particular zBX is included only if the
API user has object-access permission to the CPC with which that object is associated.

For each zBX object to be included, the inventory response array includes entry that is a JSON object with
the same contents as is specified in the Response Body Contents section for “Get zBX Properties” on page
76. That is, the data provided is the same as would be provided if a Get zBX Properties operation were
requested targeting this object.

Sample inventory data

The following fragment is an example of the JSON object that would be included in the Get Inventory
response to describe a single zBX. This object would appear as one array entry in the response array:

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Thu, 21 Jul 2011 17:49:01 GMT
content-type: application/json;charset=UTF-8
content-length: 704
{

"class": "zbx",
"current-dpxi50z-entitlements": 0,
"current-isaopt-entitlements": 0,
"current-power-entitlements": 4,
"current-systemx-entitlements": 2,
"description": "Represents one zBX",
"is-locked": false,
"machine-model": "002",
"machine-serial": "0000000ZBX26",
"machine-type": "2458",
"max-dpxi50z-entitlements": 28,
"max-isaopt-entitlements": 28,
"max-power-entitlements": 28,
"max-systemx-entitlements": 28,
"name": "2458-002-0000000ZBX26",
"object-id": "54a9716c-a326-11e0-9469-001f163805d8",
"object-uri": "/api/zbxs/54a9716c-a326-11e0-9469-001f163805d8",
"parent": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340"

}

Figure 25. Get zBX Properties: Response

78 HMC Web Services API

zBX Top-of-Rack switches
A Top-of-Rack Switch element of a zBX represents one of the VLAN capable switches provided by the
zBX to serve as the network infrastructure of the Intra-Ensemble Data Network (IEDN). (Note that the
Top-of-Rack switches used for management purposes are considered internal components of zManager
and are not surfaced to API clients as TOR objects.)

Data model
The Top-of-Rack switch object provides the following properties:

Table 19. zBX Top-of-Rack switches: base managed object properties specializations

Name Qualifier Type Description

element-uri — String/
URI

The canonical URI path for a TOR object is of the form
/api/zbxs/{zbx-id}/top-of-rack-switches/{tor-id} where {tor-id}
is the value of the element-id property of the Top-of-Rack switch
object.

element-id — String The element ID of the TOR.

parent — String/
URI

The canonical URI path of the zBX that is the parent of the TOR.

class — String The class of a TOR object is "top-of-rack-switch".

name — String (32) The name of the TOR. This name cannot be changed.

tor-ports-list — Array of
tor-port-
info
objects

Array of nested tor-port-info objects (described in the next table),
each entry of which describes one port on the TOR switch.

The following tor-port-info nested object describes the properties of a single TOR port:

{
"class": "zbx",
"current-dpxi50z-entitlements": 0,
"current-isaopt-entitlements": 0,
"current-power-entitlements": 4,
"current-systemx-entitlements": 2,
"description": "Represents one zBX",
"is-locked": false,
"machine-model": "002",
"machine-serial": "0000000ZBX26",
"machine-type": "2458",
"max-dpxi50z-entitlements": 28,
"max-isaopt-entitlements": 28,
"max-power-entitlements": 28,
"max-systemx-entitlements": 28,
"name": "2458-002-0000000ZBX26",
"object-id": "28ba8930-7bc4-11e0-a905-001f163803de",
"object-uri": "/api/zbxs/28ba8930-7bc4-11e0-a905-001f163803de",
"parent": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340"

}

Figure 26. zBX object: Sample inventory data

Chapter 8. zBX infrastructure elements 79

Table 20. zBX Top-of-Rack switches: tor-port-info nested object properties

Name Qualifier Type Description

element-uri — String/
URI

Canonical URI of the port for this TOR: /api/zbxs/{zbx-id}/top-of-
rack-switches/{tor-id}/ports/{port-id} when {port-id} is the value
of the port-num property of the port.

port-num — String (3) The TOR port number, as a string of 1 to 3 numeric digits.

type — String
Enum

This is the type of port. TOR ports have the following types:

v "internal" - Provides connectivity to an ISAOPT coordinator
blade.

v "external" - Provides connectivity to networks external to the
IEDN.

port-access (w) String
Enum

This describes the port access mode associated with this TOR port.
Possible values:

v "trunk"

v "access"

all-virtual-networks (w) Boolean If true then all defined virtual networks in the ensemble can be used
with this TOR port. When true, the virtual-networks-list property
value will be an empty array.

This property can have the value true only if the type property has
the value "internal" and the port-access-mode property has the
value "trunk". That is, only internal ports configured in trunk mode
can be configured to allow access to all defined virtual networks.

If true, attempts to invoke the Add Top-of-Rack Switch Port to
Virtual Networks or Remove Top-of-Rack Switch Port from Virtual
Networks operations will result in errors.

Changing this property from false to true will remove all virtual
networks from the current virtual-networks-list.

virtual-networks-list — Array of
URI

This is the list of virtual network URIs that represent the virtual
networks that can be used for this port. There can be more than one
virtual network URI in this list only if the port-access property has
the value "trunk".

If the all-virtual-networks property is false, the Add Top-of-Rack
Switch Port to Virtual Networks and Remove Top-of-Rack Switch
Port from Virtual Networks operations may be used to modify this
list.

Changing the all-virtual-networks property from false to true will
remove all virtual networks from this list.

80 HMC Web Services API

Table 20. zBX Top-of-Rack switches: tor-port-info nested object properties (continued)

Name Qualifier Type Description

allow-all-macs (w) Boolean If true, all MAC addresses are allowed to access this port and the
mac-filter-list array will be empty.

If false, only those MAC addresses listed in the mac-filter-list
property are permitted to access this port. Network traffic from all
other MAC addresses is filtered out.

If true, attempts to invoke the Add MAC Filter to Top-of-Rack
Switch Port and Remove MAC Filter from Top-of-Rack Switch
Port operations will result in errors.

Changing the value from false to true will remove all MAC filters
from the current mac-filter-list property.

This property is writable only for TOR ports with a type value of
"external". The value of this property is always false for TOR ports
with a type value of "internal".

mac-filter-list — Array of
String (17)

The list of MAC addresses to allow (permit) for this port. Each entry
in the list is a MAC address. A MAC address is represented as a
string of length 17 consisting of 6 groups of two lower-case
hexadecimal digits separated by colons (:), e.g. “01:23:45:67:89:ab”.

If the allow-all-macs property is true, this list is empty. If the
allow-all-macs property is false, the Add MAC Filter to
Top-of-Rack Switch Port and Remove MAC Filter from
Top-of-Rack Switch Port operations may be used to modify this list.

Changing the allow-all-macs property from false to true will remove
all MAC addresses from this list.

This property is only applicable to TOR ports with a type value of
"external". The value of this property is always an empty array of
TOR ports with a type value of "internal".

Operations

List Top-of-Rack Switches of a zBX
The List Top-of-Rack Switches of a zBX operation returns a list of the Top-of-Rack (TOR) switches for a
zBX managed by the HMC.

HTTP method and URI
GET /api/zbxs/{zbx-id}/top-of-rack-switches

In this request, the URI variable {zbx-id} is the object ID of a zBX object for which top-of-rack switches are
to be listed.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

tors-list Array of
objects

Array of nested objects where each element in the array is a TOR-info
object, described in the next table.

Chapter 8. zBX infrastructure elements 81

Each TOR-info object contains the following fields:

Field name Type Description

element-uri String/
URI

Canonical URI path of the TOR object.

element-id String Object ID of the TOR object.

name String Display name of the TOR object.

Description

On successful completion, this operation obtains a list of URIs that represent the Top-of-Rack (TOR)
switches for the zBX designated by {zbx-id}. If no TORs are present, then the response body is provided
and contains an empty tors-list array.

A TOR switch is included in the list only if the API user has object-access permission to the CPC
associated with the zBX that contains the TOR switch. If the ensemble contains a TOR switch but the API
user does not have permission to it, that object is simply omitted from the list but no error status code
results.

If the Ensemble does not contain any TOR switches, an empty list is provided and the operation
completes successfully.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC associated with the zBX containing TOR switches to be listed in

the result
v Action/task permission to Configure Top-of-Rack Switch task.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 81.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message:

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 0 The user under which the API request was authenticated is not authorized to
perform the requested operation. Permission to the Configure Top of Rack
Switch task is required.

404 (Not Found) 1 The object-id in the URI ({zbx-id}) does not designate an existing resource, or
designates a resource for which the API user does not have object-access
permission.

503 (Service
Unavailable)

1 Communication between the HMC and SE is unavailable. Please retry the
request.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

82 HMC Web Services API

Example HTTP interaction

Get Top-of-Rack Switch Properties
The Get Top-of-Rack Switch Properties operation obtains the properties of the TOR specified by the
{tor-id} managed object.

HTTP method and URI
GET /api/zbxs/{zbx-id}/top-of-rack-switches/{tor-id}

URI variables:

Variable Description

{zbx-id} Object ID of the zBX object containing the TOR switch.

{tor-id} Element ID of the TOR object.

Response body contents

On successful completion, the response body is a JSON object that provides the current values of the
properties for the TOR object as defined in the“Data model” on page 79. Field names and data types in
the JSON object are the same as the property names and data types defined in the data model.

Description

On successful completion, the Get Top-of-Rack Switch Properties operation obtains the properties of the
TOR specified by {tor-id}.

GET /api/zbxs/da5d7720-a337-11e0-9555-00262df332b3/top-of-rack-switches HTTP/1.1
x-api-session: sqernk0lqu0s49oul0drld6ifcb1cplf902og86d9apesqjsl

Figure 27. List Top-of-Rack Switches: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Wed, 23 Nov 2011 20:57:48 GMT
content-type: application/json;charset=UTF-8
content-length: 409
{

"tors-list": [
{

"element-id": "189ad58d-c19f-4cdc-8dc8-639f3ccd4f49",
"element-uri": "/api/zbxs/da5d7720-a337-11e0-9555-00262df332b3/top-of-rack-switches/

189ad58d-c19f-4cdc-8dc8-639f3ccd4f49",
"name": "GG0210487100"

},
{

"element-id": "fea63433-e03d-4ea1-a5da-6a2fc7abe844",
"element-uri": "/api/zbxs/da5d7720-a337-11e0-9555-00262df332b3/top-of-rack-switches/

fea63433-e03d-4ea1-a5da-6a2fc7abe844",
"name": "GG0210487101"

}
]

}

Figure 28. List Top-of-Rack Switches: Response

Chapter 8. zBX infrastructure elements 83

The URI path must designate an existing TOR switch object and the API user must have object-access
permission to the CPC associated with the zBX in which that switch resides. If either of these conditions
is not met, status code 404 (Not Found) is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC associated with the zBX containing the TOR switch
v Action/task permission to Configure Top-of-Rack Switch task.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 83.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message:

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 0 The user under which the API request was authenticated is not authorized to
perform the requested operation. Permission to the Configure Top of Rack
Switch task is required.

404 (Not Found) 1 The object-id in the URI ({zbx-id}) does not designate an existing resource, or
designates a resource for which the API user does not have object-access
permission.

360 The TOR element ID in the URI ({tor-id}) does not designate an existing top
of rack switch.

503 (Service
Unavailable)

1 Communication between the HMC and SE is unavailable. Please retry the
request.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/zbxs/da5d7720-a337-11e0-9555-00262df332b3/top-of-rack-switches/
fea63433-e03d-4ea1-a5da-6a2fc7abe844 HTTP/1.1

x-api-session: sqernk0lqu0s49oul0drld6ifcb1cplf902og86d9apesqjsl

Figure 29. Get Top-of-Rack Switch Properties: Request

84 HMC Web Services API

Get Top-of-Rack Switch Port Details
The Get Top-of-Rack Switch Port Details operation obtains the properties of the designated TOR port
specified by the {port-id} identifier.

HTTP method and URI
GET /api/zbxs/{zbx-id}/top-of-rack-switches/{tor-id}/ports/{port-id}

URI variables:

Variable Description

{zbx-id} Object ID of the zBX object containing the TOR switch.

{tor-id} Element ID of the TOR object.

{port-id} Element ID of the TOR port.

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Wed, 23 Nov 2011 20:57:53 GMT
content-type: application/json;charset=UTF-8
content-length: 1314
{

"class": "top-of-rack-switch",
"element-id": "fea63433-e03d-4ea1-a5da-6a2fc7abe844",
"element-uri": "/api/zbxs/da5d7720-a337-11e0-9555-00262df332b3/top-of-rack-switches/
fea63433-e03d-4ea1-a5da-6a2fc7abe844",
"name": "GG0210487101",
"parent": "/api/zbxs/da5d7720-a337-11e0-9555-00262df332b3",
"tor-ports-list": [

{
"all-virtual-networks": false,
"allow-all-macs": true,
"element-uri": "/api/zbxs/da5d7720-a337-11e0-9555-00262df332b3/top-of-rack-switches/

fea63433-e03d-4ea1-a5da-6a2fc7abe844/ports/8",
"mac-filter-list": [],
"port-access": "access",
"port-num": "8",
"type": "internal",
"virtual-networks-list": [

"/api/virtual-networks/4ccb3c0c-a703-11df-a6fc-00215ef9b504"
]

},
{

"all-virtual-networks": false,
"allow-all-macs": true,
"element-uri": "/api/zbxs/da5d7720-a337-11e0-9555-00262df332b3/top-of-rack-switches/
fea63433-e03d-4ea1-a5da-6a2fc7abe844/ports/34",
"mac-filter-list": [],
"port-access": "trunk",
"port-num": "34",
"type": "external",
"virtual-networks-list": [

"/api/virtual-networks/4ccb3c0c-a703-11df-a6fc-00215ef9b504"
]

}
]

}

Figure 30. Get Top-of-Rack Switch Properties: Response

Chapter 8. zBX infrastructure elements 85

Response body contents

On successful completion, the response body is a JSON object that provides the current values of the
properties for the designated TOR port defined in the “Data model” on page 79 by tor-port-info. Field
names and data types in the JSON object are the same as the property names and data types defined in
the data model.

Description

On successful completion, the Get Top-of-Rack Switch Port Details operation obtains the properties of
the TOR port specified by {port-id}.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC associated with the zBX containing the TOR switch
v Action/task permission to Configure Top-of-Rack Switch task.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message:

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 0 The user under which the API request was authenticated is not authorized to
perform the requested operation. Permission to the Manage Virtual
Networks task is required.

404 (Not Found) 1 The object-id in the URI ({zbx-id}) does not designate an existing resource, or
designates a resource for which the API user does not have object-access
permission.

360 The TOR element ID in the URI ({tor-id}) does not designate an existing top
of rack switch.

361 The port ID the URI ({port-id}) does not designate an existing port.

503 (Service
Unavailable)

1 Communication between the HMC and SE is unavailable. Please retry the
request.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

86 HMC Web Services API

Example HTTP interaction

Update Top-of-Rack Switch Port Properties
The Update Top-of-Rack Switch Port Properties operation updates selected properties of the specified
TOR port.

HTTP method and URI
POST /api/zbxs/{zbx-id}/top-of-rack-switches/{tor-id}/ports/{port-id}

URI variables:

Variable Description

{zbx-id} Object ID of the zBX object containing the TOR switch.

{tor-id} Element ID of the TOR object.

{port-id} Element ID of the TOR port.

Request body contents

The request body is expected to contain a JSON object that provides the new values of any writeable
property that is to be updated by this operation. Field names and data types in this JSON object are
expected to match the corresponding property names and data types defined by the “Data model” on
page 79. The JSON object can and should omit fields for properties whose values are not to be changed
by this operation.

GET /api/zbxs/da5d7720-a337-11e0-9555-00262df332b3/top-of-rack-switches/
fea63433-e03d-4ea1-a5da-6a2fc7abe844/ports/34 HTTP/1.1

x-api-session: sqernk0lqu0s49oul0drld6ifcb1cplf902og86d9apesqjsl

Figure 31. Get Top-of-Rack Switch Port Details: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Wed, 23 Nov 2011 20:58:19 GMT
content-type: application/json;charset=UTF-8
content-length: 427
{

"all-virtual-networks": false,
"allow-all-macs": false,
"element-uri": "/api/zbxs/da5d7720-a337-11e0-9555-00262df332b3/top-of-rack-switches/
fea63433-e03d-4ea1-a5da-6a2fc7abe844/ports/34",
"mac-filter-list": [

"00:24:7e:e0:ea:9e"
],
"port-access": "trunk",
"port-num": "34",
"type": "external",
"virtual-networks-list": [

"/api/virtual-networks/4ccb3c0c-a703-11df-a6fc-00215ef9b504",
"/api/virtual-networks/cd42c1c0-1615-11e1-817f-00215e6a0c26"

]
}

Figure 32. Get Top-of-Rack Switch Port Details: Response

Chapter 8. zBX infrastructure elements 87

Description

This operation updates writeable properties of the TOR port specified by {port-id}.

The request body does not need to specify a value for all writeable properties, but rather can and should
contain fields for the properties to be updated. Object properties for which no input value is provided
remain unchanged by this operation.

The request body is validated against the schema described in the “Request body contents” on page 87. If
the request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered. In addition to occurring for common validation reasons, status code 400 is
returned when the requested changes are not valid considering the port's type, or for inconsistencies in
the request and the port-access-mode setting.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC associated with the zBX containing the TOR switch
v Action/task permission to Configure Top-of-Rack Switch task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message:

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

133 The port's port-access setting is not valid for the update. A change from
"trunk" to "access" mode is not allowed if more than one virtual network is
defined to the port.

134 The port's type does not support MAC filters. Only ports that have a type of
"external" support MAC filters.

139 The port's type does not support the all-virtual-networks setting.

403 (Forbidden) 0 The user under which the API request was authenticated is not authorized to
perform the requested operation. Permission to the Configure Top-of-Rack
Switch task is required.

404 (Not Found) 1 The object-id in the URI ({zbx-id}) does not designate an existing resource, or
designates a resource for which the API user does not have object-access
permission.

360 The TOR element ID in the URI ({tor-id}) does not designate an existing top
of rack switch.

361 The port ID the URI ({port-id}) does not designate an existing port.

503 (Service
Unavailable)

1 Communication between the HMC and SE is unavailable. Please retry the
request.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

88 HMC Web Services API

Example HTTP interaction

Add MAC Filters to Top-of-Rack Switch Port
The Add MAC Filters to Top-of-Rack Switch Port operation adds MAC address filters to the designated
Top-of-Rack Switch port to permit a list of MAC addresses to connect to this TOR port.

HTTP method and URI
POST /api/zbxs/{zbx-id}/top-of-rack-switches/{tor-id}/ports/{port-id}/operations/add-mac-filters

URI variables:

Variable Description

{zbx-id} Object ID of the zBX object containing the TOR switch.

{tor-id} Element ID of the TOR object.

{port-id} Element ID of the TOR port.

Request body contents

The request body is expected to contain a JSON object that provides the following:

Field name Type Rqd/Opt Description

mac-address-list Array of
String

Required Array of MAC addresses to add to the mac-filter-list for the
specified TOR port. If successful, these MAC addresses will be
permitted to access the TOR port. This operation will fail if the TOR
port's allow-all-macs is true.

Description

On successful execution, this operation adds the MAC provided in the mac-address-list field to the TOR
port's mac-filter-list. If the inputs contain addresses that are already in the list, these will be accepted
without error. These MAC addresses will be permitted to access the specified TOR port.

POST /api/zbxs/da5d7720-a337-11e0-9555-00262df332b3/top-of-rack-switches/
fea63433-e03d-4ea1-a5da-6a2fc7abe844/ports/34 HTTP/1.1

x-api-session: sqernk0lqu0s49oul0drld6ifcb1cplf902og86d9apesqjsl
content-type: application/json
content-length: 49
{

"allow-all-macs": false,
"port-access": "trunk"

}

Figure 33. Update Top-of-Rack Switch Port Properties: Request

204 No Content
date: Wed, 23 Nov 2011 20:57:59 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 34. Update Top-of-Rack Switch Port Properties: Response

Chapter 8. zBX infrastructure elements 89

The request body is validated against the schema described in “Request body contents” on page 89. If the
request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered. Consider the following to prevent bad requests:
v Ensure the type of the target port supports the setting of MAC filters
v The allow-all-macs property must be false
v Ensure that the MAC address is valid.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC associated with the zBX containing the TOR switch
v Action/task permission to Configure Top-of-Rack Switch task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message:

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

134 The port's type does not support MAC filters. Only ports that have a type
value of "external" support MAC filters.

135 This operation cannot be performed when the allow-all-macs property of the
TOR port is true.

136 The MAC address is invalid.

403 (Forbidden) 0 The user under which the API request was authenticated is not authorized to
perform the requested operation. Permission to the Configure
Top-of-Rack-Switch task is required.

404 (Not Found) 1 The object-id in the URI ({zbx-id}) does not designate an existing resource, or
designates a resource for which the API user does not have object-access
permission.

360 The TOR element ID in the URI ({tor-id}) does not designate an existing top
of rack switch.

361 The port ID the URI ({port-id}) does not designate an existing port.

503 (Service
Unavailable)

1 Communication between the HMC and SE is unavailable. Please retry the
request.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

90 HMC Web Services API

Example HTTP interaction

Remove MAC Filters from Top-of-Rack Switch Port
The Remove MAC Filters from Top-of-Rack Switch Port operation removes MAC address filters from
the designated Top-of-Rack Switch port.

HTTP method and URI
POST /api/zbxs/{zbx-id}/top-of-rack-switches/{tor-id}/ports/{port-id}/operations/remove-mac-filters

URI variables:

Variable Description

{zbx-id} Object ID of the zBX object containing the TOR switch.

{tor-id} Element ID of the TOR object.

{port-id} Element ID of the TOR port.

Request body contents

The request body is expected to contain a JSON object that provides the following:

Field name Type Rqd/Opt Description

mac-address-list Array of
String

Required This is an array of the MAC addresses to remove from the MAC
mac-filter-list for the specified TOR port.

Description

On successful execution, this operation removes the MAC provided in the mac-address-list field to the
TOR port's mac-filter-list. If a MAC address input is not currently in the mac-filter-list, it will be ignored
without resulting in an error.

POST /api/zbxs/da5d7720-a337-11e0-9555-00262df332b3/top-of-rack-switches/
63433-e03d-4ea1-a5da-6a2fc7abe844/ports/34/operations/add-mac-filters HTTP/1.1

x-api-session: sqernk0lqu0s49oul0drld6ifcb1cplf902og86d9apesqjsl
content-type: application/json
content-length: 43
{

"mac-address-list": [
"00:24:7E:E0:EA:9E"

]
}

Figure 35. Add MAC Filters to Top-of-Rack Switch Port: Request

204 No Content
date: Wed, 23 Nov 2011 20:58:07 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 36. Add MAC Filters to Top-of-Rack Switch Port: Response

Chapter 8. zBX infrastructure elements 91

The request body is validated against the schema described in “Request body contents” on page 91. If the
request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered. Consider the following to prevent bad requests:
v Ensure the type of the target port supports the setting of MAC filters
v The allow-all-macs property must be false
v Ensure that the MAC address is valid.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC associated with the zBX containing the TOR switch
v Action/task permission to Configure Top-of-Rack Switch task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message:

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

134 The port's type does not support MAC filters. Only ports that have a type
value of "external" support MAC filters.

135 This operation cannot be performed when the allow-all-macs property of the
TOR port is true.

136 The MAC address is invalid.

403 (Forbidden) 0 The user under which the API request was authenticated is not authorized to
perform the requested operation. Permission to the Configure Top-of-Rack
Switches task is required.

404 (Not Found) 1 The object-id in the URI ({zbx-id}) does not designate an existing resource, or
designates a resource for which the API user does not have object-access
permission.

360 The TOR element ID in the URI ({tor-id}) does not designate an existing top
of rack switch.

361 The port ID the URI ({port-id}) does not designate an existing port.

503 (Service
Unavailable)

1 Communication between the HMC and SE is unavailable. Please retry the
request.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

92 HMC Web Services API

Example HTTP interaction

Add Top-of-Rack Switch Port to Virtual Networks
The Add Top-of-Rack Switch Port to Virtual Networks operation adds Top-of-Rack switch port to the
specified list of virtual networks.

HTTP method and URI
POST /api/zbxs/{zbx-id}/top-of-rack-switches/{tor-id}/ports/{port-id}/operations/add-virtual-networks

URI variables:

Variable Description

{zbx-id} Object ID of the zBX object containing the TOR switch.

{tor-id} Element ID of the TOR object.

{port-id} Element ID of the TOR port.

Request body contents

The request body is expected to contain a JSON object that provides the following:

Field name Type Rqd/Opt Description

add-virtual-
networks

Array of
String/
URI

Required Array of virtual network URIs that define the virtual networks that
can be used for the specified TOR port.

POST /api/zbxs/da5d7720-a337-11e0-9555-00262df332b3/top-of-rack-switches/
fea63433-e03d-4ea1-a5da-6a2fc7abe844/ports/34/operations/remove-mac-filters HTTP/1.1

x-api-session: sqernk0lqu0s49oul0drld6ifcb1cplf902og86d9apesqjsl
content-type: application/json
content-length: 43
{

"mac-address-list": [
"00:24:7E:E0:EA:9E"

]
}

Figure 37. Remove MAC Filters from Top-of-Rack Switch Port: Request

204 No Content
date: Wed, 23 Nov 2011 20:58:40 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 38. Remove Mac Filters from Top-of-Rack Switch Port: Response

Chapter 8. zBX infrastructure elements 93

Description

On successful execution, this operation adds the specified virtual networks to the TOR port's
virtual-networks-list array. If the inputs contain virtual networks that are already in the list, these will be
accepted without error. Traffic for VLAN IDs representing these virtual networks will now be able to be
used on the specified TOR port.

The request body is validated against the schema described in “Request body contents” on page 93. If the
request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered. Consider the following to prevent bad requests:
v Ensure the type of the target port supports the setting of virtual networks
v The target TOR port's all-virtual-networks property must be false when issuing this request
v If the port's port-mode property is "access", then it only supports one virtual network.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC associated with the zBX containing the TOR switch
v Action/task permission to Configure Top-of-Rack Switch task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message:

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

137 The port-access property is "access", therefore, only one virtual network is
allowed in the TOR port's virtual-networks-list.

138 This operation cannot be performed when the all-virtual-networks property
of the TOR port is true.

403 (Forbidden) 0 The user under which the API request was authenticated is not authorized to
perform the requested operation. Permission to the Configure Top-of-Rack
Switches task is required.

404 (Not Found) 1 The object-id in the URI ({zbx-id}) does not designate an existing resource, or
designates a resource for which the API user does not have object-access
permission.

360 The TOR element ID in the URI ({tor-id}) does not designate an existing top
of rack switch.

361 The port ID the URI ({port-id}) does not designate an existing port.

362 A URI in the remove-virtual-networks field of the request body does not
designate an existing virtual network.

503 (Service
Unavailable)

1 Communication between the HMC and SE is unavailable. Please retry the
request.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

94 HMC Web Services API

Example HTTP interaction

Remove Top-of-Rack Switch Port from the Virtual Networks
The Remove Top-of-Rack Switch Port from the Virtual Networks operation removes the Top-of-Rack
Switch port from the specified virtual networks.

HTTP method and URI
POST /api/zbxs/{zbx-id}/top-of-rack-switches/{tor-id}/ports/{port-id}/operations/remove-virtual-networks

URI variables:

Variable Description

{zbx-id} Object ID of the zBX object containing the TOR switch.

{tor-id} Element ID of the TOR object.

{port-id} Element ID of the TOR port.

Request body contents

The request body is expected to contain a JSON object that provides the following:

Field name Type Rqd/Opt Description

remove-virtual-
networks

Array of
String/
URI

Required List of virtual network URIs to remove from the
virtual-network-list array for the specified TOR port.

Description

On successful execution, this operation removes the specified virtual networks from the TOR port's
virtual-networks-list array. If a virtual network in the input is not currently in the virtual-networks-list,
it will be ignored without resulting in an error.

POST /api/zbxs/da5d7720-a337-11e0-9555-00262df332b3/top-of-rack-switches/
fea63433-e03d-4ea1-a5da-6a2fc7abe844/ports/34/operations/add-virtual-networks HTTP/1.1

x-api-session: sqernk0lqu0s49oul0drld6ifcb1cplf902og86d9apesqjsl
content-type: application/json
content-length: 88
{

"add-virtual-networks": [
"/api/virtual-networks/cd42c1c0-1615-11e1-817f-00215e6a0c26"

]
}

Figure 39. Add Top-of-Rack Switch Port to Virtual Networks: Request

204 No Content
date: Wed, 23 Nov 2011 20:58:18 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 40. Add Top-of-Rack Switch Port to Virtual Networks: Response

Chapter 8. zBX infrastructure elements 95

The request body is validated against the schema described in “Request body contents” on page 95. If the
request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered. Consider the following to prevent bad requests:
v Ensure the type of the target port supports the setting of virtual networks
v The target TOR port's all-virtual-networks property must be false when issuing this request.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC associated with the zBX containing the TOR switch
v Action/task permission to Configure Top-of-Rack Switch task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message:

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

138 This operation cannot be performed when the all-virtual-networks property
of the TOR port is true.

403 (Forbidden) 0 The user under which the API request was authenticated is not authorized to
perform the requested operation. Permission to the Configure Top-of-Rack
Switches task is required.

404 (Not Found) 1 The object-id in the URI ({zbx-id}) does not designate an existing resource, or
designates a resource for which the API user does not have object-access
permission.

360 The TOR element ID in the URI ({tor-id}) does not designate an existing top
of rack switch.

361 The port ID the URI ({port-id}) does not designate an existing port.

362 A URI in the remove-virtual-networks field of the request body does not
designate an existing virtual network.

503 (Service
Unavailable)

1 Communication between the HMC and SE is unavailable. Please retry the
request.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

96 HMC Web Services API

Example HTTP interaction

Rack object
A Rack object represents a Rack that houses the zBX components.

There is at least one Rack object for each zBX, designated as the rack in location B. This rack houses the
top of rack (TOR) switches for the zBX as well as one or two BladeCenter chassis. Rack B is the first rack
to be populated when installing a zBX. Additional racks are added for larger configurations that contain
more than two BladeCenter chassis in the zBX. The additional racks are designated with consecutive
location codes (C, D, etc.).

Data model
This object includes the properties defined in the “Base managed object properties schema” on page 33,
but does not provide the operational-status-related properties defined in that schema because it does not
maintain the concept of an operational status.

The following class-specific specializations apply to the other Base Managed Object properties:

Table 21. Rack object: base managed object properties specializations

Name Qualifier Type Description of specialization

name (ro) String
(1-64)

The name of the object. Currently, this is assigned by zManager
based on the rack's location (has the same value as the location
property).1

description — String This field is not provided.

object-uri — String/
URI

The canonical URI path for a Rack object is of the form
/api/racks/{rack-id}.

parent — String/
URI

The canonical URI path of the parent zBX object, of the form
/api/zbxs/{zbx-id}.

class — String The value "rack".

POST /api/zbxs/da5d7720-a337-11e0-9555-00262df332b3/top-of-rack-switches/
fea63433-e03d-4ea1-a5da-6a2fc7abe844/ports/34/operations/remove-virtual-networks HTTP/1.1

x-api-session: sqernk0lqu0s49oul0drld6ifcb1cplf902og86d9apesqjsl
content-type: application/json
content-length: 91
{

"remove-virtual-networks": [
"/api/virtual-networks/cd42c1c0-1615-11e1-817f-00215e6a0c26"

]
}

Figure 41. Remove Top-of-Rack Switch Port from the Virtual Networks: Request

204 No Content
date: Wed, 23 Nov 2011 20:58:32 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 42. Remove Top-of-Rack Switch Port from the Virtual Networks: Response

Chapter 8. zBX infrastructure elements 97

Table 21. Rack object: base managed object properties specializations (continued)

Name Qualifier Type Description of specialization

Note:

1. This name property is currently assigned based on the location of the rack and thus has the same value as the
location property. However, it is possible that the API could be extended to allow this property to be writeable,
in which case an API or User-Interface user could change the name to contain arbitrary data. Therefore, API
client applications that are interested in determining the location of the rack should not rely on the contents and
format of the name property, but rather obtain location information from the location property.

Class specific additional properties
In addition to the properties defined via included schemas, this object includes the following additional
class-specific properties:

Table 22. Rack object: class specific properties

Name Type Description

serial-number String The 12 character serial number of the rack.

location String The zManager assigned location code for the rack, as an uppercase alphabetic
character starting with “B” for the first rack of the zBX and with subsequent
racks being designated by consecutive letters.

Operations

List Racks of a zBX
The List Racks of a zBX operation lists the racks where the zBX components are mounted.

HTTP method and URI
GET /api/zbxs/{zbx-id}/racks

In this request, the URI variable {zbx-id} is the object ID of the zBX object whose racks are to be obtained.

Query parameters:

Name Type Rqd/Opt Description

name String Optional Filter pattern (regular expression) used to limit returned objects

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

racks Array of
objects

Array of nested rack-info objects, described in the next table

Each nested rack-info object contains the following fields:

Field name Type Description

object-uri String/
URI

Canonical URI path of the rack object in the form /api/racks/{rack-id}

name String The name property of the rack object

98 HMC Web Services API

Description

The List Racks of a zBX operation lists the racks where the zBX components are mounted. BladeCenters
are plugged into the rack, and the blades are plugged into the BladeCenters. The object URI and name
are provided for each rack.

If the name query parameter is specified, then a rack is included in the list only if the name pattern
matches the name property of the object.

A rack is included in the list only if the API user has object-access permission for the associated CPC. If
the HMC is a manager of a zBX, but the API user does not have permission to the CPC with which the
zBX is associated, that object is omitted from the list, but no error status code results.

If the HMC does not manage any racks, an empty list is provided and the operation completes
successfully.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the CPC with which the zBX and rack objects are associated.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 98.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID {zbx-id} does not designate a zBX object, or the API user does
not have object access permission to the CPC with which it is associated.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/zbxs/54a9716c-a326-11e0-9469-001f163805d8/racks HTTP/1.1
x-api-session: 5q07hx6jgp2ngn2cypq1zxot76sfwnzky0ih8nddd5hz6bpiue

Figure 43. List Racks of a zBX: Request

Chapter 8. zBX infrastructure elements 99

Get Rack Properties
The Get Rack Properties operation retrieves the properties of a single rack object that is designated by its
object ID.

HTTP method and URI
GET /api/racks/{rack-id}

In this request, the URI variable {rack-id} is the object ID of the rack object for which properties are to be
obtained.

Response body contents

On successful completion, the response body is a JSON object that provides the current values of the
properties for the rack object as defined in the “Data model” on page 97. Field names and data types in
the JSON object are the same as the property names and data types defined in the data model.

Description

The Get zBX Properties operation returns the current properties for the rack object specified by {rack-id}.

On successful execution, all of the current properties as defined in “Data model” on page 97 for the rack
object are provided in the response body, and HTTP status code 200 (OK) is returned.

The URI path must designate an existing rack object and the API user must have object-access permission
to the CPC with which it is associated. If either of these conditions is not met, status code 404 (Not
Found) is returned.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the CPC with which the rack object designated by {rack-id} is associated.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Thu, 21 Jul 2011 17:49:01 GMT
content-type: application/json;charset=UTF-8
content-length: 142
{

"racks": [
{

"name": "B",
"object-uri": "/api/racks/b434398a-a328-11e0-9b4a-001f163805d8"

}
]

}

Figure 44. List Racks of a zBX: Response

100 HMC Web Services API

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID {rack-id} does not designate an existing rack object, or the API
user does not have object access permission to the CPC with which the rack
is associated.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Inventory service data
Information about the zBXs racks managed by the HMC can be optionally included in the inventory data
provided by the Web Services API Inventory Service.

Inventory entries for Rack objects are included in the response to the Inventory Service's Get Inventory
operation when the request specifies (explicitly by class, implicitly via a containing category, or by
default) that objects of class "rack" are to be included. An entry for a particular Rack is included only if
the API user has object-access permission to the CPC with which that object is associated.

For each Rack object to be included, the inventory response array includes entry that is a JSON object
with the same contents as is specified in the Response Body Contents section for “Get Rack Properties”
on page 100. That is, the data provided is the same as would be provided if a Get Rack Properties
operation were requested targeting this object.

GET /api/racks/04419e1e-a9db-11e0-8077-f0def1610d20 HTTP/1.1
x-api-session: 5wksmtktms30ajeohh0bn411fdzusmklld4jyddd1des5t78aq

Figure 45. Get Rack Properties: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Tue, 15 Nov 2011 14:22:52 GMT
content-type: application/json;charset=UTF-8
content-length: 272
{

"class": "rack",
"description": "Rack",
"is-locked": false,
"location": "C",
"name": "C",
"object-id": "04419e1e-a9db-11e0-8077-f0def1610d20",
"object-uri": "/api/racks/04419e1e-a9db-11e0-8077-f0def1610d20",
"parent": "/api/zbxs/291e385e-a9cd-11e0-8650-f0def1610d20",
"serial-number": "12345"

}

Figure 46. Get Rack Properties: Response

Chapter 8. zBX infrastructure elements 101

Sample inventory data

The following fragment is an example of the JSON object that would be included in the Get Inventory
response to describe a single Rack. This object would appear as one array entry in the response array:

BladeCenter object
A BladeCenter object represents a single BladeCenter of the zBX.

Data model
This object includes the properties defined in the “Base managed object properties schema” on page 33,
including the operational-status properties, with the following class-specific specialization:

Table 23. BladeCenter object: base managed object properties specializations

Name Qualifier Type Description of specialization

name (ro) String
(1-64)

The zManager-assigned name of the zBX BladeCenter.1

description — String This property is not provided.

object-uri — String/URI The canonical URI path for a zBX BladeCenter object is of the form
/api/bladecenters/{bladecenter-id}

parent — String/URI The canonical URI path of the parent Rack object, of the form
/api/racks/{rack-id}

class — String The value "bladecenter"

status (sc) String
Enum

The status of the blade center. Values:

v "no-power"

v "operating"

additional-status — String
Enum

This property is not provided.

Note:
1. This name property is currently assigned based on the location of the BladeCenter and is of the form

RackName.BladecenterName (e.g. B.1). However, it is possible that the API could be extended to allow this
property to be writeable, in which case an API or User-Interface user could change the name to contain arbitrary
data. Therefore, API client applications that are interested in determining the location of the BladeCenter should
not rely on the contents and format of the name property, but rather obtain location information from the
location property.

Class specific additional properties
In addition to the properties defined via included schemas, this object includes the following additional
class-specific properties:

{
"class": "rack",
"description": "Rack",
"is-locked": false,
"location": "B",
"name": "B",
"object-id": "28bc03c8-7bc4-11e0-a905-001f163803de",
"object-uri": "/api/racks/28bc03c8-7bc4-11e0-a905-001f163803de",
"parent": "/api/zbxs/28ba8930-7bc4-11e0-a905-001f163803de",
"serial-number": "123456123456"

}

Figure 47. Rack object: Sample inventory data

102 HMC Web Services API

Table 24. BladeCenter object: class specific properties

Name Qualifier Type Description

machine-type — String 4 characters

machine-model — String 3 characters

machine-serial — String 7 characters

location — String (4) 4 Characters (RxxB)

RxxB – BladeCenter vertical position in rack R

has-hardware-
messages

(pc) Boolean The BladeCenter has a hardware message (true) or the
BladeCenter does not have a hardware message (false).

Energy Management Related Additional Properties
In addition to the properties defined above, this object includes the following additional class-specific
properties related to energy management. For further explanation of the various states involved, please
see the "Overview" section in the "Energy Management" chapter of this document.

Table 25. BladeCenter object: energy management related additional properties

Name Qualifier Type Description

power-rating — Integer Specifies the maximum power usage of this BladeCenter in watts (W).
This value is a calculated value, as indicated by the electrical rating
labels or system rating plates of the BladeCenter components.

power-
consumption

(mg) Integer Specifies the current power consumption in watts (W) of this
BladeCenter. The BladeCenter power consumption includes the power
consumption of the Blades contained within the BladeCenter and the
shared infrastructure.

power-saving — String
Enum

Specifies the current power saving setting of the BladeCenter. Power
saving reduces the energy consumption of a system, and can be
managed it using the Set Power Saving operation. The possible
settings include:

v "high-performance" - Specifies not reducing the power
consumption and performance of the BladeCenter. This is the
default setting.

v "low-power" - Specifies low power consumption for all components
of the BladeCenter enabled for power saving.

v "custom" - Specifies that some, but not all, components of the
BladeCenter are in the Low power setting.

v "not-supported" - Specifies that power saving is not supported for
this BladeCenter.

v "not-available" - Specifies that power-saving property could not be
read from this BladeCenter.

v "not-entitled' - Specifies that the server is not entitled to power
saving.

Chapter 8. zBX infrastructure elements 103

Table 25. BladeCenter object: energy management related additional properties (continued)

Name Qualifier Type Description

power-saving-state — String
Enum

Specifies the power saving setting of the BladeCenter set by the user.
Note that this property indicates the user setting and may not match
the real state of the hardware compared to the power-saving
property. For more information, see “Group power saving” on page
139. The possible settings include:

v "high-performance" - Specifies not reducing the power
consumption and performance of the BladeCenter. This setting will
be applied to all children.

v "low-power" - Specifies low power consumption for all components
of the BladeCenter enabled for power saving.

v "custom" - Specifies that the BladeCenter does not control the
children. This is the default setting.

v "not-supported" - Specifies that power saving is not supported for
this BladeCenter.

v "not-entitled' - Specifies that the server is not entitled to power
saving.

power-save-
allowed

— String
Enum

Should be used to determine if a call of the power save operation is
currently allowed. If a value other that "allowed" is returned the
caller may reckon that the power save operation will fail.

The possible settings include:

v "allowed" - Alter power save setting is allowed for this
BladeCenter

v "unknown" - Unknown reason

v "not-entitled" - Specifies the server is not entitled to power saving.

v "not-supported" - Specifies that power saving is not supported for
this BladeCenter.

v "under-group-control" - The BladeCenter is under group control
and cannot be individually altered.

power-capping-
state

— String
Enum

Specifies the current power capping setting of the BladeCenter. Power
capping limits peak power consumption of a system, and you can
manage it by using the Set Power Cap operation. The possible
settings include:

v "disabled" - Specifies not setting the power cap of the BladeCenter
and not limiting the peak power consumption. This is the default
setting.

v "enabled" - Specifies capping all components of the BladeCenter
available for power capping to limit the peak power consumption
of the BladeCenter.

v "custom" - Specifies individually configuring the components of the
BladeCenter for power capping.

v "not-supported" - Specifies that power capping is not supported for
this BladeCenter.

v "not-entitled" - Specifies that the server is not entitled to power
capping.

power-cap-
minimum

— Integer Specifies the minimum value for the BladeCenter cap value in watts
(W). This is a sum of the component minimum cap values.

power-cap-
maximum

— Integer Specifies the maximum value for the BladeCenter cap value in watts
(W). This is a sum of the component maximum cap values.

104 HMC Web Services API

Table 25. BladeCenter object: energy management related additional properties (continued)

Name Qualifier Type Description

power-cap-current — Integer Specifies the current cap value for the BladeCenter in watts (W). The
current cap value indicates the power budget for the BladeCenter and
is the sum of the component Cap values.

power-cap-
allowed

— String
Enum

Should be used to determine if a call of the power capping operation
is currently allowed. If a value other that "allowed" is returned the
caller may reckon that the power capping operation will fail.

The possible settings include:

v "allowed" - Alter power capping setting is allowed for this
BladeCenter

v "unknown" - Unknown reason

v "not-entitled" - Specifies the server is not entitled to power
capping.

v "not-supported" - Specifies that power capping is not supported for
this BladeCenter.

v "under-group-control" - The BladeCenter is under group control
and cannot be individually altered.

ambient-
temperature

(mg) Float Specifies the input air temperature in degrees Celsius (ºC) as
measured by the system.

exhaust-
temperature

— Float Specifies the exhaust air temperature in degrees Celsius (ºC) as
calculated by the system. This is useful in determining potential hot
spots in the data center.

Operations

List BladeCenters in a Rack
The List BladeCenters in a Rack operation lists the BladeCenters that are mounted into the rack.

HTTP method and URI
GET /api/racks/{rack-id}/bladecenters

In this request, the URI variable {rack-id} is the object ID of the rack object whose BladeCenters are to be
obtained.

Query parameters:

Name Type Rqd/Opt Description

name String Optional Filter pattern (regular expression) used to limit returned objects

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

blade-centers Array of
objects

Array of nested BladeCenter-info objects, described in the next table. If the
rack does not have any BladeCenters mounted in it, an empty array is
provided.

Each nested BladeCenter-info object contains the following fields:

Chapter 8. zBX infrastructure elements 105

Field name Type Description

object-uri String/
URI

Canonical URI path of the BladeCenter object in the form
/api/bladecenters/{bladecenter-id}

name String The name property of the BladeCenter object (for example, B.1)

status String
Enum

The status property of the BladeCenter object

Description

The List BladeCenters in a Rack operation lists the BladeCenters that are mounted in the rack. The object
URI, name, and status are provided for each BladeCenter.

If the name query parameter is specified, then a BladeCenter is included in the list only if the name
pattern matches the name property of the object.

A BladeCenter is included in the list only if the API user has object-access permission for that object. If
the HMC is a manager of a BladeCenter, but the API user does not have permission to it, that object is
omitted from the list, but no error status code results.

If the HMC does not manage any BladeCenters, an empty list is provided and the operation completes
successfully.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC with which the rack specified by the URI is associated
v Object access permission to any BladeCenter object are to be included in the result.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 105.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID {rack-id} does not designate a rack object, or the API user does
not have object access permission to it.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

106 HMC Web Services API

Example HTTP interaction

List BladeCenters in a zBX
The List BladeCenters in a zBX operation lists the BladeCenters in a zBX.

HTTP method and URI
GET /api/zbxs/{zbx-id}/bladecenters

In this request, the URI variable {zbx-id} is the object ID of the zBX object whose BladeCenters are to be
obtained.

Query parameters:

Name Type Rqd/Opt Description

name String Optional Filter pattern (regular expression) used to limit returned objects

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

blade-centers Array of
objects

Array of nested BladeCenter-info objects, described in the next table. If the
zBX does not have any BladeCenters, an empty array is provided.

Each nested BladeCenter-info object contains the following fields:

GET /api/racks/04419e1e-a9db-11e0-8077-f0def1610d20/bladecenters HTTP/1.1
x-api-session: 5wksmtktms30ajeohh0bn411fdzusmklld4jyddd1des5t78aq

Figure 48. List BladeCenters in a Rack: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Tue, 15 Nov 2011 14:22:52 GMT
content-type: application/json;charset=UTF-8
content-length: 231
{

"blade-centers": [
{

"name": "C.1",
"object-uri": "/api/bladecenters/22e79848-3957-35dc-b88e-c661f9c8b680",
"status": "operating"

},
{

"name": "C.2",
"object-uri": "/api/bladecenters/e3ee0adc-27c0-355e-93b9-ace8a3d2da15",
"status": "operating"

}
]

}

Figure 49. List BladeCenters in a Rack: Response

Chapter 8. zBX infrastructure elements 107

Field name Type Description

object-uri String/
URI

Canonical URI path of the BladeCenter object in the form
/api/bladecenters/{bladecenter-id}

name String The name property of the BladeCenter object (for example, B.1)

status String
Enum

The status property of the BladeCenter object

Description

The List BladeCenters in a zBX operation lists the BladeCenters in the zBX. The object URI, name, and
status are provided for each BladeCenter.

If the name query parameter is specified, then a BladeCenter is included in the list only if the name
pattern matches the name property of the object.

A BladeCenter is included in the list only if the API user has object-access permission for that object. If
the HMC is a manager of a BladeCenter, but the API user does not have permission to it, that object is
omitted from the list, but no error status code results.

If the HMC does not manage any BladeCenters, an empty list is provided and the operation completes
successfully.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the CPC with which the zBX specified by the URI is associated
v Object access permission to any BladeCenter object to be included in the result.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 107.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID {zbx-id} does not designate a zBX object, or the API user does
not have object access permission to the CPC with which it is associated.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

108 HMC Web Services API

Example HTTP interaction

Get BladeCenter Properties
The Get BladeCenter Properties operation retrieves the properties of a single BladeCenter object that is
designated by its object ID.

HTTP method and URI
GET /api/bladecenters/{bladecenter-id}

In this request, the URI variable {bladecenter-id} is the object ID of the BladeCenter object for which
properties are to be obtained.

Response body contents

On successful completion, the response body is a JSON object that provides the current values of the
properties for the rack object as defined in the “Data model” on page 102. Field names and data types in
the JSON object are the same as the property names and data types defined in the data model.

GET /api/zbxs/291e385e-a9cd-11e0-8650-f0def1610d20/bladecenters HTTP/1.1
x-api-session: 5wksmtktms30ajeohh0bn411fdzusmklld4jyddd1des5t78aq

Figure 50. List BladeCenters in a zBX: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Tue, 15 Nov 2011 14:22:52 GMT
content-type: application/json;charset=UTF-8
content-length: 443
{

"blade-centers": [
{

"name": "C.1",
"object-uri": "/api/bladecenters/22e79848-3957-35dc-b88e-c661f9c8b680",
"status": "operating"

},
{

"name": "B.1",
"object-uri": "/api/bladecenters/2ae200b3-fa8e-3db7-b34a-ec08780aaac6",
"status": "operating"

},
{

"name": "C.2",
"object-uri": "/api/bladecenters/e3ee0adc-27c0-355e-93b9-ace8a3d2da15",
"status": "operating"

},
{

"name": "B.2",
"object-uri": "/api/bladecenters/f5bca837-bc0d-34e6-bcef-766411287439",
"status": "operating"

}
]

}

Figure 51. List BladeCenters in a zBX: Response

Chapter 8. zBX infrastructure elements 109

Description

The Get BladeCenter Properties operation returns the current properties for the BladeCenter object
specified by {bladecenter-id}.

On successful execution, all of the current properties as defined in “Data model” on page 102 for the
BladeCenter object are provided in the response body, and HTTP status code 200 (OK) is returned.

The URI path must designate an existing BladeCenter object and the API user must have object-access
permission to it. If either of these conditions is not met, status code 404 (Not Found) is returned.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the BladeCenter object specified by {bladecenter-id}.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 109.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID {bladecenter-id} does not designate an existing BladeCenter
object, or the API user does not have object access permission to the object.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/bladecenters/ECEC1940F05B39EA9B3AEA5C1600AB1E HTTP/1.1
x-api-session: 5q07hx6jgp2ngn2cypq1zxot76sfwnzky0ih8nddd5hz6bpiue

Figure 52. Get BladeCenter Properties: Request

110 HMC Web Services API

Inventory service data
Information about the BladeCenter chassis managed by the HMC can be optionally included in the
inventory data provided by the Inventory Service.

Inventory entries for BladeCenter objects are included in the response to the Inventory Service's Get
Inventory operation when the request specifies (explicitly by class, implicitly via a containing category, or
by default) that objects of class "bladecenter" are to be included. An entry for a particular BladeCenter is
included only if the API user has object-access permission to that object.

For each BladeCenter object to be included, the inventory response array includes entry that is a JSON
object with the same contents as is specified in the Response Body Contents section for “Get BladeCenter
Properties” on page 109. That is, the data provided is the same as would be provided if a Get
BladeCenter Properties operation were requested targeting this object.

Sample inventory data

The following fragment is an example of the JSON object that would be included in the Get Inventory
response to describe a single BladeCenter. This object would appear as one array entry in the response

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Thu, 21 Jul 2011 17:49:02 GMT
content-type: application/json;charset=UTF-8
content-length: 948
{

"acceptable-status": [
"operating"

],
"ambient-temperature": 18.0,
"class": "bladecenter",
"description": "Represents one BladeCenter",
"exhaust-temperature": 25.5,
"has-hardware-messages": false,
"has-unacceptable-status": false,
"is-locked": false,
"location": "B01B",
"machine-model": "HC1",
"machine-serial": "KQZZXLF",
"machine-type": "8852",
"name": "B.2",
"object-id": "ECEC1940F05B39EA9B3AEA5C1600AB1E",
"object-uri": "/api/bladecenters/ECEC1940F05B39EA9B3AEA5C1600AB1E",
"parent": "/api/racks/b434398a-a328-11e0-9b4a-001f163805d8",
"power-cap-allowed": "allowed",
"power-cap-current": 9561,
"power-cap-maximum": 9561,
"power-cap-minimum": 3473,
"power-capping-state": "custom",
"power-consumption": 1876,
"power-rating": 9561,
"power-save-allowed": "allowed",
"power-saving": "high-performance",
"status": "operating"

}

Figure 53. Get BladeCenter Properties: Response

Chapter 8. zBX infrastructure elements 111

array:

Blade object
A blade object represents a single blade in the zBX.

Data model
This object includes the properties defined in the “Base managed object properties schema” on page 33,
including the operational-status properties, with the following class-specific specialization:

Table 26. Blade object: base managed object properties specializations

Name Qualifier Type Description of specialization

name (ro) String
(1-64)

The zManager assigned name of the blade1, 2

description — String This property is not provided.

object-uri — String/URI The canonical URI path for a zBX Blade object is of the form
/api/blade/{blade-id}.

parent — String/URI The canonical URI path for a parent BladeCenter object, in the form
/api/bladecenter/{bladecenter-id}.2

class — String The value "blade".

{
"acceptable-status": [

"operating"
],
"additional-status": "unknown",
"ambient-temperature": 18.5,
"class": "bladecenter",
"description": "Represents one BladeCenter",
"exhaust-temperature": 24.5,
"has-hardware-messages": false,
"has-unacceptable-status": false,
"is-locked": false,
"location": "B10B",
"machine-model": "HC1",
"machine-serial": "KQZZXLF",
"machine-type": "8852",
"name": "B.1",
"object-id": "ECEC1940F05B39EA9B3AEA5C1600AB1E",
"object-uri": "/api/bladecenters/ECEC1940F05B39EA9B3AEA5C1600AB1E",
"parent": "/api/racks/28bc03c8-7bc4-11e0-a905-001f163803de",
"power-cap-allowed": "under-group-control",
"power-cap-current": 9444,
"power-cap-maximum": 9444,
"power-cap-minimum": 4042,
"power-capping-state": "disabled",
"power-consumption": 1875,
"power-rating": 9444,
"power-save-allowed": "allowed",
"power-saving": "high-performance",
"status": "operating"

}

Figure 54. BladeCenter object: Sample inventory data

112 HMC Web Services API

|

|

Table 26. Blade object: base managed object properties specializations (continued)

Name Qualifier Type Description of specialization

status (sc) String
Enum

The status of the Blade object. Possible values:

v "no-power" - the blade is powered off

v "status-check" - the blade and the console are not communicating

v "not-operating" - the blade is powered on and communicating
with the console but is not running work

v "stopped" - operations on the blade are quiesced

v "definition-error" - an error has occurred when loading the blade
with the firmware

v "operating" - blade is operating normally.

additional-status — String
Enum

This property is not provided.

Notes:

1. This name property is currently assigned based on the location of the Blade and is of the form
RackName.BladecenterName.BladeSlot (e.g. B.1.01). However, it is possible that the API could be extended to
allow this property to be writeable, in which case an API or User-Interface user could change the name to
contain arbitrary data. Therefore, API client applications that are interested in determining the location of the
blade should not rely on the contents and format of the name property, but rather obtain location information
from the location property.

2. The location of a blade can be moved from slot to slot within a zBX. When a blade is moved to a different slot,
the original URI of this blade is retained. Because the blade name, parent and location is based on the slot
location of the blade, these three properties can change for a given URI when the blade is moved within the
zBX. The relocation of a blade generates an inventory change notification to report the removal of the blade,
then an inventory change notification to report the addition of the blade. Upon addition of the blade, expect the
values of these properties to differ.

Class specific additional properties
In addition to the properties defined via included schemas, this object includes the following additional
class-specific properties:

Table 27. Blade object: class specific properties

Name Qualifier Type Description

Supported
“type”
values

type — String
Enum

Type of the blade. Values:

v "power" – the System z Power® blade

v "system-x" – the System x blade

v "isaopt" – the IBM Smart Analytics Optimizer blade

v "dpxi50z" – the DataPower® XI50 blade.

All

processors — Integer number of zBX blade processors. All

cores-per-
processor

— Integer The number of processing cores provided by each processor of
the zBX blade.

All

memory-size — Integer memory size of the zBX blade specified in MB. All

machine-type — String 4 characters. All

machine-model — String 3 characters. All

machine-serial — String 12 characters. All

location — String 8 Characters (RxxBBSyy)1

v RxxB – BladeCenter vertical position in rack R

v BSyy – physical slot of Blade Server

All

Chapter 8. zBX infrastructure elements 113

|
|
|
|
|
|

|

Table 27. Blade object: class specific properties (continued)

Name Qualifier Type Description

Supported
“type”
values

isaopt-mode (pc) String
Enum

The mode of the ISAOPT blade. Values:

v "worker"

v "coordinator"

isaopt

virtualization-
host

— String/
URI

The canonical URI path for the virtualization host being hosted
by the blade.

power,
system-x

has-hardware-
messages

(pc) Boolean The blade has a hardware message (true) or the blade does not
have a hardware message (false).

All

licensed-
features

— String The Features that this DPXI50Z blade is licensed for. Each
licensed feature in the string is delimited with commas (,). The
blade must be Operating to retrieve this property; if it is not,
null is returned instead.

dpxi50z

iedn-interfaces (pc) Array of
iedn-
interface
Objects

Complex object defining the IEDN Interfaces configured to this
DPXI50Z blade. The blade must be Operating to retrieve this
property; if it is not, null is returned instead.

dpxi50z

Note: 1The location of a blade can be moved from slot to slot within a zBX. When a blade is moved to a different
slot, the original URI of this blade is retained. Because the blade name, parent and location is based on the slot
location of the blade, these three properties can change for a given URI when the blade is moved within the zBX.
The relocation of a blade generates an inventory change notification to report the removal of the blade, then an
inventory change notification to report the addition of the blade. Upon addition of the blade, expect the values of
these properties to differ.

Energy management related additional properties: In addition to the properties defined above, this
object includes the following additional class-specific properties related to energy management. For
further explanation of the various states involved, see Chapter 9, “Energy management,” on page 137.

Table 28. Blade object: energy management related additional properties

Name Qualifier Type Description

power-rating — Integer Specifies the maximum power usage in watts (W) of this blade. This is
a calculated value, as indicated by the electrical rating label or system
rating plate of the blade.

power-
consumption

(mg) Integer Specifies the current power consumption in watts (W) for this blade.

power-saving — String
Enum

Specifies the current power saving setting of the blade. Power saving
is used to reduce the energy consumption of a system and can be
managed in the Set Power Saving operation. The possible settings
include:

v "high-performance" - Specifies not reducing the power
consumption of the blade. This is the default setting.

v "low-power" - Specifies reducing the performance of the blade to
allow for low power consumption.

v "not-supported" - Specifies power saving is not supported for this
blade.

v "not-available" - Specifies power-saving property could not be read
from this blade.

v "not-entitled" - Specifies the server is not entitled to power saving.

Additional power savings modes may be introduced as zManager is
extended to support additional power saving capabilities.

114 HMC Web Services API

|
|
|
|
|
|

Table 28. Blade object: energy management related additional properties (continued)

Name Qualifier Type Description

power-saving-state — String
Enum

Specifies the power saving setting of the Blade set by the user. Please
note that this property indicates the user setting and may not match
the real state of the hardware compared to the power-saving property.
The possible settings include:

v "high-performance" - Specifies not reducing the power
consumption of the blade. This is the default setting.

v "low-power" - Specifies low power consumption for all components
of the blade enabled for power saving.

v "not-supported" - Specifies power saving is not supported for this
blade.

v "not-entitled" - Specifies the server is not entitled to power saving.

power-save-
allowed

— String
Enum

Should be used to determine if a call of the power save operation is
currently allowed. If a value other than "allowed" is returned the
caller may reckon that the power save operation will fail.

The possible settings include:

v "allowed" - Alter power save setting is allowed for this blade

v "unknown" - Unknown reason

v "not-entitled" - Specifies the server is not entitled to power saving.

v "not-supported" - Specifies power saving is not supported for this
blade.

v "under-group-control" - The blade is under group control and
cannot be individually altered.

power-capping-
state

— String
Enum

Specifies the current power capping setting of the blade. Power
capping limits peak power consumption of a system, and you can
manage it with the Set Power Cap operation. The possible settings
include:

v "disabled" - Specifies not setting the power cap of the blade and
not limiting the peak power consumption. This is the default
setting.

v "enabled" - Specifies limiting the peak power consumption of the
blade to the current cap value.

v "not-supported" - Specifies that power capping is not supported for
this blade.

v "not-entitled" - Specifies that the server is not entitled to power
capping.

power-cap-
minimum

— Integer Specifies the minimum value for the blade cap value in watts (W).

power-cap-
maximum

— Integer Specifies the maximum value for the blade cap value in watts (W).

power-cap-current — Integer Specifies the current cap value for the blade in watts (W). The current
cap value indicates the power budget for the blade.

Chapter 8. zBX infrastructure elements 115

Table 28. Blade object: energy management related additional properties (continued)

Name Qualifier Type Description

power-cap-
allowed

— String
Enum

Should be used to determine if a call of the power capping operation
is currently allowed. If a value other than "allowed" is returned the
caller may reckon that the power capping operation will fail.

The possible settings include:

v "allowed" - Alter power capping setting is allowed for this blade

v "unknown" - Unknown reason

v "not-entitled" - Specifies the server is not entitled to power
capping.

v "not-supported" - Specifies power capping is not supported for this
blade.

v "under-group-control" - The blade is under group control and
cannot be individually altered.

IEDN interface nested object: The IEDN (Intraensemble Data network) Interface object defines the VLan
sub-interface on the DPXI50Z blade:

Table 29. Blade object: IEDN interface nested object properties

Name Type Description

name String (1-64) Display name of the IEDN Interface. Valid characters are: a->z, A->Z, 0->9,
underscore, dash and period. Periods can not be consecutive.

is-active Boolean Administrative State of the IEDN Interface configuration. Values:

v True – Enabled means that the Op-State of the IEDN interface will be up if
there are no errors in the configuration.

v False – Disabled means that the Op-State of the IEDN interface will
always be down.

network-uri String/URI The canonical URI of the virtual network to which this IEDN interface is
connected.

The combination of the virtual network with the Ethernet Interface must be
unique per blade. That is, each interface is associated with one virtual
network, and the virtual network associated with one interface cannot also
be associated with another.

ethernet-interface String Enum The physical Ethernet network interface, either "eth7" or "eth9".

The combination of the virtual network with the Ethernet Interface must be
unique per blade.

ip-address String IP Address in either IPv4 or IPv6 format.

No default value is provided.

net-mask String Network Mask associated with the IP Address in either IPv4 or IPv6 format.

If an ipv4 ip-address is provided, valid values are 0-32, the default is 32.

If an ipv6 ip-address is provided, valid values are 0-128, the default is 128.

secondary-ip-address Array of
Strings

List of secondary IP Addresses of either IPv4 or IPv6 format.

No default value is provided.

116 HMC Web Services API

Table 29. Blade object: IEDN interface nested object properties (continued)

Name Type Description

secondary-net-mask Array of
Strings

List of secondary Network Masks associated with the Secondary IP
Addresses of either IPv4 or IPv6 format.

If a secondary ipv4 ip-address is provided, valid values are 0-32, the default
is 32.

If a secondary ipv6 ip-address is provided, valid values are 0-128, the default
is 128.

ipv4-gateway String The IPv4 address to use for the default IPv4 gateway. No default value is
provided.

ipv6-gateway String The IPv6 address to use for the default IPv6 gateway. No default value is
provided.

is-ipv6-auto-config-
enabled

Boolean True if the IPv6 Auto configuration is enabled. Otherwise, false. When
enabled, the interface is configured with a link-local secondary address.
When disabled, uses the defined primary address.

Default is false.

is-slaac Boolean IPv6 Auto configuration must be enabled to utilize this option.

True if IPv6 Stateless Address is enabled. Otherwise, false. When enabled,
the IPv6 address is obtained when connected to the network. When disabled,
the interface uses the defined primary address.

Default is false.

dad-transmit Integer IPv6 Auto configuration must be enabled to utilize this option.

Specify the number of duplicate address detection (DAD) attempts to
perform.

Default is 1.

dad-transmit-delay Integer IPv6 Auto configuration must be enabled to utilize this option.

When the number of duplicate address detection (DAD) attempts is greater
than 1, specify the delay between attempts in milliseconds.

Default is 1000.

mac-address String (17) The MAC address represented as 6 groups of two lower-case hexadecimal
digits separated by colons, e.g. “01:23:45:67:89:ab”. Length is 17 characters.
The MAC address uses the ensemble prefix.

Operations

List Blades in a BladeCenter
The List Blades in a BladeCenter operation lists all the blades in a BladeCenter.

HTTP method and URI
GET /api/bladecenters/{bladecenter-id}/blades

In this request, the URI variable {bladecenter-id} is the object ID of the BladeCenter object whose blades are
to be obtained.

Query parameters:

Chapter 8. zBX infrastructure elements 117

Name Type Rqd/Opt Description

name String Optional Filter pattern (regular expression) used to limit returned objects

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

blades Array of
objects

Array of nested blade-info objects, described in the next table. If the
BladeCenter does not have any blades mounted in it, an empty array is
provided.

Each nested blade-info object contains the following fields:

Field name Type Description

object-uri String/
URI

Canonical URI path of the blade object in the form /api/blades/{blade-id}

name String The name property of the blade object (for example, B.1.01)

status String
Enum

The status property of the blade object

type String
Enum

The type of the blade.

Description

The List Blades in a BladeCenter operation lists the blades that are in the BladeCenter. The object URI,
name, status, and type are provided for each blade.

If the name query parameter is specified, then a blade is included in the list only if the name pattern
matches the name property of the object.

A blade is included in the list only if the API user has object-access permission for that object. If the
HMC is a manager of a blade, but the API user does not have permission to it, that object is omitted
from the list, but no error status code results.

If the HMC does not manage any blades, an empty list is provided and the operation completes
successfully.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission the BladeCenter object specified by the URI
v Object access permission to any blade object are to be included in the result.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

118 HMC Web Services API

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID {bladecenter-id} does not designate a BladeCenter object, or the
API user does not have object access permission to it.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

List Blades in a zBX
The List Blades in a zBX operation lists all the blades in all the BladeCenters in a zBX. This operation
has an optional parameter to specify the blade type to return in the list. If this parameter is omitted, all
blades of all blade types are returned.

HTTP method and URI
GET /api/zbxs/{zbx-id}/blades

In this request, the URI variable {zbx-id} is the object ID of the zBX object whose blades are to be
obtained.

Query parameters:

GET /api/bladecenters/ECEC1940F05B39EA9B3AEA5C1600AB1E/blades HTTP/1.1
x-api-session: 5q07hx6jgp2ngn2cypq1zxot76sfwnzky0ih8nddd5hz6bpiue

Figure 55. List Blades in a BladeCenter: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Thu, 21 Jul 2011 17:49:02 GMT
content-type: application/json;charset=UTF-8
content-length: 386
{

"blades": [
{

"name": "B.2.02",
"object-uri": "/api/blades/938706AC3FF111D78B5600215EC0330E",
"status": "operating",
"type": "power"

},
{

"name": "B.2.03",
"object-uri": "/api/blades/B8210BC02D1E11E0AE81E41F13FE1430",
"status": "operating",
"type": "system-x"

}
]

}

Figure 56. List Blades in a BladeCenter: Response

Chapter 8. zBX infrastructure elements 119

Name Type Rqd/Opt Description

name String Optional Filter pattern (regular expression) used to limit returned objects
based on matching the objects name property

type String Optional Filter string used to limit returned objects to those that have a
matching type property. Value must be a valid blade type property
value. To request that the results include blades of multiple types,
specify this parameter multiple times. For example
“type=power&type=isaopt”.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

blades Array of
objects

Array of nested blade-info objects, described the next table. If the zBX
does not have any blades, an empty array is provided.

Each nested blade-info object contains the following fields:

Field name Type Description

object-uri String/
URI

Canonical URI path of the blade object in the form /api/blades/{blade-id}

name String The name property of the blade object (for example, B.1.01)

status String
Enum

The status property of the blade object

type String
Enum

The type of the blade

Description

The List Blades in a zBX operation lists the blades in the zBX. The object URI, name, status, and type are
provided for each blade.

A blade is included in the list only if the API user has object-access permission for that object. If the
HMC is a manager of a blade, but the API user does not have permission to it, that object is omitted
from the list, but no error status code results.

If the name query parameter is specified, the returned list is limited to those blades that have a name
property matching at least one specified name filter pattern. If the name parameter is omitted, this
filtering is not done.

If the type query parameter is specified, the parameter is validated to ensure it is a valid blade type
property value. If the value is not valid, a 400 (Bad Request) is returned. If the value is valid, the
returned list is limited to those blades that have a type property matching a specified type value. If the
type parameter is omitted, this filtering is not done.

If both the name and type query parameters are specified, a blade is included in the list only if it passes
both the name and type filtering criteria.

If the HMC does not manage any blades, an empty list is provided and the operation completes
successfully.

120 HMC Web Services API

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC with which the zBX specified by the URI is associated
v Object access permission to any blade object are to be included in the result.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 120.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID {zbx-id} does not designate a zBX object, or the API user does
not have object access permission to it.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/zbxs/54a9716c-a326-11e0-9469-001f163805d8/blades HTTP/1.1
x-api-session: 5q07hx6jgp2ngn2cypq1zxot76sfwnzky0ih8nddd5hz6bpiue

Figure 57. List Blades in a zBX: Request

Chapter 8. zBX infrastructure elements 121

Get Blade Properties
The Get Blade Properties operation retrieves the properties of a single blade object that is designated by
its object ID.

HTTP method and URI
GET /api/blades/{blade-id}

In this request, the URI variable {blade-id} is the object ID of the blade object for which properties are to
be obtained.

Response body contents

On successful completion, the response body is a JSON object that provides the current values of the
properties for the rack object as defined in the “Data model” on page 102. Field names and data types in
the JSON object are the same as the property names and data types defined in the data model.

Description

The Get Blade Properties operation returns the current properties for the blade object specified by
{blade-id}.

On successful execution, all of the current properties as defined in“Data model” on page 112 for the blade
object are provided in the response body, and HTTP status code 200 (OK) is returned. If the blade is a
DPXI50z blade and its current status is not "operating", then null is returned as the value of the
licensed-features and iedn-interfaces properties, but the operation otherwise succeeds.

The URI path must designate an existing blade object and the API user must have object-access
permission to it. If either of these conditions is not met, status code 404 (Not Found) is returned.

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Thu, 21 Jul 2011 17:49:02 GMT
content-type: application/json;charset=UTF-8
content-length: 386
{

"blades": [
{

"name": "B.2.02",
"object-uri": "/api/blades/938706AC3FF111D78B5600215EC0330E",
"status": "operating",
"type": "power"

},
{

"name": "B.2.03",
"object-uri": "/api/blades/B8210BC02D1E11E0AE81E41F13FE1430",
"status": "operating",
"type": "system-x"

}
]

}

Figure 58. List Blades in a zBX: Response

122 HMC Web Services API

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the blade object specified by {blade-id}.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 122.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID {blade-id} does not designate an existing blade object, the object
ID designates a blade object that is not of the correct type, or the API user
does not have object access permission to the object.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/blades/B8210BC02D1E11E0AE81E41F13FE1430 HTTP/1.1
x-api-session: 5q07hx6jgp2ngn2cypq1zxot76sfwnzky0ih8nddd5hz6bpiue

Figure 59. Get Blade Properties: Request

Chapter 8. zBX infrastructure elements 123

server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Thu, 21 Jul 2011 17:49:03 GMT
content-type: application/json;charset=UTF-8
content-length: 989
{

"acceptable-status": [
"operating"

],
"class": "blade",
"cores-per-processor": 8,
"has-hardware-messages": false,
"has-unacceptable-status": false,
"is-locked": false,
"location": "B01BBS03",
"machine-model": "AC1",
"machine-serial": "06NL721",
"machine-type": "7872",
"memory-size": 131072,
"name": "B.2.03",
"object-id": "B8210BC02D1E11E0AE81E41F13FE1430",
"object-uri": "/api/blades/B8210BC02D1E11E0AE81E41F13FE1430",
"parent": "/api/bladecenters/ECEC1940F05B39EA9B3AEA5C1600AB1E",
"power-cap-allowed": "allowed",
"power-cap-current": 268,
"power-cap-maximum": 500,
"power-cap-minimum": 268,
"power-capping-state": "enabled",
"power-consumption": 241,
"power-rating": 500,
"power-save-allowed": "unknown",
"power-saving": "not-supported",
"processors": 2,
"status": "operating",
"type": "system-x",
"virtualization-host": "/api/virtualization-hosts/931b25d6-82e1-11e0-b9e4-f0def10bff8d"

}

Figure 60. Get Blade Properties: Response for blade of type "system-x" (similar for type "power")

124 HMC Web Services API

200 OK
x-request-id: Sx3 Rx13
x-client-correlator: 21
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Tue, 15 Nov 2011 14:22:55 GMT
content-type: application/json;charset=UTF-8
content-length: 899
{

"acceptable-status": [
"operating"

],
"class": "blade",
"cores-per-processor": 8,
"has-hardware-messages": false,
"has-unacceptable-status": false,
"iedn-interfaces": [],
"is-locked": false,
"licensed-features": " MQ, TAM, DataGlue, JAXP-API, PKCS7-SMIME, SQL-ODBC,

WebSphere-JMS, RaidVolume, iSCSI, LocateLED, AppOpt, zBX",
"location": "C01BBS01",
"machine-model": "4BX",
"machine-serial": "6800442",
"machine-type": "4195",
"memory-size": 12288,
"name": "C.2.01",
"object-id": "eadb0be8-6fdb-11df-8f6a-e41f137a29e4",
"object-uri": "/api/blades/eadb0be8-6fdb-11df-8f6a-e41f137a29e4",
"parent": "/api/bladecenters/e3ee0adc-27c0-355e-93b9-ace8a3d2da15",
"power-cap-allowed": "under-group-control",
"power-cap-current": 444,
"power-cap-maximum": 444,
"power-cap-minimum": 144,
"power-capping-state": "disabled",
"power-consumption": 115,
"power-rating": 444,
"power-save-allowed": "unknown",
"power-saving": "not-supported",
"processors": 2,
"status": "operating",
"type": "dpxi50z"

}

Figure 61. Get Blade Properties: Response for blade of type "dpx150z":

Chapter 8. zBX infrastructure elements 125

Activate a Blade
The Activate a Blade operation activates a blade object designated by its object ID. This operation is
asynchronous.

HTTP method and URI
POST /api/blades/{blade-id}/operations/activate

In this request, the URI variable {blade-id} is the object ID of the blade object to activate.

Response body contents

Once the activation request is accepted, the response body is a JSON object with the following fields:

Field name Type Description

job-uri String/
URI

URI that may be queried to retrieve activation status updates.

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Tue, 15 Nov 2011 14:22:55 GMT
content-type: application/json;charset=UTF-8
content-length: 773
{

"acceptable-status": [
"operating"

],
"class": "blade",
"cores-per-processor": 8,
"has-hardware-messages": false,
"has-unacceptable-status": false,
"is-locked": false,
"isaopt-mode": "coordinator",
"location": "B10BBS01",
"machine-model": "PEL",
"machine-serial": "KQWZTNG",
"machine-type": "7870",
"memory-size": 49152,
"name": "B.1.01",
"object-id": "fa8d1eea-95ab-33cf-bf86-a03cc1346222",
"object-uri": "/api/blades/fa8d1eea-95ab-33cf-bf86-a03cc1346222",
"parent": "/api/bladecenters/2ae200b3-fa8e-3db7-b34a-ec08780aaac6",
"power-cap-allowed": "under-group-control",
"power-cap-current": 515,
"power-cap-maximum": 500,
"power-cap-minimum": 220,
"power-capping-state": "disabled",
"power-consumption": 181,
"power-rating": 500,
"power-save-allowed": "unknown",
"power-saving": "not-supported",
"processors": 2,
"status": "operating",
"type": "isaopt"

}

Figure 62. Get Blade Properties: Response for blade of type "isaopt":

126 HMC Web Services API

Asynchronous result description

Once the activation job has completed, a job-completion notification is sent and results are available for
the asynchronous portion of this operation. These results are retrieved using the Query Job Status
operation directed at the job URI provided in the response body from the Activate a Blade operation.

The result document returned by the Query Job Status operation is specified in the description for the
Query Job Status operation. (For more information, see “Query Job Status” on page 44.) When the status
of the job is "complete", the results include a job completion status code and reason code (fields
job-status-code and job-reason-code) that are set. (See the description that follows.) The job-results field
is null for asynchronous blade activation jobs.

Description

The Activate a Blade operation activates the blade object specified by {blade-id}. Activation brings the
blade into a state of “operating”. If the blade is already powered on when the activation operation is
requested, the blade is powered off and then brought to a state of “operating”. If the blade is a host to a
virtualization application, then this application is activated also. See the “Activating a Virtualization
Host” on page 202 for more information.

The URI path must designate an existing blade object and the API user must have object-access
permission to it. If either of these conditions is not met, status code 404 (Not Found) is returned. In
addition, the API user must have action access permission to the Activate task; otherwise, status code 409
(Conflict) is returned.

When the blade activation job is initiated, a 202 (Accepted) status code is returned. The response body
includes a URI that may be queried to retrieve the status of the activation job. See “Query Job Status” on
page 44 for information on how to query job status. When the activate job has completed, an
asynchronous result message is sent with job status and reason codes described in “Job status and reason
codes” on page 128.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the blade object specified by {blade-id}
v Action/task permission to the Activate task.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in “Response body contents” on page 126.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 0 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID {blade-id} does not designate an existing blade object, or the
API user does not have object access permission to it.

409 (Conflict) 1 The object ID {blade-id} designates a blade object that is not in the correct
state (status) for performing the requested operation.

Chapter 8. zBX infrastructure elements 127

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

Job status code
Reason
code Description

200 (OK) N/A Activation completed successfully.

500 (Server Error) 100 Blade activation failed.

500 (Server Error) 101 Blade activation job timed out.

Example HTTP interaction

Deactivate a Blade
The Deactivate a Blade operation deactivates a blade object designated by its object ID. This operation is
asynchronous.

HTTP method and URI
POST /api/blades/{blade-id}/operations/deactivate

In this request, the URI variable {blade-id} is the object ID of the blade object to deactivate.

Response body contents

Once the activation request is accepted, the response body is a JSON object with the following fields:

Field name Type Description

job-uri String/
URI

URI that may be queried to retrieve deactivation status updates.

POST /api/blades/62f508a6-2d21-11e0-813b-e41f13fe15a8/operations/activate HTTP/1.1
x-api-session: 6c6s3b1p02v9x9az6brcic9q9dk34jjhxwllw0sqegu0ktia5k

Figure 63. Activate a Blade: Request

202 Accepted
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 05:45:45 GMT
content-type: application/json;charset=UTF-8
content-length: 60
{

"job-uri": "/api/jobs/b8824300-1728-11e1-aea4-0010184c8334"
}

Figure 64. Activate a Blade: Response

128 HMC Web Services API

Asynchronous result description

Once the deactivation job has completed, a job-completion notification is sent and results are available for
the asynchronous portion of this operation. These results are retrieved using the Query Job Status
operation directed at the job URI provided in the response body from the Deactivate a Blade operation.

The result document returned by the Query Job Status operation is specified in the description for the
Query Job Status operation. (For more information, see “Query Job Status” on page 44). When the status
of the job is "complete", the results include a job completion status code and reason code (fields
job-status-code and job-reason-code) that are set. (See the description that follows.) The job-results field
is null for asynchronous blade activation jobs.

Description

The Deactivate a Blade operation activates the blade object specified by {blade-id}. Deactivation powers
off the blade after an orderly shutdown of any hardware and software activity running on the blade. If
the blade is a host to a virtualization application, then this application is deactivated also. See the
“Deactivating a Virtualization Host” on page 203 for more information.

The URI path must designate an existing blade object and the API user must have object-access
permission to it. If either of these conditions is not met, status code 404 (Not Found) is returned. In
addition, the API user must have action access permission to the Deactivate task; otherwise, status code
403 (Forbidden) is returned. If the blade is not in the correct state to perform the deactivate, a status code
of 409 (Conflict) is returned.

When the blade deactivation job is initiated, a 202 (Accepted) status code is returned. The response body
includes a URI that may be queried to retrieve the status of the deactivation job. See “Query Job Status”
on page 44 for information on how to query job status. When the activate job has completed, an
asynchronous result message is sent with job status and reason codes described in “Job status and reason
codes” on page 130.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the blade object specified by {blade-id}
v Action/task permission to the Deactivate task.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in “Response body contents” on page 128.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 0 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID {blade-id} does not designate an existing blade object, or the
API user does not have object access permission to it.

409 (Conflict) 1 The object ID {blade-id} designates a blade object that is not in the correct
state (status) for performing the requested operation.

Chapter 8. zBX infrastructure elements 129

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

Job status code
Reason
code Description

200 (OK) N/A Deactivation completed successfully.

500 (Server Error) 100 Blade deactivation failed.

500 (Server Error) 101 Blade deactivation job timed out.

Example HTTP interaction

Create IEDN Interface for a DataPower XI50z Blade
The Create IEDN Interface for a DataPower XI50z Blade operation adds an IEDN interface with the
designated properties to the DataPower XI50z blade configuration.

HTTP method and URI
POST /api/blades/{blade-id}/iedn-interface

In this request, the URI variable {blade-id} is the object ID of the DPXI50Z blade object to which the IEDN
interface is to be added.

Request body contents

The request body contains the following writeable IEDN interface properties of the DPXI50Z blade object
that will be used to create the IEDN interface:

Field name Type Rqd/Opt Description

name String
(1-64)

Required The name of the IEDN interface. Valid characters are: a-z, A-Z, 0-9,
underscore, dash and period. Periods cannot be consecutive.

Must be unique per blade.

POST /api/blades/62f508a6-2d21-11e0-813b-e41f13fe15a8/operations/deactivate HTTP/1.1
x-api-session: 6c6s3b1p02v9x9az6brcic9q9dk34jjhxwllw0sqegu0ktia5k

Figure 65. Deactivate a Blade: Request

202 Accepted
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 05:45:04 GMT
content-type: application/json;charset=UTF-8
content-length: 60
{

"job-uri": "/api/jobs/a0247864-1728-11e1-aea4-0010184c8334"
}

Figure 66. Deactivate a Blade: Response

130 HMC Web Services API

Field name Type Rqd/Opt Description

is-active Boolean Required Administrative state of the IEDN interface configuration. Values:
v True – Enabled means that the Op-State of the IEDN interface will

be up if there are no errors in the configuration
v False – Disabled means that Op-State of the IEDN interface will

always be down

network-uri String/URI Required The canonical URI of the virtual network to which this IEDN
interface is connected.

The combination of the virtual network with the Ethernet interface
must be unique per blade. That is, each interface is associated with
one virtual network, and the virtual network associated with one
interface cannot be associated with another.

ethernet-interface String
Enum

Required The physical Ethernet network interface – either "eth7" or "eth9".

The combination of the virtual network with the Ethernet interface
must be unique per blade.

ip-address String Optional An IP address in either IPv4 or IPv6 format.

No default value is provided.

net-mask String Optional The network mask associated with the IP address in either IPv4 or
IPv6 format.

If an IPv4 ip-address is provided, valid values are 0-32; the default is
32.

If an IPv6 ip-address is provided, valid values are 0-128; the default
is 128.

secondary-ip-
address

List of
Strings

Optional A list of secondary IP addresses in either IPv4 or IPv6 format.

No default value is provided.

secondary-net-mask List of
Strings

Optional A list of secondary network masks associated with the secondary IP
addresses in either IPv4 or IPv6 format.

If a secondary IPv4 ip-address is provided, valid values are 0-32, the
default is 32.

If a secondary IPv6 ip-address is provided, valid values are 0-128,
the default is 128

ipv4-gateway String Optional The IPv4 address to use for the default IPv4 gateway.

No default value is provided.

ipv6-gateway String Optional The IPv6 address to use for the default IPv6 gateway

No default value is provided.

is-ipv6-auto-
config-enabled

Boolean Optional True if the IPv6 auto configuration is enabled. Otherwise, false.

When enabled, the interface is configured with a link-local secondary
address. When disabled, the interface uses the defined primary
address.

Default is false.

Chapter 8. zBX infrastructure elements 131

Field name Type Rqd/Opt Description

is-slaac Boolean Optional IPv6 auto configuration must be enabled to utilize this option.

True if IPv6 stateless address is enabled. Otherwise, false.

When enabled, the IPv6 address is obtained when connected to the
network. When disabled, the interface uses the defined primary
address.

Default is false.

dad-transmit Integer Optional IPv6 auto configuration must be enabled to utilize this option.

The number of duplicate address detection (DAD) attempts to
perform.

Default is 1.

dad-transmit-delay Integer Optional IPv6 auto configuration must be enabled to utilize this option.

When the number of duplicate address detection (DAD) attempts is
greater than 1, the delay between attempts in milliseconds.

Default is 1000.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

element-uri String/
URI

Canonical URI path of the IEDN interface object, in the form
/api/blade/{blade-id}/iedn-interfaces/{iedn-interface-id}, where
{iedn-interface-id} is the value of the name property.

Description

The Create IEDN Interface for a DataPower XI50z Blade operation creates the IEDN interface for the
DataPower XI50z blade as specified by the given properties. The DPXI50Z blade must be operating to
perform this operation. Any properties identified as optional may be excluded from the request body. If
an optional property is not found in the request body, its value will be set to its default value.

The add of the IEDN interface is permitted if the API user has object-access permission for that
DataPower XI50z blade.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the DPXI50z blade object specified by {blade-id}
v Action/task permission to the zBX Blade Details task.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents”

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

132 HMC Web Services API

|

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 0 The API user does not have task access authority to the zBX Blade Details
task.

404 (Not Found) 1 The object ID {blade-id} does not designate an existing blade object, or the
API user does not have object access permission to it.

409 (Conflict) 1 The object ID {blade-id} designates a blade object that is not in the correct
state (status) for performing the requested operation. The blade must be
operating to perform this operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Delete IEDN Interface for a DataPower XI50z Blade
The Delete IEDN Interface for a DataPower XI50z Blade operation removes the specified IEDN interface
for a DataPower XI50z blade.

HTTP method and URI
DELETE /api/blades/{blade-id}/iedn-interface/{iedn-interface-id}

URI variables

Variable Description

{iedn-interface-id} Element ID of the IEDN interface

{blade-id} Object ID of the blade

Description

The Delete IEDN Interface for a DataPower XI50z Blade operation deletes the IEDN interface that is
defined for the DataPower XI50z blade. The DPXI50Z blade must be operating to perform this operation.

The IEDN interface is removed only if the API user has object-access permission for that DataPower
XI50z blade.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the DPXI50z blade object specified by {blade-id}
v Action/task permission to the zBX Blade Details task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

Chapter 8. zBX infrastructure elements 133

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID {blade-id} does not designate an existing blade object, or the
API user does not have object access permission to it.

2 The object ID {iedn-interface-id} does not exist on the HMC.

404 (Not Found) 1 The object ID {blade-id} designates a blade object that is not in the correct
state (status) for performing the requested operation. The blade must be
operating to perform this operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Inventory service data
Information about the lades managed by the HMC can be optionally included in the inventory data
provided by the Inventory Service.

Inventory entries for blade objects are included in the response to the Inventory Service's Get Inventory
operation when the request specifies (explicitly by inventory class, implicitly via a containing category, or
by default) that objects of the various blade type-specific inventory classes are to be included. An entry
for a particular blade is included only if the API user has object-access permission to that blade and the
applicable type-specific inventory class has been specified, as described in the following table:

Inventory class Includes blades with “type” value

power-blade power

system-x-blade system-x

dpz150z-blade dpz150z

isaopt-blade isaopt

For each blade object to be included, the inventory response array includes entry that is a JSON object
with the same contents as is specified in the Response Body Contents section for “Get Blade Properties”
on page 122. That is, the data provided is the same as would be provided if a Get Blade Properties
operation were requested targeting this object.

Sample inventory data

The following fragments are examples of the JSON objects that would be included in the Get Inventory
response to describe a single blade object of a particular type. These objects would appear as array entries
in the response array.

134 HMC Web Services API

{
"acceptable-status": [

"operating"
],
"class": "blade",
"cores-per-processor": 8,
"has-hardware-messages": false,
"has-unacceptable-status": true,
"is-locked": false,
"location": "B10BBS13",
"machine-model": "71Y",
"machine-serial": "06C9FDA",
"machine-type": "8406",
"memory-size": 32768,
"name": "B.1.13",
"object-uri": "/api/blades/D5C5CB8A3F5511D78B5600215EC03866",
"parent": "/api/bladecenters/ECEC1940F05B39EA9B3AEA5C1600AB1E",
"power-cap-allowed": "under-group-control",
"power-cap-current": 277,
"power-cap-maximum": 382,
"power-cap-minimum": 277,
"power-capping-state": "disabled",
"power-consumption": 151,
"power-rating": 382,
"power-save-allowed": "under-group-control",
"power-saving": "high-performance",
"processors": 8,
"status": "status-check",
"type": "power",
"virtualization-host": "/api/virtualization-hosts/baa17718-2990-11e0-8d5b-001f163803de"

}

Figure 67. Activate a Blade: Sample inventory data for a blade of type "power"

Chapter 8. zBX infrastructure elements 135

{
"acceptable-status": [

"operating"
],
"class": "blade",
"cores-per-processor": 8,
"has-hardware-messages": false,
"has-unacceptable-status": true,
"is-locked": false,
"location": "B10BBS12",
"machine-model": "AC1",
"machine-serial": "06NL728",
"machine-type": "7872",
"memory-size": 131072,
"name": "B.1.12",
"object-uri": "/api/blades/62F508A62D2111E0813BE41F13FE15A8",
"parent": "/api/bladecenters/ECEC1940F05B39EA9B3AEA5C1600AB1E",
"power-cap-allowed": "under-group-control",
"power-cap-current": 278,
"power-cap-maximum": 519,
"power-cap-minimum": 278,
"power-capping-state": "disabled",
"power-consumption": 249,
"power-rating": 519,
"power-save-allowed": "unknown",
"power-saving": "not-supported",
"processors": 2,
"status": "status-check",
"type": "system-x",
"virtualization-host": "/api/virtualization-hosts/47d3a864-82e1-11e0-b9e4-f0def10bff8d"

}

Figure 68. Activate a Blade: Sample inventory data for a blade of type "system-x"

136 HMC Web Services API

Chapter 9. Energy management

Energy Management is a management task that is pervasive and spread across several components in the
systems management stack. Each layer in the stack needs to implement two key functions:
v A set of management functions appropriate for this level at the stack. Energy management functions

provided by lower layers can be used to implement these functions.
v Management interfaces are provided that allows management layers above to configure and control the

energy management functions.

To achieve this several pieces are needed:

Power and thermal monitoring
"You can't improve what you don't measure" is a trivial engineering paradigm. Measuring energy
consumption and the thermal environment is key for management. Energy Monitoring for System
z was initially introduced with z9®. Starting with zEnterprise 196 the power consumption of
attached BladeCenters is made available and factored into the presented system level power
consumption.

Energy control
Based on the measurement data - either for an individual system or aggregated for a group of
servers or even a complete data center - analytics can be implemented. These can keep a watch
on given limits or can identify optimizing potentials. At a system level energy control
mechanisms will be provided to allow for changing energy consumption of a system. These
energy controls can be categorized into two groups:

Figure 69. Energy management as applied throughout layers of enterprise management

© Copyright IBM Corp. 2012, 2013 137

v Power saving - Power saving mechanisms are used to reduce the average energy consumption
of a system. Through powering off components or reducing performance the power saving is
typically achieved. For zEnterprise 196 the Static Power Savings Mode is implemented that
reduces processor frequency and voltage for power saving purposes.

v Power capping - Power capping is a means to limit peak power consumption of a system. This
is especially important in constraint data center environments. Today power and cooling
allocation in data centers is usually done via the label power. This typically leads to a
significant overprovisioning. Through power capping the power allocation for a system can be
adjusted better to the real power consumption of a system and therefore more servers can be
deployed within the same physical limits of their data center.

Groups
A group is composed of an object that contains groups or another object and the object or objects it
contains. For example, a group might be a CPC that contains a zCPC and optional BladeCenters. Another
group might be a BladeCenter containing blades. Please note that only the predefined groups CPC and
BladeCenter exist as shown in the following figure:

Special states
In this chapter, the following states are used but the reasoning behind the states isn't always clear. So
they are explained here in more detail:

Figure 70. Example of a group and the objects it contains

138 HMC Web Services API

"custom"
Occurs only on groups and indicates that the group does not control the children. Clients are able
to alter the children of a group individually.

"under-group-control"
Occurs only on children and indicates that a group controls the state. When clients want to alter
the state, the group must be set to "custom" first.

"not-supported"
Indicates that the feature (either power saving or power capping) is currently not supported,
possible reasons can be:
v Hardware does not support it → permanent
v Firmware level does not support it → can change after a firmware update
v The hardware is not powered on → can change after the device is powered on.

"not-available"
Couldn't read the state of the underlying hardware.

"not-entitled"
Indicates that the automate feature is not installed and so power saving and power capping is not
allowed.

Power saving
Power saving is a function that reduces the energy consumption of a system. Please note that power
saving is only available if the Automate management enablement feature is installed. The possible
settings include:

High performance
The power consumption and performance of the object are not reduced. This is the default
setting.

Low power
The performance of the object is reduced to allow for low power consumption. When this setting
is selected for CPC and BladeCenter objects, all components of the object enabled for power
saving have reduced performance to allow for low power consumption. Use this setting to enable
group power saving.

Note: You can only set the power saving setting of the zCPC to Low power one time per
calendar day in an air cooled system. This power save property is set to Not Supported if the
current zCPC power saving setting is High performance but the zCPC has already entered Low
power once within the calendar day.

Custom
Use Custom to disable group power saving and individually configure the components of the
object for power saving.

Note: This setting is available only for CPC and BladeCenter objects.

Group power saving
The following are important concepts regarding group power saving:
v Group power saving settings replace individual object settings--that is, the Power Saving setting of a

CPC or BladeCenter supersede the Power Saving setting of any object contained within the CPC or
BladeCenter.

v You can enable group power saving by setting the Power Saving setting of the CPC or BladeCenter to
Low power or High performance.

v You can change individual Power Saving settings only if the object is not under group power saving
control.

Chapter 9. Energy management 139

v To disable group power saving without changing the individual Power Saving settings of the group
members, change the Power Saving setting of the CPC or BladeCenter to Custom.

Power capping
Please note that power capping is only available if the Automate management enablement feature is
installed.

Group capping
The following are important concepts regarding group power capping:
v Group caps replace individual object caps—that is, the Cap Value of a CPC or BladeCenter supersede

the power cap of any object contained within the CPC or BladeCenter.
v You can enable group capping by setting the Power Capping setting of the CPC or BladeCenter to

Enabled.
v You can change individual Cap Values if the object is not under group capping control.
v If a CPC or BladeCenter contains an object that does not support power capping, the Power Rating is

used in calculating the minimum power cap value for the group. The Power Rating can be found on
the details window for an object.

v The maximum Cap Value for a group is the sum of the Power Rating of all group objects.
v When a group component is powered off or removed, the group cap is redistributed to the remaining

group components.
v To disable group capping without changing the individual power caps of the group members, change

the Power Capping setting of the CPC or BladeCenter to Custom.

Energy management operations summary
The following tables provide an overview of the operations provided. All POST operation were executed
asynchronous and provide a query URI where the result of the request can be queried.

Note: The zCPC is not modeled as a full entity like CPC, BladeCenters or blades, because only energy
management needs the zCPC to represent only System z hardware without zBX. That is the reason why
all zCPC related operations are tied to the CPC.

Table 30. Energy management: operations summary

Operation name HTTP method and URI path

“Set CPC Power Save” on page
141

POST /api/cpcs/{cpc-id}/operations/set-cpc-power-save

“Set CPC Power Capping” on
page 143

POST /api/cpcs/{cpc-id}/operations/set-cpc-power-capping

“Get CPC Energy Management
Data” on page 149

GET /api/cpcs/{cpc-id}/energy-management-data

“Set zCPC Power Save” on
page 146

POST /api/cpcs/{cpc-id}/operations/set-zcpc-power-save

“Set zCPC Power Capping” on
page 147

POST /api/cpcs/{cpc-id}/operations/set-zcpc-power-capping

“Set BladeCenter Power Save”
on page 151

POST /api/bladecenters/{bladecenter-id}/operations/set-power-save

“Set BladeCenter Power
Capping” on page 153

POST /api/bladecenters/{bladecenter-id}/operations/set-power-capping

“Set Blade Power Save” on
page 156

POST /api/blades/{blade-id}/operations/set-power-save

“Set Blade Power Capping” on
page 158

POST /api/blades/{blade-id}/operations/set-power-capping

140 HMC Web Services API

Table 31. Energy management: URI variables

Variable Description

{cpc-id} Object ID of a CPC

{bladecenter-id} Object ID of a BladeCenter

{blade-id} Object ID of a blade

Energy management for CPC object
The energy management for the CPC object represents all energy management for the CPC.

Data model
The data model for a CPC object includes some properties related to energy management. These
properties are described in “Energy management related additional properties” on page 519.

Set CPC Power Save
Use the Set CPC Power Save operation to set the power save setting of a CPC.

HTTP method and URI
POST /api/cpc/{cpc-id}/operations/set-cpc-power-save

In this request, the URI variable {cpc-id} is the object ID of the CPC.

Request body contents

The request body is a JSON object with the following fields:

Name Type Rqd/Opt Description

power-saving Enum
string

Required The possible settings are:
v "high-performance" - The power consumption and performance of

the CPC are not reduced. This is the default setting.
v "low-power" - Low power consumption for all components of the

CPC enabled for power saving.
v "custom" - Components may have their own settings changed

individually. No component settings are actually changed when
this mode is entered.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

job-uri String URI of the asynchronous job that may be queried to retrieve status updates
for action initiated by this operation.

Description

Use this operation to control the average energy consumption of a CPC object designated by {cpc-id}, or
to remove a power consumption limit for this object. You can closely manage power allocations within
the physical limits of your data center.

Chapter 9. Energy management 141

This operation will always fail if the designated CPC is under group control (see “Group capping” on
page 140) or the cpc-power-saving property of the CPC is set to "not-supported" or "not-entitled". (See
“Energy management related additional properties” on page 519 for details on this property.) In addition,
this operation is only available if the ensemble is functioning at the Automate management enablement
level.

The action to change the power-saving settings occurs asynchronously. If the request is accepted, an
asynchronous job is initiated and an HTTP Status code of 202 (Accepted) is returned. The response body
includes a URI that may be queried to retrieve the status of the asynchronous job. See the description of
the Query Job Status operation for information on how to query job status. When the asynchronous job
has completed, an asynchronous result message is sent, with Job status and reason codes described in
“HTTP status and reason codes.” After completion, the Query Job Status operation may be used to
retrieve the completion results.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to all blade, BladeCenter, CPC and zCPC objects
v Action/task permission to the Power Save task.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in “Response body contents” on page 141.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The user is not authorized to access the object or perform this task.

3 The server is not entitled to perform energy management.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

409 (Conflict) 1 The operation cannot be performed because the object designated by the
request URI is not in the correct state.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

Job status codes
Job reason
code Description

200 (OK) N/A Operation executed successfully

142 HMC Web Services API

Job status codes
Job reason
code Description

500 (Server Error) 160 A firmware error occurred while executing the operation

161 A hardware error occurred while performing the operation on the blade or
System z hardware

162 Communication error occurred while trying to access the blade or System z
hardware

163 An error occurred at one or more children

If the job reason code is 163, the job-results field provided by the Query Job Status operation will
contain an object with the following fields:

Field name Type Description

errors Object array A list of error objects, containing detailed error information about errors
occurred on children

at-least-one-
operation-succeed

Boolean True indicates that the operation was successful for at least one child.

Each error object has this structure:

Job status codes
Job reason
code Description

object-uri String URI The canonical URI path for a specific object where the error occurred

reason-code Integer Specify the specific error type, possible values are:
v 160 - A firmware error occurred while executing the operation
v 161 - A hardware error occurred while performing the energy

management operation
v 162 - Communication error occurred while trying to access the hardware

message String A non-localized message provided for development purposes only. Client
applications should not display this message directly to the user.

Set CPC Power Capping
Use the Set CPC Power Capping operation to set the power capping settings of a CPC.

HTTP method and URI
POST /api/cpcs/{cpc-id}/operations/set-cpc-power-capping

In this request, the URI variable {cpc-id} is the object ID of the CPC.

Chapter 9. Energy management 143

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

power-capping-
state

Enum
string

Required The possible settings are:
v "disabled" - The power cap of the CPC is not set and the peak

power consumption is not limited. This is the default setting.
v "enabled" - The peak power consumption of the CPC is limited to

the current cap value.
v "custom" - Individually configure the components of the

BladeCenter for power capping. No component settings are
actually changed when this mode is entered.

power-cap-current Integer Optional Specifies the current cap value for the CPC in watts (W). The current
cap value indicates the power budget for the CPC.

This field is only required if the power-capping-state field is set to
"enabled". The power-cap-current must be between
cpc-power-cap-minimum and cpc-power-cap-maximum:

cpc-power-cap-minimum <= value <= cpc-power-cap-maximum

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

job-uri String URI of the asynchronous job that may be queried to retrieve status updates
for action initiated by this operation.

Description

Use this operation to limit the peak power consumption of a CPC object designated by {cpc-id}, or to
remove a power consumption limit for this object. You can closely manage power allocations within the
physical limits of your data center.

This operation will always fail if the designated CPC is under group control (see “Group capping” on
page 140) or the power-capping-state property of the CPC is set to "not-supported" or "not-entitled".
(See “Energy management related additional properties” on page 519 for details on this property.) In
addition, this operation is only available if the ensemble is functioning at the Automate management
enablement level.

The action to change the power-capping settings occurs asynchronously. If the request is accepted, an
asynchronous job is initiated and an HTTP Status code of 202 (Accepted) is returned. The response body
includes a URI that may be queried to retrieve the status of the asynchronous job. See the description of
the Query Job Status operation for information on how to query job status. When the asynchronous job
has completed, an asynchronous result message is sent, with Job status and reason codes described in
“HTTP status and reason codes” on page 145. After completion, the Query Job Status operation may be
used to retrieve the completion results.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to all blade, BladeCenter, CPC and zCPC objects
v Action/task permission to the Power Capping task.

144 HMC Web Services API

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in “Response body contents” on page 144.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

400 (Bad Request) 7 The power-cap-current field contains a value that is not in the range
cpc-power-cap-minimum ... cpc-power-cap-maximum

5 The power-cap-current field is not set, but power-capping-state field is set to
"enabled".

403 (Forbidden) 1 The user is not authorized to access the object or perform this task.

3 The server is not entitled to perform energy management.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

409 (Conflict) 1 The operation cannot be performed because the object designated by the
request URI is not in the correct state.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

Job status codes
Job reason
code Description

200 (OK) N/A Operation executed successfully

500 (Server Error) 160 A firmware error occurred while executing the operation

161 A hardware error occurred while performing the operation on the blade or
System z hardware

162 Communication error occurred while trying to access the blade or System z
hardware

163 An error occurred at one or more children

If the job reason code is 163, the job-results field provided by the Query Job Status operation will
contain an object with the following fields:

Field name Type Description

errors Object array A list of error objects, containing detailed error information about errors
occurred on children

at-least-one-
operation-succeed

Boolean True indicates that the operation was successful for at least one child.

Each error object has this structure:

Chapter 9. Energy management 145

Job status codes
Job reason
code Description

object-uri String URI The canonical URI path for a specific object where the error occurred

reason-code Integer Specify the specific error type, possible values are:
v 160 - A firmware error occurred while executing the operation
v 161 - A hardware error occurred while performing the energy

management operation
v 162 - Communication error occurred while trying to access the hardware

message String A non localized message provided for development purposes only. Client
applications should not display this message directly to the user.

Set zCPC Power Save
Use the Set zCPC Power Save operation to set the power save settings of the zCPC portion of a CPC.

HTTP method and URI
POST /api/cpc/{cpc-id}/operations/set-zcpc-power-save

In this request, the URI variable {cpc-id} is the object ID of the CPC.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

power-saving Enum
string

Required The possible settings are:
v "high-performance" - The power consumption and performance of

the zCPC are not reduced. This is the default setting.
v "low-power" - Low power consumption for all components of the

zCPC enabled for power saving.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

job-uri String URI of the asynchronous job that may be queried to retrieve status updates
for action initiated by this operation.

Description

Use this operation to control the average energy consumption of a zCPC portion of the CPC {cpc-id}, or to
remove a power consumption limit for this object. You can closely manage power allocations within the
physical limits of your data center.

This operation will always fail if the designated zCPC is under group control (see “Group capping” on
page 140) or the zcpc-power-saving property of the zCPC is set to "not-supported" or "not-entitled". (See
“Energy management related additional properties” on page 519 for details on this property.) In addition,
this operation is only available if the ensemble is functioning at the Automate management enablement
level.

The action to change the power-saving settings occurs asynchronously. If the request is accepted, an
asynchronous job is initiated and an HTTP Status code of 202 (Accepted) is returned. The response body

146 HMC Web Services API

includes a URI that may be queried to retrieve the status of the asynchronous job. See the description of
the Query Job Status operation for information on how to query job status. When the asynchronous job
has completed, an asynchronous result message is sent, with Job status and reason codes described in
“HTTP status and reason codes.” After completion, the Query Job Status operation may be used to
retrieve the completion results.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to all blade, BladeCenter, CPC and zCPC objects
v Action/task permission to the Power Save task.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in“Response body contents” on page 146.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The user is not authorized to access the object or perform this task.

3 The server is not entitled to perform energy management.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

409 (Conflict) 1 The operation cannot be performed because the object designated by the
request URI is not in the correct state.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

Job status codes
Job reason
code Description

200 (OK) N/A Operation executed successfully

500 (Server Error) 160 A firmware error occurred while executing the operation

161 A hardware error occurred while performing the operation on the System z
hardware

162 Communication error occurred while trying to access the System z hardware

Set zCPC Power Capping
Use the Set zCPC Power Capping operation to set the power capping settings of the zCPC portion of a
CPC.

Chapter 9. Energy management 147

HTTP method and URI
POST /api/cpcs/{cpc-id}/operations/set-zcpc-power-capping

In this request, the URI variable {cpc-id} is the object ID of the CPC.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

power-capping-
state

Enum
string

Required The possible settings are:
v "disabled" - The power cap of the zCPC is not set and the peak

power consumption is not limited. This is the default setting.
v "enabled" - The peak power consumption of the zCPC is limited to

the current cap value.

power-cap-current Integer Optional Specifies the current cap value for the zCPC in watts (W). The current
cap value indicates the power budget for the zCPC.

This field is only required if the power-capping-state field is set to
"enabled". The power-cap-current must be between
zcpc-power-cap-minimum and zcpc-power-cap-maximum:

zcpc-power-cap-minimum <= value <= zcpc-power-cap-maximum

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

job-uri String URI of the asynchronous job that may be queried to retrieve status updates
for action initiated by this operation.

Description

Use this operation to limit the peak power consumption of a zCPC object designated by {cpc-id}, or to
remove a power consumption limit for this object. You can closely manage power allocations within the
physical limits of your data center.

This operation will always fail if the designated zCPC is under group control (see “Group capping” on
page 140) or the power-capping-state property of the zCPC is set to "not-supported" or "not-entitled".
(See “Energy management related additional properties” on page 519 for details on this property.) In
addition, this operation is only available if the ensemble is functioning at the Automate management
enablement level.

The action to change the power-capping settings occurs asynchronously. If the request is accepted, an
asynchronous job is initiated and an HTTP Status code of 202 (Accepted) is returned. The response body
includes a URI that may be queried to retrieve the status of the asynchronous job. See the description of
the Query Job Status operation for information on how to query job status. When the asynchronous job
has completed, an asynchronous result message is sent, with Job status and reason codes described below.
After completion, the Query Job Status operation may be used to retrieve the completion results.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to all blade, BladeCenter, CPC and zCPC objects

148 HMC Web Services API

v Action/task permission to the Power Capping task.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in“Response body contents” on page 148.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

400 (Bad Request) 7 The power-cap-current field contains a value that is not in the range
zcpc-power-cap-minimum ... zcpc-power-cap-maximum

5 The power-cap-current field is not set, but power-capping-state field is set to
"enabled".

403 (Forbidden) 1 The user is not authorized to access the object or perform this task.

3 The server is not entitled to perform energy management.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

409 (Conflict) 1 The operation cannot be performed because the object designated by the
request URI is not in the correct state.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

Job status codes
Job reason
code Description

200 (OK) N/A Operation executed successfully

500 (Server Error) 160 A firmware error occurred while executing the operation

161 A hardware error occurred while performing the operation on the System z
hardware

162 Communication error occurred while trying to access the System z hardware

Get CPC Energy Management Data
Use the Get CPC Energy Management Data operation to retrieve all energy management related data in
one single call.

HTTP method and URI
GET /api/cpcs/{cpc-id}/energy-management-data

In this request, the URI variable {cpc-id} is the object ID of the CPC.

Chapter 9. Energy management 149

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

objects Array of
objects

An array of nested em-data objects containing the energy management data.
The format of each nested object is given in the next table.

Each nested em-data object contains the following fields:

Field name Type Description

object-uri String/ URI The canonical URI path of the specific object to which this em-data object
pertains.

object-id String Object-id property of the specific object to which this em-data object
pertains.

class String The type of the specific object to which this em-data object pertains.

properties Object Nested object containing the energy management properties for the object
identified by the object-uri field, as described in the data model section for
objects of the type indicated by the class field.

error-occurred Boolean If true, indicates that an error occurred while querying the data for the
object specified by the object-uri. As a consequence the property could be
null or incomplete.

Description

The Get CPC Energy Management Data is a convenience operation to allow a client to reprieve all
energy management related data for a CPC in a single request rather than invoking several requests to
retrieve this data.

Note that this operation returns data for a child object of the designated CPC only if the API user has
object-access permission to that object. Children objects for which the API user does not have access are
omitted from the response and no error is indicated.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC object designated by the request, and for any children objects for

which data is to be returned.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See“Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

150 HMC Web Services API

HTTP error status
code

Reason
code Description

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Energy management for BladeCenter object

Data model
The data model for a BladeCenter object includes some properties related to energy management. These
properties are described in Chapter 8, “zBX infrastructure elements,” on page 69, under the data model
for the BladeCenter object: “Energy Management Related Additional Properties” on page 103.

Set BladeCenter Power Save
Use the Set BladeCenter Power Save operation to set the power save setting of a BladeCenter.

HTTP method and URI
POST /api/bladecenters/{bladecenter-id}/operations/set-power-save

In this request, the URI variable {bladecenter-id} is the object ID of the BladeCenter.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

power-saving Enum
string

Required The possible settings are:
v "high-performance" - The power consumption and performance of

the BladeCenter are not reduced. This is the default setting.
v "low-power" - Low power consumption for all components of the

BladeCenter enabled for power saving.
v "custom" - Components may have their own settings changed

individually. No component settings are actually changed when
this mode is entered.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

job-uri String URI of the asynchronous job that may be queried to retrieve status updates
for action initiated by this operation.

Description

Use this operation to control the average energy consumption of a BladeCenter object designated by
{bladecenter-id}, or to remove a power consumption limit for this object. You can closely manage power
allocations within the physical limits of your data center.

Chapter 9. Energy management 151

This operation will always fail if the designated BladeCenter is under group control (see “Group
capping” on page 140) or the power-saving property of the BladeCenter is set to "not-supported"or
"not-entitled". (See “Energy Management Related Additional Properties” on page 103 for details on this
property.) In addition, this operation is only available if the ensemble is functioning at the Automate
management enablement level.

The action to change the power-saving settings occurs asynchronously. If the request is accepted, an
asynchronous job is initiated and an HTTP Status code of 202 (Accepted) is returned. The response body
includes a URI that may be queried to retrieve the status of the asynchronous job. See the description of
the Query Job Status operation for information on how to query job status. When the asynchronous job
has completed, an asynchronous result message is sent, with Job status and reason codes described in
“HTTP status and reason codes.” After completion, the Query Job Status operation may be used to
retrieve the completion results.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to all blade, BladeCenter, CPC and zCPC objects
v Action/task permission to the Power Save task.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in “Response body contents” on page 151.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The user is not authorized to access the object or perform this task.

3 The server is not entitled to perform energy management.

404 (Not Found) 1 The object ID in the URI ({bladecenter-id}) does not designate an existing
BladeCenter object, or the API user does not have object access permission to
the object.

409 (Conflict) 1 The operation cannot be performed because the object designated by the
request URI is not in the correct state.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

Job status codes
Job reason
code Description

200 (OK) N/A Operation executed successfully

152 HMC Web Services API

Job status codes
Job reason
code Description

500 (Server Error) 160 A firmware error occurred while executing the operation

161 A hardware error occurred while performing the operation on the
BladeCenter hardware

162 Communication error occurred while trying to access the BladeCenter
hardware

163 An error occurred at one or more children

If the job reason code is 163, the job-results field provided by the Query Job Status operation will
contain an object with the following fields:

Field name Type Description

errors Object array A list of error objects, containing detailed error information about errors
occurred on children

at-least-one-
operation-succeed

Boolean True indicates that the operation was successful for at least one child.

Each error object has this structure:

Job status codes
Job reason
code Description

object-uri String URI The canonical URI path for a specific object where the error occurred

reason-code Integer Specify the specific error type, possible values are:
v 160 - A firmware error occurred while executing the operation
v 161 - A hardware error occurred while performing the energy

management operation
v 162 - Communication error occurred while trying to access the hardware

message String A non localized message provided for development purposes only. Client
applications should not display this message directly to the user.

Set BladeCenter Power Capping
Use the Set BladeCenter Power Capping operation to set the power capping settings of a BladeCenter.

HTTP method and URI
POST /api/bladecenters/{bladecenter-id}/operations/set-power-capping

In this request, the URI variable {bladecenter-id} is the object ID of the BladeCenter.

Chapter 9. Energy management 153

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

power-capping-
state

Enum
string

Required The possible settings are:
v "disabled" - The power cap of the BladeCenter is not set and the

peak power consumption is not limited. This is the default setting.
v "enabled" - Capping all components of the BladeCenter available

for power capping to limit the peak power consumption of the
BladeCenter.

v "custom" - Individually configure the components of the
BladeCenter for power capping. No component settings are
actually changed when this mode is entered.

power-cap-current Integer Optional Specifies the current cap value for the BladeCenter in watts (W). The
current cap value indicates the power budget for the BladeCenter.

This field is only required if the power-capping-state field is set to
"enabled". The power-cap-current must be between
power-cap-minimum and power-cap-maximum:

power-cap-minimum <= value <= power-cap-maximum

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

job-uri String URI of the asynchronous job that may be queried to retrieve status updates
for action initiated by this operation.

Description

Use this operation to limit the peak power consumption of a BladeCenter object designated by
{bladecenter-id}, or to remove a power consumption limit for this object. You can closely manage power
allocations within the physical limits of your data center.

This operation will always fail if the designated BladeCenter is under group control (see “Group
capping” on page 140) or the power-capping-state property of the BladeCenter is set to "not-supported"
or "not-entitled". (See “Energy Management Related Additional Properties” on page 103 for details on
this property.) In addition, this operation is only available if the ensemble is functioning at the Automate
management enablement level.

The action to change the power-capping settings occurs asynchronously. If the request is accepted, an
asynchronous job is initiated and an HTTP Status code of 202 (Accepted) is returned. The response body
includes a URI that may be queried to retrieve the status of the asynchronous job. See the description of
the Query Job Status operation for information on how to query job status. When the asynchronous job
has completed, an asynchronous result message is sent, with Job status and reason codes described in
“HTTP status and reason codes” on page 155. After completion, the Query Job Status operation may be
used to retrieve the completion results.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to all blade, BladeCenter, CPC and zCPC objects

154 HMC Web Services API

v Action/task permission to the Power Capping task.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in “Response body contents” on page 154.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

400 (Bad Request) 7 The power-cap-current field contains a value that is not in the range
power-cap-minimum ... power-cap-maximum

5 The power-cap-current field is not set, but power-capping-state field is set to
"enabled".

403 (Forbidden) 1 The user is not authorized to access the object or perform this task.

3 The server is not entitled to perform energy management.

404 (Not Found) 1 The object ID in the URI ({bladecenter-id}) does not designate an existing
BladeCenter object, or the API user does not have object access permission to
the object.

409 (Conflict) 1 The operation cannot be performed because the object designated by the
request URI is not in the correct state.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

Job status codes
Job reason
code Description

200 (OK) N/A Operation executed successfully

500 (Server Error) 160 A firmware error occurred while executing the operation

161 A hardware error occurred while performing the operation on the
BladeCenter hardware

162 Communication error occurred while trying to access the BladeCenter
hardware

163 An error occurred at one or more children

If the job reason code is 163, the job-results field provided by the Query Job Status operation will
contain an object with the following fields:

Field name Type Description

errors Object array A list of error objects, containing detailed error information about errors
occurred on children

at-least-one-
operation-succeed

Boolean True indicates that the operation was successful for at least one child.

Chapter 9. Energy management 155

Each error object has this structure:

Job status codes
Job reason
code Description

object-uri String URI The canonical URI path for a specific object where the error occurred

reason-code Integer Specify the specific error type, possible values are:
v 160 - A firmware error occurred while executing the operation
v 161 - A hardware error occurred while performing the energy

management operation
v 162 - Communication error occurred while trying to access the hardware

message String A non localized message provided for development purposes only. Client
applications should not display this message directly to the user.

Energy management for blade object

Data model
The data model for a Blade object includes some properties related to energy management. These
properties are described in Chapter 8, “zBX infrastructure elements,” on page 69, under the data model
for the Blade object: “Energy management related additional properties” on page 114.

Set Blade Power Save
Use the Set Blade Power Save operation to set the power save setting of a blade.

HTTP method and URI
POST /api/blade/{blade-id}/operations/set-power-save

In this request, the URI variable {blade-id} is the object ID of the blade.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

power-saving Enum
string

Required The possible settings are:
v "high-performance" - The power consumption and performance of

the blade are not reduced. This is the default setting.
v "low-power" - Low power consumption for all components of the

blade enabled for power saving.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

job-uri String URI of the asynchronous job that may be queried to retrieve status updates
for action initiated by this operation.

156 HMC Web Services API

Description

Use this operation to control the average energy consumption of a blade object designated by {blade-id}, or
to remove a power consumption limit for this object. You can closely manage power allocations within
the physical limits of your data center.

This operation will always fail if the designated blade is under group control (see “Group capping” on
page 140) or the power-saving property of the blade is set to "not-supported" or "not-entitled". (See
“Energy management related additional properties” on page 114 for details on this property.) In addition,
this operation is only available if the ensemble is functioning at the Automate management enablement
level.

The action to change the power-saving settings occurs asynchronously. If the request is accepted, an
asynchronous job is initiated and an HTTP Status code of 202 (Accepted) is returned. The response body
includes a URI that may be queried to retrieve the status of the asynchronous job. See the description of
the Query Job Status operation for information on how to query job status. When the asynchronous job
has completed, an asynchronous result message is sent, with Job status and reason codes described below.
After completion, the Query Job Status operation may be used to retrieve the completion results.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to all blade, BladeCenter, CPC and zCPC objects
v Action/task permission to the Power Save task.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in “Response body contents” on page 156.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The user is not authorized to access the object or perform this task.

3 The server is not entitled to perform energy management.

404 (Not Found) 1 The object ID in the URI ({blade-id}) does not designate an existing blade
object, or the API user does not have object access permission to the object.

409 (Conflict) 1 The operation cannot be performed because the object designated by the
request URI is not in the correct state.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

Job status codes
Job reason
code Description

200 (OK) N/A Operation executed successfully

Chapter 9. Energy management 157

Job status codes
Job reason
code Description

500 (Server Error) 160 A firmware error occurred while executing the operation

161 A hardware error occurred while performing the operation on the blade
hardware

162 Communication error occurred while trying to access the blade hardware

Set Blade Power Capping
Use the Set Blade Power Capping operation to set the power capping settings of a blade.

HTTP method and URI
POST /api/blade/{blade-id}/operations/set-power-capping

In this request, the URI variable {blade-id} is the object ID of the blade.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

power-capping-
state

Enum
string

Required The possible settings are:
v "disabled" - The power cap of the blade is not set and the peak

power consumption is not limited. This is the default setting.
v "enabled" - Capping all components of the blade available for

power capping to limit the peak power consumption of the blade.

power-cap-current Integer Optional Specifies the current cap value for the blade in watts (W). The current
cap value indicates the power budget for the blade.

This field is only required if the power-capping-state field is set to
"enabled". The power-cap-current must be between
power-cap-minimum and power-cap-maximum:

power-cap-minimum <= value <= power-cap-maximum

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

job-uri String URI of the asynchronous job that may be queried to retrieve status updates
for action initiated by this operation.

Description

Use this operation to limit the peak power consumption of a blade object designated by {bladecenter-id}, or
to remove a power consumption limit for this object. You can closely manage power allocations within
the physical limits of your data center.

This operation will always fail if the designated blade is under group control (see “Group capping” on
page 140) or the power-capping-state property of the blade is set to "not-supported" or "not-entitled".

158 HMC Web Services API

(See “Energy management related additional properties” on page 114 for details on this property.) In
addition, this operation is only available if the ensemble is functioning at the Automate management
enablement level.

The action to change the power-capping settings occurs asynchronously. If the request is accepted, an
asynchronous job is initiated and an HTTP Status code of 202 (Accepted) is returned. The response body
includes a URI that may be queried to retrieve the status of the asynchronous job. See the description of
the Query Job Status operation for information on how to query job status. When the asynchronous job
has completed, an asynchronous result message is sent, with Job status and reason codes described below.
After completion, the Query Job Status operation may be used to retrieve the completion results.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to all blade, BladeCenter, CPC and zCPC objects
v Action/task permission to the Power Capping task.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in “Response body contents” on page 158.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

400 (Bad Request) 7 The power-cap-current field contains a value that is not in the range
power-cap-minimum ... power-cap-maximum

5 The power-cap-current field is not set, but power-capping-state field is set to
"enabled".

403 (Forbidden) 1 The user is not authorized to access the object or perform this task.

3 The server is not entitled to perform energy management.

404 (Not Found) 1 The object ID in the URI ({blade-id}) does not designate an existing blade
object, or the API user does not have object access permission to the object.

409 (Conflict) 1 The operation cannot be performed because the object designated by the
request URI is not in the correct state.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

Job status codes
Job reason
code Description

200 (OK) N/A Operation executed successfully

Chapter 9. Energy management 159

Job status codes
Job reason
code Description

500 (Server Error) 160 A firmware error occurred while executing the operation

161 A hardware error occurred while performing the operation on the blade
hardware

162 Communication error occurred while trying to access the blade hardware

160 HMC Web Services API

Chapter 10. Virtualization management

zManager provides facilities for running virtualized computing systems, termed Virtual Servers, on top of
system-firmware-managed hosting environments that coordinate the physical system resources that the
virtual servers share. These hosting environments upon which the virtual servers run are known as
Virtualization Hosts.

The Virtualization Host APIs provide access to the set of virtualization hosts managed by an Ensemble.
PowerVM, x Hyp, z/VM and PR/SM™ virtualization hosts are supported. APIs exist to query
virtualization hosts, retrieve and update select properties of virtualization hosts, and perform operations
on virtualization hosts, such as activate and deactivate.

Within the zEnterprise System, a virtual server can be described as a container for an operating system. It
could be a logical partition on an IBM POWER Blade, a virtual machine on an IBM System x Blade, a
virtual machine defined under z/VM, or a System z logical partition (LPAR). It is created in cooperation
with the virtualization host on the hardware involved. The virtual server container includes the definition
of processor resources, network interfaces and storage devices it will access.

Virtualization host operations summary
The following tables provide an overview of the virtualization host operations provided.

Table 32. Virtualization management - virtualization host: operations summary

Operation name HTTP method and URI path

“List Virtualization Hosts of
an Ensemble” on page 173

GET /api/ensembles/{ensemble-id}/virtualization-hosts

“List Virtualization Hosts of
a CPC” on page 176

GET /api/cpcs/{cpc-id}/virtualization-hosts

“Get Virtualization Host
Properties” on page 179

GET /api/virtualization-hosts/{virt-host-id}

“Update Virtualization Host
Properties” on page 183

POST /api/virtualization-hosts/{virt-host-id}

“List Virtual Switches” on
page 184

GET /api/virtualization-hosts/{virt-host-id}/virtual-switches

“Get Virtual Switch
Properties” on page 186

GET /api/virtualization-host/{virt-host-id}/virtual-switches/{virtual-switch-
id}

“Create IEDN Virtual
Switch” on page 189

POST /api/virtualization-hosts/{virt-host-id}/virtual-switches/operations/add-
iedn

“Create QDIO Virtual
Switch” on page 192

POST /api/virtualization-hosts/{virt-host-id}/virtual-switches/operations/add-
qdio

“Get Switch Controllers” on
page 195

GET /api/virtualization-hosts/{virt-host-id}/operations/get-switch-controllers

“Update Virtual Switch” on
page 197

POST /api/virtualization-hosts/{virt-host-id}/virtual-switches/{virtual-
switch-id}

“Delete Virtual Switch” on
page 201

DELETE /api/virtualization-hosts/{virt-host-id}/virtual-switches/{virtual-
switch-id}

© Copyright IBM Corp. 2012, 2013 161

Table 33. Virtualization management- virtualization host: URI variables

Variable Description

{ensemble-id} Object ID of an ensemble object

{cpc-id} Object ID of a CPC object

{virt-host-id} Object ID of a virtualization host object

{virtual-switch-id} Element ID of a virtual switch

Virtual server operations summary
The following tables provide an overview of the virtual server operations provided.

Table 34. Virtualization management - virtual server: operations summary

Operation name HTTP method and URI path

“List Virtual Servers of an
Ensemble” on page 230

GET /api/ensembles/{ensemble-id}/virtual-servers

“List Virtual Servers of a
CPC” on page 232

GET /api/cpcs/{cpc-id}/virtual-servers

“List Virtual Servers of a
Virtualization Host” on page
235

GET /api/virtualization-hosts/{virt-host-id}/virtual-servers

“Create Virtual Server” on
page 237

POST /api/virtualization-hosts/{virt-host-id}/virtual-servers

“Delete Virtual Server” on
page 242

DELETE /api/virtual-servers/{virtual-server-id}

“Get Virtual Server
Properties” on page 243

GET /api/virtual-servers/{virtual-server-id}

“Update Virtual Server
Properties” on page 251

POST /api/virtual-servers/{virtual-server-id}

“Create Network Adapter”
on page 256

POST /api/virtual-servers/{virtual-server-id}/network-adapters

“Update Network Adapter”
on page 259

POST /api/virtual-servers/{virtual-server-id}/network-adapters/{network-
adapter-id}

“Delete Network Adapter”
on page 262

DELETE /api/virtual-servers/{virtual-server-id}/network-adapters/{network-
adapter-id}

“Reorder Network Adapter”
on page 263

POST /api/virtual-servers/{virtual-server-id}/operations/reorder-network-
adapters

“Create Virtual Disk” on
page 265

POST /api/virtual-servers/{virtual-server-id}/virtual-disks

“Delete Virtual Disk” on
page 268

DELETE /api/virtual-servers/{virtual-server-id}/virtual-disks/{virtual-disk-
id}

“Get Virtual Disk
Properties” on page 270

GET /api/virtual-servers/{virtual-server-id}/virtual-disks/{virtual-disk-id}

“Update Virtual Disk
Properties” on page 272

POST /api/virtual-servers/{virtual-server-id}/virtual-disks/{virtual-disk-id}

“Reorder Virtual Disks” on
page 274

POST /api/virtual-servers/{virtual-server-id}/operations/reorder-virtual-disks

“Activate Virtual Server” on
page 277

POST /api/virtual-servers/{virtual-server-id}/operations/activate

162 HMC Web Services API

Table 34. Virtualization management - virtual server: operations summary (continued)

Operation name HTTP method and URI path

“Deactivate Virtual Server”
on page 278

POST /api/virtual-servers/{virtual-server-id}/operations/deactivate

“Mount Virtual Media” on
page 280

POST /api/virtual-servers/{virtual-server-id}/operations/mount-virtual-media

“Mount Virtual Media
Image” on page 283

POST /api/virtual-servers/{virtual-server-id}/operations/mount-virtual-media-
image

“Unmount Virtual Media”
on page 285

POST /api/virtual-servers/{virtual-server-id}/operations/unmount-virtual-media

“Migrate Virtual Server” on
page 286

POST /api/virtual-servers/{virtual-server-id}/operations/migrate

“Initiate Virtual Server
Dump” on page 289

POST /api/virtual-servers/{virtual-server-id}/operations/initiate-dump

Table 35. Virtualization management - virtual server: URI variables

Variable Description

{ensemble-id} Object ID of an ensemble object

{cpc-id} Object ID of a CPC object

{virt-host-id} Object ID of a virtualization host object

{virtual-server-id} Object ID of a virtual server object

{network-adapter-id} Element ID of an network adapter object

{virtual-disk-id} Element ID of a virtual disk object

Virtualization host object
A virtualization host object represents a single zEnterprise virtualization host.

Data model
This object includes the properties defined in the “Base managed object properties schema” on page 33,
with the following class-specific specialization:

Table 36. Virtualization host object: base managed object properties specializations

Name Qualifier Type Description of specialization

object-uri — String/ URI The canonical URI path for a virtualization host object is of the
form /api/virtualization-hosts/{object-id}.

name (ro) String (1-64) The display name of the virtualization host.1 Not writeable. The
name is derived from the name of the underlying hosting
environment (e.g. blade).

class — String (19) The class will always be "virtualization-host".

parent — String/ URI The canonical URI path of the node that manages the virtualization
host.

Chapter 10. Virtualization management 163

|

Table 36. Virtualization host object: base managed object properties specializations (continued)

Name Qualifier Type Description of specialization

status (sc) String Enum The current operational status of the virtualization host.

Valid values common to all types:

v "operating" - indicates virtualization host is running normally

v "not-operating" - indicates the virtualization host is deactivated,
in the process of loading, or has a error

v "status-check" - indicates the support element is not
communicating with the CPC

v "not-communicating" - indicates the HMC is not communicating
with the support element.

Valid values for type "power-vm", "x-hyp":

v "definition-error" - indicates that the specified zBX Blade does
not match the characteristics of the installed zBX Blade

v "no-power" - indicates the zBX Blade powered off

v "stopped" - indicates the Support Element with the zBX Blade is
stopped.

Valid values for type "zvm":

v "exceptions" - indicates at least one CP is operating, but at least
one CP is not operating.

v "not-activated" - indicates the image has not been activated.

Valid values for type "prsm":

v "degraded" - indicates the CPC is operating but some hardware
is not available.

v "exceptions" - indicates that at least one Central Processor (CP) is
operating, but at least one CP is not operating.

v "no-power" - indicates that the CPC is powered off.

v "service" - indicates that CPs are in service status.

v "service-required" - indicates that the CPC is still operating but is
using the last redundant part of a particular type.

additional
status

— This property is not provided.

Note: 1The location of a blade can be moved from slot to slot within a zBX. When a blade is moved to a different
slot, the original URI of this blade and virtualization host object is retained. Since the name of the blade and
virtualization host is based on the slot location of the blade, the name property can change for a given URI when
the blade is moved within the zBX. The relocation of a blade generates inventory change notifications to report the
removal of the blade and the corresponding virtualization host object, then inventory change notifications to report
the addition of the blade and the virtualization host. Upon addition of the blade and virtualization host, expect the
value of the name property to differ.

Class specific additional properties
In addition to the properties defined in included schemas, this object includes the following additional
type-specific properties:

164 HMC Web Services API

|
|
|
|
|
|
|

Table 37. Virtualization host object: class specific additional properties

Name Qualifier Type Description

Supported
“type”
values

type — String Enum Type of the virtual server.

Values:

v "power-vm"- a virtualization host running on a
POWER blade

v "x-hyp" - The canonical URI path for the System x
blade that hosts the virtualization host.

v "zvm" - an IBM z/VM operating system instance
that is participating as an ensemble-managed
virtualization host

v "prsm" - the virtualization host representation of a
CPC

All

hosting-
environment

— String/URI The hosting environment (cpc, image, or blade) of the
virtualization host.

Value based on type:

v "power-vm" - The canonical URI path for the
System z POWER blade that hosts the
virtualization host.

v "x-hyp" - The canonical URI path for the System x
Blade that hosts the virtualization host.

v "zvm" - The canonical URI path for the PR/SM
virtual server that is hosting the z/VM
virtualization host.

v "prsm" - The canonical URI path for the CPC that
is the PR/SM virtualization host.

All

virtual-server-
shutdown-timeout

(w)(pc) Integer Amount of time, in seconds, to allow a virtual server
to cleanly shutdown. After the elapsed time has
passed, the virtual server will be forcefully stopped.

The value may be -1 to indicate to wait “forever” or
any integer value between 0 and (2^31 – 1) to specify
an exact wait time in seconds.

All

auto-start-virtual-
servers

(w)(pc) Boolean Automatically start any virtual servers configured to
start when the virtualization host is started.

power-vm,
x-hyp

total-memory (pc) Integer The total amount of memory the hypervisor has (in
MB).

All

memory-increment-
in-megabytes

— Integer The minimum "increment", in megabytes, that is
required when setting the memory size for a virtual
server.

power-vm,
x-hyp, zvm

minimum-memory-
size-for-virtual-
server

— Integer The minimum memory size, in megabytes, that can
be configured for a virtual server.

power-vm,
x-hyp, zvm

maximum-memory-
size-for-virtual-
servers

— Integer The maximum memory size, in megabytes, that can
be configured for a virtual server.

power-vm,
x-hyp, zvm

maximum-allowed-
dedicated-
processors

— Integer The maximum number of dedicated processors that
can be configured for a virtual server.

power-vm,
zvm

Chapter 10. Virtualization management 165

Table 37. Virtualization host object: class specific additional properties (continued)

Name Qualifier Type Description

Supported
“type”
values

maximum-allowed-
virtual-processors

— Integer The maximum number of virtual processors that can
be configured for a virtual server.

power-vm,
x-hyp, zvm

maximum-allowed-
processing-units

— Float The maximum number of processing units that can
be configured for a virtual server. Processing units
are a unit of measure for shared processing power
across one or more virtual processors. One shared
processing unit on one virtual processor accomplishes
approximately the same work as one dedicated
processor.

power-vm

maximum-allowed-
ide-devices

— Integer The maximum number of IDE devices that can be
configured for a virtual server

x-hyp

mixed-
mode-boot-
restriction

— Boolean Indicates if a virtual disk boot restriction exists for
the virtualization host's virtual servers that would
prevent booting from "virtio" virtual disks when both
"ide" and "virtio" virtual disks are defined. In such a
case, the virtual server will always boot from an
"ide" virtual disk.

x-hyp

inband-monitoring-
supported

— Boolean If true, in-band monitoring is supported for the
Virtualization Host, allowing it to gather performance
metrics on its virtual servers.

power-vm,
x-hyp

supported-
keyboard-languages

— Array of
Strings

List of keyboard languages supported by the
hypervisor for graphical console connections.

The value is null if no key map is supported or
necessary or if graphical console is not supported.

See the virtual server object's keyboard-language
property for the description of an array element
value.

x-hyp

is-bridge-capable — Boolean If the virtualization host is capable of having virtual
switches with bridge ports, the value is true. For true
to be returned the following requirements must be
met; otherwise, false is returned:

v The os-level property of the PR/SM virtual server
running the z/VM virtualization host is “621” or
greater

v The se-version property of the CPC object is 2.11.1
or higher.

zvm

166 HMC Web Services API

Table 37. Virtualization host object: class specific additional properties (continued)

Name Qualifier Type Description

Supported
“type”
values

feature-list — Array of
String
Enums

Optional features or behaviors supported by this
virtualization host. The presence of one of the Enum
values described below indicates that this
virtualization host provides the described feature. If
the virtualization host has no such optional features,
an empty array is provided.

Backport related feature-list values for an "x-hyp"
virtualization host:

v "boot-sequence-mixed-disk-restriction" - Indicates
that a virtual disk boot restriction exists for the
virtualization host's virtual servers that would
prevent booting from "virtio" virtual disks when
both "ide" and "virtio" virtual disks are defined. In
such a case, the virtual server will always boot
from an "ide" virtual disk.

v "boot-sequence-network-priority-restriction" -
Indicates that a virtual network adapter boot
restriction exists for the virtualization host's virtual
servers that would force "network-adapter" to be
the first entry in the boot-sequence property.

v "boot-sequence-virtual-disk-enforcement" -
Indicates that a virtualization host's virtual server's
boot-sequence property must contain an entry for
"virtual-disk" if at least one virtual disk has been
configured.

v "boot-sequence-network-adapter-enforcement" -
Indicates that a virtualization host's virtual server's
boot-sequence property must contain an entry for
"network-adapter" if at least one network adapter
has been configured.

v "boot-sequence-virtual-media-enforcement" -
Indicates that a virtualization host's virtual server's
boot-sequence property must contain an entry for
"virtual-media".

All

Virtual switch objects
A virtual switch is a special type of guest LAN that provides external LAN connectivity through an
OSA-Express device without the need for a routing virtual machine.

Note: Some properties are only valid when mutable prerequisite properties have specific values. When
such properties are not valid, their value is null. For instance a iedn-virtual-switch object's router
property value is null when the layer-mode value is "eth".

iedn-virtual-switch object: The iedn-virtual-switch object is a virtual-switch object that defines the IEDN
virtual switch of a virtualization-host object of type "zvm".

Chapter 10. Virtualization management 167

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

Table 38. iedn-virtual-switch object properties

Name Qualifier Type Description

element-id — String Unique ID for the virtual switch within the scope of the containing
virtualization host. The element-id is actually the name of the
virtual switch. Once the virtual switch is created, the name cannot
be changed.

element-uri — String/URI The canonical URI path for the virtual switch is of the form
/api/virtualization-hosts/{virt-host-id}/virtual-switches/
{element-id}, where {virt-host-id} is the object-id of the
virtualization host.

parent — String/URI The URI path of the z/VM Virtualization Host that hosts this
virtual switch.

class — String (14) Always "virtual-switch"

type — String
Enum

The virtual switch type. Always "iedn"

name — String (1-8) The unique name identifying the virtual switch.

1-8 alphanumeric uppercase characters or any of the following
characters: “@#$”

switch-status — String Virtual switch status, read-only.

layer-mode — String
Enum

Indicates the transport for the virtual switch is Ethernet or IP.
Values:

v "eth" : This type is Data Link (Layer 2) based, where the
Ethernet frame is used as the point of reference for source and
destination Media Access Control (MAC) addresses in
transporting Ethernet frames on the LAN.

v "ip": This type is Network (Layer 3) based, where the IP package
is used as the point of reference for source and destination IP
addresses in transporting IP packets on the LAN.

router — String
Enum

The router type.

Prerequisites: layer-mode is "ip".

Values:

v "none" - Indicates that the OSA-Express device identified will
not act as a router to the virtual switch. If a datagram is received
at this device for an unknown IP address, the datagram will be
discarded.

v "primary" - Indicates that the OSA-Express device identified will
act as a primary router to the virtual switch. If a datagram is
received at this device for an unknown IP address, the datagram
will be passed to the virtual switch. The only time to set
PRIMARY for a virtual switch is if you have a guest attached to
the virtual switch that is providing a routing function for
systems attached to another network.

queue-size — Integer Queue storage in megabytes: decimal number between 1 and 8

ip-timeout — Integer IP timeout in seconds: decimal number between 1 and 240

is-connect-uplinks — Boolean If the switch is connected to uplinks, the value is true.

real-uplinks — Array of
real-uplink
objects

A list of zero to three real-uplink objects.

is-use-any-
available-controller

— Boolean True if the switch uses any available controller.

168 HMC Web Services API

Table 38. iedn-virtual-switch object properties (continued)

Name Qualifier Type Description

controllers — Array of
strings

A list of names of switch controllers. Prerequisites:
is-use-any-available-controller is false.

bridge-value-type (w) String
Enum

Whether the bridge port is a primary or secondary port. There can
only be 1 primary and up to 4 secondary bridge ports.

Values:

v "primary" - Bridge port is the primary port

v "secondary" - Bridge port is a secondary port.

Prerequisite: This field is applied to a vSwitch that has a valid
bridge-device-number.

If not specified when the bridge port is defined, then the default is
"secondary". This field can be modified when the
bridge-connection-status is "disconnected".

bridge-device-
number

(w) String (1-4) The bridge device number. The following values may be specified:

v The bridge real device number, 1~4 hex digits.

Prerequisites: The is-bridge-capable property of the virtualization
host is true and the layer-mode property of the virtual switch is
"eth".

This property is required to define a device for a bridge port and
must be a nonblank, valid device number.

bridge-connection-
status

(w) String
Enum

Whether the bridge port is connected or in standby state.

Prerequisites: The is-bridge-capable property of the virtualization
host is true and the virtual switch has a valid bridge-device-
number.

Values:

v "connected" - Bridge port is connected

v "disconnected" - Bridge port is disconnected.

v "standby" - Bridge port is in standby state

mtu-size-
enforcement

(w) String
Enum

How the virtual switch MTU size is enforced.

Prerequisites: The is-bridge-capable property of the virtualization
host is true.

Values:

v "external" - The MTU size will be set to the size used by the
OSA adapter. This is the default value.

v "off" - MTU enforcement is disabled

v "user-defined" - The MTU size is specified in the mtu-size field

mtu-size (w) Integer The MTU specification represents the acceptable MTU size, in
bytes, enforced by the virtual switch. MTU size is a decimal
number between 512-65535.

Prerequisite: This field is applied to a virtual switch where the
is-bridge-capable property of the virtualization host is true and the
mtu-size-enforcement property of the virtual switch is
"user-defined".

Chapter 10. Virtualization management 169

real-uplink object: This is the embedded object definition for a virtual switch. For IEDN virtual switch,
the switch-uri property is required. For QDIO virtual switch, the switch-uri property is ignored.

Table 39. real-uplink object properties

Name Type Description

switch-uri String The element-uri of the network-adapter-prsm object in use by the z/VM
virtual switch to provide a connection between a virtual network and a
physical network.

Prerequisites: type in the parent switch is "iedn".

device-number String
(1-8)

The uplink real device number, 1-8 hex digits. The value could be either "none"
or a string with the regular expression pattern [0-9a-fA-F]{1,4}(.P[0-9][0-9])?. If
the optional (.P[0-9][0-9]) part is not specified, a default string ".P00" will be
used.

qdio-virtual-switch object
The qdio-virtual-switch object is a virtual-switch object that defines the QDIO virtual switch of a
virtualization-host object of type "zvm".

Table 40. qdio-virtual-switch object properties

Name Qualifier Type Description

element-id — String Unique ID for the virtual switch within the scope of the containing
virtualization host. The element-id is actually the name of the
virtual switch. Once the virtual switch is created, the name cannot
be changed.

element-uri — String/URI The canonical URI path for the virtual switch is of the form
/api/virtualization-hosts/{virt-host-id}/virtual-switches/
{element-id}, where {virt-host-id} is the object-id of the
virtualization host.

parent — String/URI The URI path of the z/VM Virtualization Host that hosts this
virtual switch.

class — String (14) Always "virtual-switch"

type — String Enum Virtual switch type. Always "qdio"

name — String (1-8) The unique name identifying the virtual switch.

1-8 alphanumeric uppercase characters, or any of the following
characters: “@#$”

switch-status — String Virtual switch status, read-only.

is-vlan-aware — Boolean True if not VLAN unaware. VLAN unaware is a classification for a
networking device that indicates it does not support the IEEE
802.1Q VLAN specification for VLAN membership and VLAN
frame formats. These devices ignore the additional fields within
the Ethernet frame that carry VLAN specific semantics.

vlan-id — String (1-4) Vlan ID : 1-4 decimal digits, maximum 4094. Prerequisites:
is-vlan-aware is true.

vlan-object-uri — String/URI The canonical URI path for the associated virtual network.

Prerequisites: is-vlan-aware is true.

170 HMC Web Services API

Table 40. qdio-virtual-switch object properties (continued)

Name Qualifier Type Description

vlan-port-type — String Enum Indicates the port type of the simulated NIC. This setting is
applied to the switch, not the single port on the switch.

Prerequisites: is-vlan-aware is true.

Values:

v "trunk": When the switch port is configured in trunk mode, it
will allow the flow of traffic from multiple virtual networks (i.e.
VLANS). The port must be configured with those virtual
networks.

v "access": When the switch port is configured in access mode, it
will support a single virtual network. Traffic from the virtual
server's network adapter will be tagged with the virtual network
configured for this port, and traffic destined to the virtual server
on this port will be verified that it is tagged with the configured
virtual network.

vlan-native-id — String Native vlan ID : 1-4 decimal digits, maximum 4094.

Prerequisites: is-vlan-aware is true.

A native VLAN ID, (usually VLAN ID 0001) is deployed internally
by the virtual switch to associate or flow untagged frames through
the switching fabric. Only those guests that are configured for the
native VLAN ID will receive or send untagged frames.

is-gvrp-enabled — Boolean True if GVRP is enabled.

Prerequisites: is-vlan-aware is true.

Generic Attribute Registration Protocol (GARP) VLAN Registration
Protocol (GVRP) is an application defined in the IEEE802.1Q
standard that allows for the control of VLANs. It runs only on
802.1Q trunk links. It prunes trunk links so that only active
VLANs will be sent across trunk connections.

layer-mode — String Enum Indicates the transport for the virtual switch is Ethernet or IP.
Values:

v "eth" : This type is Data Link (Layer 2) based, where the
Ethernet frame is used as the point of reference for source and
destination Media Access Control (MAC) addresses in
transporting Ethernet frames on the LAN.

v "ip": This type is Network (Layer 3) based, where the IP
package is used as the point of reference for source and
destination IP addresses in transporting IP packets on the LAN.

Chapter 10. Virtualization management 171

Table 40. qdio-virtual-switch object properties (continued)

Name Qualifier Type Description

router — String Enum The router type.

Prerequisites: layer-mode is "ip".

Values:

v "none" - Indicates that the OSA-Express device identified will
not act as a router to the virtual switch. If a datagram is
received at this device for an unknown IP address, the datagram
will be discarded.

v "primary" - Indicates that the OSA-Express device identified will
act as a primary router to the virtual switch. If a datagram is
received at this device for an unknown IP address, the datagram
will be passed to the virtual switch. The only time to set
PRIMARY for a virtual switch is if you have a guest attached to
the virtual switch that is providing a routing function for
systems attached to another network.

queue-size — Integer Indicates the upper limit of the amount of fixed storage CP and
Queued Direct I/O Hardware Facility will use for buffers for each
OSA-Express data device.

Queue storage in megabytes: decimal number between 1 and 8.

ip-timeout — Integer IP timeout in seconds: decimal number between 1 and 240.

is-connect-uplinks Boolean True if connected to uplinks.

real-uplinks — Array of
real-uplink
objects

A list of zero to three real-uplink objects.

is-use-any-
available-controller

— Boolean True if the switch uses any available controller.

controllers — Array of
strings

A list of names of switch controllers.

Prerequisites: is-use-any-available-controller is false.

bridge-value-type (w) String Enum Whether the bridge port is a primary or secondary port. There can
only be 1 primary and up to 4 secondary bridge ports.

Values:

v "primary" - Bridge port is the primary port

v "secondary" - Bridge port is a secondary port.

Prerequisite: This field is applied to a vSwitch that has a valid
bridge-device-number.

If not specified when the bridge port is defined, then the default is
"secondary". This field can be modified when the
bridge-connection-status is "disconnected".

bridge-device-
number

(w) String (1-4) The bridge device number. The following values may be specified:

v The bridge real device number, 1~4 hex digits.

Prerequisites: The is-bridge-capable property of the virtualization
host is true and the layer-mode property of the virtual switch is
"eth".

This property is required to define a device for a bridge port and
must be a nonblank, valid device number.

172 HMC Web Services API

Table 40. qdio-virtual-switch object properties (continued)

Name Qualifier Type Description

bridge-connection-
status

(w) String Enum Whether the bridge port is connected, disconnected or in standby
state.

Prerequisites: The is-bridge-capable property of the virtualization
host is true and the virtual switch has a valid bridge-device-
number.

Values:

v "connected" - Bridge port is connected (default)

v "disconnected" - Bridge port is disconnected

v "standby" - Bridge port is in standby state.

mtu-size-
enforcement

(w) String Enum How the virtual switch MTU size is enforced.

Prerequisites: The is-bridge-capable property of the virtualization
host is true.

Values:

v "external" - The MTU size will be set to the size used by the
OSA adapter. This is the default value.

v "off" - MTU enforcement is disabled

v "user-defined" - The MTU size is specified in the mtu-size field

mtu-size (w) Integer The MTU specification represents the acceptable MTU size, in
bytes, enforced by the virtual switch. MTU size is a decimal
number between 512-65535.

Prerequisite: This field is applied to a virtual switch where the
is-bridge-capable property of the virtualization host is true and
the mtu-size-enforcement of the virtual switch is "user-defined".

Operations
If a virtualization host operation accesses a z/VM virtualization host and encounters an error while
communicating with the virtualization host via SMAPI, the response body is a SMAPI Error Response
Body.

List Virtualization Hosts of an Ensemble
The List Virtualization Hosts of an Ensemble operation lists the Virtualization Hosts managed by the
ensemble with the given identifier.

HTTP method and URI
GET /api/ensembles/{ensemble-id}/virtualization-hosts

In this request, the URI variable {ensemble-id} is the object ID of the Ensemble object.

Query parameters:

Name Type Rqd/Opt Description

name String Optional Filter pattern (regular expression) to limit returned objects to
those that have a matching name property.

type String
Enum

Optional Filter string to limit returned objects to those that have a
matching type property.

Value must be a valid Virtualization Host type property value.

Chapter 10. Virtualization management 173

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

virtualization-hosts Array of
objects

Array of virtualization-host-info objects, described in the next table.
Returned array may be empty.

Each nested virtualization-host-info object contains the following fields:

Field name Type Description

object-uri String/
URI

The canonical URI path of the Virtualization Host

name String Name of the Virtualization Host

type String
Enum

Type of Virtualization Host

status String
Enum

Current status of the Virtualization Host

Description

This operation lists the Virtualization Hosts that are managed by the identified ensemble.

If the name query parameter is specified, the returned list is limited to those Virtualization Hosts that
have a name property matching the specified filter pattern. If the name parameter is omitted, this
filtering is not done

If the type query parameter is specified, the parameter is validated to ensure it is a valid Virtualization
Host type property value. If the value is not valid, a 400 (Bad Request) is returned. If the value is valid,
the returned list is limited to those Virtualization Hosts that have a type property matching the specified
value. If the type parameter is omitted, this filtering is not done.

A Virtualization Host is included in the list only if the API user has object-access permission to its
hosting-environment. If an HMC is a manager of a Virtualization Host but the API user does not have
permission to it, that object is simply omitted from the list but no error status code results.

If the ensemble does not manage any Virtualization Hosts or if no Virtualization Hosts are to be included
in the results due to filtering, an empty list is provided and the operation completes successfully.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the specified ensemble
v Object access permission to hosting-environment of the Virtualization Hosts managed by the specified

ensemble.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is provided and the response body is as described in “Response
body contents.”

174 HMC Web Services API

If errors occur, the following HTTP status codes are provided, and the response body is a standard error
response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

80 A type query parameter defines an invalid value.

404 (Not Found) 1 The request URI does not designate an existing resource of the expected
type, or designates a resource for which the API user does not have
object-access permission.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/ensembles/87d73ffc-75b2-11e0-9ba3-0010184c8026/virtualization-hosts HTTP/1.1
x-api-session: 4oup923zgs27vmd1wpzvu47ikgzhxa8bwimjofpq6d3eq3j13q

Figure 71. List Virtualization Hosts of an Ensemble: Request

Chapter 10. Virtualization management 175

List Virtualization Hosts of a CPC
The List Virtualization Hosts of a CPC operation lists the Virtualization Hosts managed by the CPC with
the given identifier.

HTTP method and URI
GET /api/cpcs/{cpc-id}/virtualization-hosts

In this request, the URI variable {cpc-id} is Object ID of the CPC object.

Query parameters:

Name Type Rqd/Opt Description

name String Optional Filter pattern (regular expression) to limit returned objects to
those that have a matching name property.

type String
Enum

Optional Filter string to limit returned objects to those that have a
matching type property.

Value must be a valid Virtualization Host type property value.

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 22 Jul 2011 15:02:37 GMT
content-type: application/json;charset=UTF-8
content-length: 824
{

"virtualization-hosts": [
{

"name": "APIVM1",
"object-uri": "/api/virtualization-hosts/342d80e0-65ff-11e0-acfd-f0def10c03f4",
"status": "operating",
"type": "zvm"

},
{

"name": "B.2.02",
"object-uri": "/api/virtualization-hosts/ba97ff30-2990-11e0-8d5b-001f163803de",
"status": "operating",
"type": "power-vm"

},
{

"name": "B.2.03",
"object-uri": "/api/virtualization-hosts/931b25d6-82e1-11e0-b9e4-f0def10bff8d",
"status": "operating",
"type": "x-hyp"

},
{

"name": "R32",
"object-uri": "/api/virtualization-hosts/bab76208-2990-11e0-8d5b-001f163803de",
"status": "operating",
"type": "prsm"

}
]

}

Figure 72. List Virtualization Hosts of an Ensemble: Response

176 HMC Web Services API

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

virtualization-hosts Array of
objects

Array of virtualization-host-info objects, described in the next table.
Returned array may be empty.

Each nested virtualization-host-info object contains the following fields:

Field name Type Description

object-uri String/
URI

The canonical URI path of the Virtualization Host

name String Name of the Virtualization Host object

type String
Enum

Type of Virtualization Host. ("power-vm", "x-hyp", "zvm", or "prsm")

status String
Enum

Current status of the Virtualization Host

Description

This operation lists the Virtualization Hosts that are managed by the specified CPC. The object URI,
object ID, display name, and display description are provided for each.

If the name query parameter is specified, the returned list is limited to those Virtualization Hosts that
have a name property matching the specified filter pattern. If the name parameter is omitted, this
filtering is not done

If the type query parameter is specified, the parameter is validated to ensure it is a valid Virtualization
Host type property value. If the value is not valid, a 400 (Bad Request) is returned. If the value is valid,
the returned list is limited to those Virtualization Hosts that have a type property matching the specified
value. If the type parameter is omitted, this filtering is not done.

If both name and type query parameters are specified, a Virtualization Host is included in the list only if
it passes both the name and type filtering criteria.

A Virtualization Host is included in the list only if the API user has object-access permission to its
hosting-environment. If an HMC is a manager of a Virtualization Host but the API user does not have
permission to it, that object is simply omitted from the list but no error status code results.

The list that is returned is never empty because a CPC always has a PR/SM Virtualization Host, and may
have additional ones as well. If no Virtualization Hosts are to be included in the results due to filtering,
an empty list is provided and the operation completes successfully.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the specified CPC
v Object access permission to hosting-environment of the Virtualization Hosts managed by the specified

CPC.

Chapter 10. Virtualization management 177

HTTP status and reason codes

On success, HTTP status code 200 (OK) is provided and the response body is as described in “Response
body contents” on page 177.

If errors occur, the following HTTP status codes are provided, and the response body is a standard error
response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

80 A type query parameter defines an invalid value.

404 (Not Found) 1 The request URI does not designate an existing resource of the expected
type, or designates a resource for which the API user does not have
object-access permission.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/virtualization-hosts HTTP/1.1
x-api-session: 4oup923zgs27vmd1wpzvu47ikgzhxa8bwimjofpq6d3eq3j13q

Figure 73. List Virtualization Hosts of a CPC: Request

178 HMC Web Services API

Get Virtualization Host Properties
The Get Virtualization Host Properties operation retrieves the properties of a single Virtualization Host
object that is designated by its object-id.

HTTP method and URI
GET /api/virtualization-hosts/{virt-host-id}

In this request, the URI variable {virt-host-id} is Object ID of the Virtualization Host object for which
properties are to be obtained.

Response body contents

On successful completion, the response body contains a JSON object that provides the current values of
the properties for the Virtualization Host object as defined in the “Data model” on page 163. Field names
and data types in the JSON object are the same as the property and data types defined in the data model.

Description

Retrieve the current values for properties supported by the specified Virtualization Host.

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 22 Jul 2011 15:02:37 GMT
content-type: application/json;charset=UTF-8
content-length: 824
{

"virtualization-hosts": [
{

"name": "APIVM1",
"object-uri": "/api/virtualization-hosts/342d80e0-65ff-11e0-acfd-f0def10c03f4",
"status": "operating",
"type": "zvm"

},
{

"name": "B.2.02",
"object-uri": "/api/virtualization-hosts/ba97ff30-2990-11e0-8d5b-001f163803de",
"status": "operating",
"type": "power-vm"

},
{

"name": "B.2.03",
"object-uri": "/api/virtualization-hosts/931b25d6-82e1-11e0-b9e4-f0def10bff8d",
"status": "operating",
"type": "x-hyp"

},
{

"name": "R32",
"object-uri": "/api/virtualization-hosts/bab76208-2990-11e0-8d5b-001f163803de",
"status": "operating",
"type": "prsm"

}
]

}

Figure 74. List Virtualization Hosts of a CPC: Response

Chapter 10. Virtualization management 179

If the object-id {virt-host-id} does not identify a Virtualization Host object for which the API user has
object-access permission to its hosting-environment, a 404 status code is returned.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to hosting-environment of the Virtualization Host with object-id {virt-host-id}.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is provided and the response body is as described in “Response
body contents” on page 179.

If errors occur, the following HTTP status codes are provided, and the response body is a standard error
response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The request URI does not designate an existing resource of the expected
type, or designates a resource for which the API user does not have
object-access permission.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/virtualization-hosts/bab76208-2990-11e0-8d5b-001f163803de HTTP/1.1
x-api-session: 4oup923zgs27vmd1wpzvu47ikgzhxa8bwimjofpq6d3eq3j13q

Figure 75. Get Virtualization Host Properties: Request

180 HMC Web Services API

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 22 Jul 2011 15:02:37 GMT
content-type: application/json;charset=UTF-8
content-length: 640
{

"acceptable-status": [
"operating"

],
"class": "virtualization-host",
"description": "Initial description",
"has-unacceptable-status": false,
"hosting-environment": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340",
"is-locked": false,
"name": "R32",
"object-id": "bab76208-2990-11e0-8d5b-001f163803de",
"object-uri": "/api/virtualization-hosts/bab76208-2990-11e0-8d5b-001f163803de",
"parent": "/api/ensembles/87d73ffc-75b2-11e0-9ba3-0010184c8026/nodes/37c6f8a9-8d5e-3e5d-8466-
be79e49dd340",
"status": "operating",
"type": "prsm",
"virtual-server-shutdown-timeout": 200

}

Figure 76. Get Virtualization Host Properties: Response for virtualization host of type "prsm"

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 22 Jul 2011 15:02:37 GMT
content-type: application/json;charset=UTF-8
content-length: 988
{

"acceptable-status": [
"operating"

],
"auto-start-virtual-servers": true,
"class": "virtualization-host",
"description": "single update ABC ",
"has-unacceptable-status": true,
"hosting-environment": "/api/blades/938706AC3FF111D78B5600215EC0330E",
"is-locked": false,
"maximum-allowed-dedicated-processors": 57,
"maximum-allowed-processing-units": 57.600000000000001,
"maximum-allowed-virtual-processors": 64,
"maximum-memory-size-for-virtual-server": 27648,
"memory-increment-in-megabytes": 256,
"minimum-memory-size-for-virtual-server": 256,
"name": "B.2.02",
"object-id": "ba97ff30-2990-11e0-8d5b-001f163803de",
"object-uri": "/api/virtualization-hosts/ba97ff30-2990-11e0-8d5b-001f163803de",
"parent": "/api/ensembles/87d73ffc-75b2-11e0-9ba3-0010184c8026/nodes/37c6f8a9-8d5e-3e5d-8466-
be79e49dd340",
"status": "operating",
"type": "power-vm",
"virtual-server-shutdown-timeout": 2147483647

}

Figure 77. Get Virtualization Host Properties: Response for virtualization host of type "power-vm"

Chapter 10. Virtualization management 181

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 22 Jul 2011 15:02:37 GMT
content-type: application/json;charset=UTF-8
content-length: 930
{

"acceptable-status": [
"operating"

],
"auto-start-virtual-servers": true,
"class": "virtualization-host",
"description": "",
"has-unacceptable-status": true,
"hosting-environment": "/api/blades/B8210BC02D1E11E0AE81E41F13FE1430",
"is-locked": false,
"maximum-allowed-ide-devices": 3,
"maximum-allowed-virtual-processors": 16.0,
"maximum-memory-size-for-virtual-server": 125829,
"memory-increment-in-megabytes": 1,
"minimum-memory-size-for-virtual-server": 1,
"mixed-mode-boot-restriction": true,
"name": "B.2.03",
"object-id": "931b25d6-82e1-11e0-b9e4-f0def10bff8d",
"object-uri": "/api/virtualization-hosts/931b25d6-82e1-11e0-b9e4-f0def10bff8d",
"parent": "/api/ensembles/87d73ffc-75b2-11e0-9ba3-0010184c8026/nodes/37c6f8a9-8d5e-3e5d-8466-
be79e49dd340",
"status": "operating",
"type": "x-hyp",
"virtual-server-shutdown-timeout": 302

}

Figure 78. Get Virtualization Host Properties: Response for virtualization host of type "x-hyp"

182 HMC Web Services API

Update Virtualization Host Properties
The Update Virtualization Host Properties operation updates one or more of the writeable properties of
a Virtualization Host.

HTTP method and URI
POST /api/virtualization-hosts/{virt-host-id}

In this request, the URI variable {virt-host-id} is the object ID of the Virtualization Host object for which
properties are to be updated.

Request body contents

The request body contains a JSON object that provides the new values of the writeable properties of the
Virtualization Host object as defined in the Data Model section above. Field names and data types in the
JSON object are the same as the property or relationship names and data types defined in the data
model.

Writeable properties are only valid if they are supported for a Virtualization Host whose type property
matches the given type property value. For example, auto-start-virtual-servers is only a writeable
property for type "power-vm" and "x-hyp" Virtualization Hosts.

Description

This operation updates writeable properties of the Virtualization Host object specified by the request URI.

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 22 Jul 2011 15:02:37 GMT
content-type: application/json;charset=UTF-8
content-length: 893
{

"acceptable-status": [
"operating"

],
"class": "virtualization-host",
"description": "An initial description",
"has-unacceptable-status": false,
"hosting-environment": "/api/virtual-servers/4401b16c-ac9a-11e0-ade4-001f163805d8",
"is-locked": false,
"maximum-allowed-dedicated-processors": 64,
"maximum-allowed-virtual-processors": 64,
"maximum-memory-size-for-virtual-server": 1048576,
"memory-increment-in-megabytes": 1,
"minimum-memory-size-for-virtual-server": 64,
"name": "APIVM1",
"object-id": "342d80e0-65ff-11e0-acfd-f0def10c03f4",
"object-uri": "/api/virtualization-hosts/342d80e0-65ff-11e0-acfd-f0def10c03f4",
"parent": "/api/ensembles/87d73ffc-75b2-11e0-9ba3-0010184c8026/nodes/37c6f8a9-8d5e-3e5d-8466-
be79e49dd340",
"status": "operating",
"type": "zvm",
"virtual-server-shutdown-timeout": 212

}

Figure 79. Get Virtualization Host Properties: Response for virtualization host of type "zvm"

Chapter 10. Virtualization management 183

The request body contains an object with one or more fields with field names that correspond to the
names of properties for this object. On successful execution, the value of each corresponding property of
the object is updated with the value provided by the input field, and status code 204 (No Content) is
returned without supplying any response body. The request body does not need to specify a value for all
writeable properties, but rather can and should contain fields for the properties to be updated. Object
properties for which no input value is provided remain unchanged by this operation.

If the update changes the value of any property for which property-change notifications are due, those
notifications are emitted asynchronously to this operation.

The URI path must designate an existing Virtualization Host object and the API user must have
object-access permission to its hosting-environment. If either of these conditions is not met, status code
404 (Not Found) is returned. In addition, the API user must also have task permission to the Hypervisor
Details task as well, otherwise status code 403 (Forbidden) is returned.

The request body is validated against the data model for this object type to ensure that it contains only
writeable properties and the data types of those properties are as required. If the request body is not
valid, status code 400 (Bad Request) is returned with a reason code indicating the validation error
encountered.

Authorization requirements

This operation has the following authorization requirements:
v Action/task permission to the Hypervisor Details task
v Object access permission to hosting-environment of the Virtualization Host with object-id {virt-host-id}.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

If errors occur, the following HTTP status codes are provided, and the response body is a standard error
response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The request URI does not designate an existing resource of the expected
type, or designates a resource for which the API user does not have
object-access permission.

409 (Conflict) 2 The operation cannot be performed because the object designated by the
request URI is currently busy performing some other operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

List Virtual Switches
The List Virtual Switches operation lists the virtual switches managed by the z/VM Virtualization Host
with the given identifier.

184 HMC Web Services API

HTTP method and URI
GET /api/virtualization-host/{virt-host-id}/virtual-switches

In this request, the URI variable {virt-host-id} is the object ID of the Virtualization Host.

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

virtual-switches Array of
objects

Array of virtual-switch-info objects, described in the next table. Returned
array may be empty.

Each nested virtual-switch-info object contains the following fields:

Field name Type Description

element-uri String/URI The element-uri property of virtual-switch element.

type String
Enum

The type property of virtual-switch element.

name String The name property of virtual-switch element.

Description

This operation lists the virtual switches that are managed by the identified Virtualization Host.

If the Virtualization Host does not have any virtual network switches, an empty list is provided and the
operation completes successfully.

Authorization requirements

This operation has the following authorization requirements:
v Action/task role permission to the Manage Virtual Switches task
v Object access permission to hosting-environment of the Virtualization Host with object-id {virt-host-id}.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

If errors occur, the following HTTP status codes are provided, and the response body is a standard error
response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 0 The API user does not have the required permission for this operation.

404 (Not Found) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

Chapter 10. Virtualization management 185

HTTP error status
code

Reason
code Description

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM Virtualization Host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM Virtualization Host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Get Virtual Switch Properties
The Get Virtual Switch Properties operation retrieves the properties of a single virtual switch that is
designated by the request URI.

HTTP method and URI
GET /api/virtualization-host/{virt-host-id}/virtual-switches/{virtual-switch-id}

URI variables

GET /api/virtualization-hosts/342d80e0-65ff-11e0-acfd-f0def10c03f4/virtual-switches HTTP/1.1
x-api-session: 4oup923zgs27vmd1wpzvu47ikgzhxa8bwimjofpq6d3eq3j13q

Figure 80. List Virtual Switches: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 22 Jul 2011 15:02:46 GMT
content-type: application/json;charset=UTF-8
content-length: 411
{

"virtual-switches": [
{

"element-uri": "/api/virtualization-hosts/342d80e0-65ff-11e0-acfd-f0def10c03f4/virtual-switches/
S2777",

"name": "S2777",
"type": "iedn"

},
{

"element-uri": "/api/virtualization-hosts/342d80e0-65ff-11e0-acfd-f0def10c03f4/virtual-switches/
4179SW3",

"name": "4179SW3",
"type": "qdio"

}
]

}

Figure 81. List Virtual Switches: Response

186 HMC Web Services API

Variable Type Description

virt-host-id String Object ID of the Virtualization Host

virtual-switch-id String Element ID of the Virtual Switch

Response body contents

On successful completion, the response body contains a JSON object that provides the current values of
the properties for the virtual switch object as defined in the “Data model” on page 163. Field names and
data types in the JSON object are the same as the property or relationship names and data types defined
in the data model.

Description

This operation returns a JSON object that provides the current values of the properties for the virtual
switch element object as defined in the“Data model” on page 163.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to hosting-environment of the Virtualization Host with object-id {virt-host-id}
v Task role permission to the Manage Virtual Switches task.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

If errors occur, the following HTTP status codes are provided, and the response body is a standard error
response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 0 The API user does not have the required permission for this operation.

404 (Not Found) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Chapter 10. Virtualization management 187

Example HTTP interaction

GET /api/virtualization-hosts/57ab94c8-03e6-11e1-baf3-001f163805d8/virtual-switches/SSSS HTTP/1.1
x-api-session: 3ch9r8g2lavxw9st52brubgk4bpsqik3jcqbg8hdwpkg5flwpx

Figure 82. Get Virtual Switch Properties: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Wed, 07 Dec 2011 06:01:18 GMT
content-type: application/json;charset=UTF-8
content-length: 575
{

"bridge-connection-status": null,
"bridge-device-number": null,
"bridge-value-type": null,
"class": "virtual-switch",
"controllers": null,
"element-id": "SSSS",
"element-uri": "/api/virtualization-hosts/57ab94c8-03e6-11e1-baf3-001f163805d8/
virtual-switches/SSSS",
"ip-timeout": 5,
"is-connect-uplinks": true,
"is-use-any-available-controller": true,
"layer-mode": "eth",
"mtu-size": null,
"mtu-size-enforcement": "external",
"name": "SSSS",
"parent": "/api/virtualization-hosts/57ab94c8-03e6-11e1-baf3-001f163805d8",
"queue-size": 8,
"real-uplinks": [],
"router": null,
"switch-status": "Defined",
"type": "iedn"

}

Figure 83. Get Virtual Switch Properties: Response for virtual switch of type "iedn"

188 HMC Web Services API

Create IEDN Virtual Switch
The Create IEDN Virtual Switch operation creates an IEDN virtual network switch for the z/VM
Virtualization Host.

HTTP method and URI
POST /api/virtualization-host/{virt-host-id}/virtual-switches/operations/create-iedn

In this request, the URI variable {virt-host-id} is the object ID of the Virtualization Host.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

name String Required The name property of iedn-virtual-switch object

layer-mode String
Enum

Optional The layer-mode property of iedn-virtual-switch object.
Default value is "eth".

router String
Enum

Optional The router property of iedn-virtual-switch object.
Default value is "none".

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Wed, 07 Dec 2011 06:01:38 GMT
content-type: application/json;charset=UTF-8
content-length: 718
{

"bridge-connection-status": null,
"bridge-device-number": null,
"bridge-value-type": null,
"class": "virtual-switch",
"controllers": null,
"element-id": "TESTQPOP",
"element-uri": "/api/virtualization-hosts/57ab94c8-03e6-11e1-baf3-001f163805d8/
virtual-switches/TESTQPOP",
"ip-timeout": 5,
"is-connect-uplinks": true,
"is-gvrp-enabled": false,
"is-use-any-available-controller": true,
"is-vlan-aware": true,
"layer-mode": "eth",
"mtu-size": null,
"mtu-size-enforcement": "external",
"name": "TESTQPOP",
"parent": "/api/virtualization-hosts/57ab94c8-03e6-11e1-baf3-001f163805d8",
"queue-size": 8,
"real-uplinks": [],
"router": null,
"switch-status": "Defined",
"type": "qdio",
"vlan-id": "AWARE",
"vlan-native-id": "1",
"vlan-object-uri": "",
"vlan-port-type": "ACCESS"

}

Figure 84. Get Virtual Switch Properties: Response for virtual switch of type "qdio"

Chapter 10. Virtualization management 189

Field name Type Rqd/Opt Description

queue-size Integer Optional The queue-size property of iedn-virtual-switch object.
Default value is 8.

ip-timeout Integer Optional The ip-timeout property of iedn-virtual-switch object.
Default value is 5.

is-connect-uplinks Boolean Optional The is-connect-uplinks property of iedn-virtual-switch
object. Default value is false.

real-uplinks Array of
real-
uplink
objects

Required if
is-connect-uplinks is
true

The real-uplinks property of iedn-virtual-switch
object. Default value is an empty list. If
is-connect-uplinks is true, the list is required and
contains 1-3 real-uplink objects.

is-use-any-
available-
controller

Boolean Optional The is-use-any-available-controller property of
iedn-virtual-switch object. Default value is true. If the
value is true and virtual switch is successfully created
and there is a controller available in the z/VM, this
property will be set to false, and the available
controller will be used and shown in the controllers
property.

controllers Array of
Strings

Required if
is-use-any-available-
controller is false

The controllers property of iedn-virtual-switch object

bridge-value-type String Optional;

Allowed only if
bridge-device-number
has been specified

The bridge-value-type property of the
iedn-virtual-switch object. Default value is
"secondary".

bridge-device-
number

String Optional;

Allowed only if the
is-bridge-capable
property of the
virtualization host is true
and thelayer-mode
property of the virtual
switch is "eth"

The bridge-device-number property of the
iedn-virtual-switch object. Default value is null.

bridge-connection-
status

String Optional;

Allowed only if
bridge-device-number
has been specified

Values:

v "connect" - Connect the bridge port

v "disconnect" - Disconnect the bridge port

Default value is "connect".

mtu-size-
enforcement

String Optional;

Allowed only if the
is-bridge-capable
property of the
virtualization host is true

The mtu-size-enforcement property of the
iedn-virtual-switch object.Default value is "external".

mtu-size Integer Optional;

Allowed only if the
is-bridge-capable
property of the
virtualization host is true
and
themtu-size-enforcement
property of the virtual
switch is "user-defined"

The mtu-size property of the iedn-virtual-switch
object. Required if mtu-size-enforcement is
"user-defined".

190 HMC Web Services API

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

element-uri String/URI The element-uri property of the created virtual-switch element.

Description

This operation creates the IEDN virtual switch for the identified Virtualization Host and then returns its
URI. The response also includes a Location header that provides this URI.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to hosting-environment of the Virtualization Host with object-id {virt-host-id}
v Action/task permission to the Manage Virtual Switches task.

HTTP status and reason codes

On success, HTTP status code 201 (Created) is returned and the response body is provided as described
in “Response body contents.”

If errors occur, the following HTTP status codes are provided, and the response body is a standard error
response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

81 A virtual switch with the name specified in the request body already exists
on the Virtualization Host with object-id {virt-host-id}.

87 The iedn-virtual-switch object bridge-device-number property specified is
already in use.

88 The iedn-virtual-switch object bridge-device-number property specified is
not defined available to the z/VM Virtualization Host.

403 (Forbidden) 0 The API user does not have the required permission for this operation.

404 (Not Found) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

409 (Conflict) 80 The Virtualization Host already has a vSwitch with a bridge where the
iedn-virtual-switch object bridge-value-type property is "primary".

81 The Virtualization Host already has four vSwitches with a bridge where the
iedn-virtual-switch object bridge-value-type property is "secondary". Four is
the maximum.

Chapter 10. Virtualization management 191

HTTP error status
code

Reason
code Description

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM Virtualization Host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM Virtualization Host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Create QDIO Virtual Switch
The Create QDIO Virtual Switch operation creates a QDIO virtual network switch for the z/VM
Virtualization Host.

HTTP method and URI
POST /api/virtualization-hosts/{virt-host-id}/virtual-switches/operations/create-qdio

In this request, the URI variable {virt-host-id} is the object ID of the Virtualization Host.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

name String Required The name property of qdio-virtual-switch object

is-vlan-aware Boolean Optional The is-vlan-aware property of qdio-virtual-switch
object. Default value is false.

vlan-id String Optional;

Allowed only if
is-vlan-aware is true

The vlan-id property of qdio-virtual-switch object.
Default value is "".

vlan-port-type String
Enum

Optional;

Allowed only if
is-vlan-aware is true

The vlan-port-type property of qdio-virtual-switch
object. Default value is "access".

vlan-native-id String Optional;

Allowed only if
is-vlan-aware is true

The vlan-native-id property of qdio-virtual-switch
object. Default value is "1".

is-gvrp-enabled Boolean Optional;

Allowed only if
is-vlan-aware is true

The is-gvrp-enabled property of qdio-virtual-switch
object. Default value is false.

layer-mode String
Enum

Optional The layer-mode property of qdio-virtual-switch object.
Default value is "eth".

router String
Enum

Optional The router property of qdio-virtual-switch object.
Default value is "none".

queue-size Integer Optional The queue-size property of qdio-virtual-switch object.
Default value is 8.

192 HMC Web Services API

Field name Type Rqd/Opt Description

ip-timeout Integer Optional The ip-timeout property of qdio-virtual-switch object.
Default value is 5.

is-connect-uplinks Boolean Optional The is-connect-uplinks property of qdio-virtual-switch
object. Default value is false.

real-uplinks Array of
real-
uplink
objects

Required if
is-connect-uplinks is true

The real-uplinks property of qdio-virtual-switch
object. Default value is an empty list. If
is-connect-uplinks is true, the list is required and
contains 1-3 real-uplink objects.

is-use-any-
available-
controller

Boolean Optional The is-use-any-available-controller property of
qdio-virtual-switch object. Default value is true. If the
value is true and virtual switch is successfully created
and there is a controller available in the z/VM, this
property will be set to false, and the available
controller will be used and shown in the controllers
property

controllers Array of
Strings

Required if
is-use-any-available-
controller is false

The controllers property of qdio-virtual-switch object

bridge-value-type String Optional;

Allowed only if
bridge-device-number
has been specified

The bridge-value-type property of the
qdio-virtual-switch object. Default value is
"secondary".

bridge-device-
number

String Optional;

Allowed only if
theis-bridge-capable
property of the
virtualization host is true
and thelayer-mode
property of the virtual
switch is "eth"

The bridge-device-number property of the
qdio-virtual-switch object. Default value is null.

bridge-connection-
status

String Optional;

Allowed only if
bridge-device-number
has been specified

Values:

v "connect" - Connect the bridge port. (Default value)

v "disconnect" - Disconnect the bridge port

Default value is "connect".

mtu-size-
enforcement

String Optional;

Allowed only if the
is-bridge-capable
property of the
virtualization host is true

The mtu-size-enforcement property the
qdio-virtual-switch object.

Default value is "external".

mtu-size Integer Optional;

Allowed only if the
is-bridge-capable
property of the
virtualization host is true
and themtu-size-
enforcement property of
the virtual switch is
"user-defined"

The mtu-size property the qdio-virtual-switch object.

Required if mtu-size-enforcement is "user-defined".

Chapter 10. Virtualization management 193

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

element-uri String/URI The element-uri property of the created virtual-switch element.

Description

This operation creates the QDIO virtual switch for the identified Virtualization Host and then returns its
element URI. The response also includes a Location header that provides this URI.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to hosting-environment of the Virtualization Host with object-id {virt-host-id}
v Action/task permission to the Manage Virtual Switches task

HTTP status and reason codes

On success, HTTP status code 201 (Created) is returned and the response body is provided as described
in “Response body contents.”

If errors occur, the following HTTP status codes are provided, and the response body is a standard error
response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

81 A virtual switch with the name specified in the request body already exists
on the Virtualization Host with object-id {virt-host-id}.

403 (Forbidden) 0 The API user does not have the required permission for this operation.

404 (Not Found) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

409 (Conflict) 80 The Virtualization Host already has a vSwitch with a bridge where the
qdio-virtual-switch object bridge-value-type property is "primary".

81 The Virtualization Host already has four vSwitches with a bridge where the
qdio-virtual-switch object bridge-value-type property is "secondary". Four is
the maximum.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM Virtualization Host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM Virtualization Host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

194 HMC Web Services API

Get Switch Controllers
The Get Switch Controllers operation gets a list of controllers for the z/VM Virtualization Host.
Controllers are z/VM TCP/IP virtual machines used to manage OSA-Express devices associated with
virtual switches. For details, see the z/VM CP Commands and Utility Reference, SC24-6175.

HTTP method and URI
GET /api/virtualization-hosts/{virt-host-id}/operations/get-switch-controllers

In this request, the URI variable {virt-host-id} is the object ID of the Virtualization Host.

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

controllers Array of
controller
objects

An array of controller object as defined in the next table.

Each nested controller object provides the properties for a single switch controller, and has the following
format:

Field name Type Description

name String (0-8) Name for the controller

is-available Boolean True if the controller is available to control an additional set of OSA-Express
devices associated with the virtual switch.

vdev-range String (1-9) Identifies the device range where the OSA-Express devices associated with a
virtual switch can be attached. The value is two virtual device address
values separated by a hyphen (e.g. “8800-88FF”) or “*”, which indicates that
the virtual device address used to attach the OSA-Express devices is the
same as the real device address identified by the virtual switch's
real-uplinks.

is-ip Boolean True if the virtual switch controller can initialize an OSA-Express device in
IP mode. See Virtual Switch layer mode.

is-eth Boolean True if the virtual switch controller can initialize an OSA-Express device in
ETH mode. See Virtual Switch layer mode.

is-vlan-arp Boolean True if the virtual switch controller can register IP addresses on the
OSA-Express with the proper VLAN groups (VLAN_ARP).

is-gvrp Boolean True if the virtual switch controller can register VLAN IDs in use on a
virtual switch with GVRP-aware switches (GVRP).

is-linkagg Boolean True if the controller can control virtual switches that are using link
aggregation. A Link Aggregation port group is two or more links that are
grouped together to appear as a single logical link.

is-isolation Boolean True if the controller can control virtual switches that are using the isolation
setting.

Description

This operation lists the controllers for the identified Virtualization Host.

Chapter 10. Virtualization management 195

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to hosting-environment of the Virtualization Host with object-id {virt-host-id}.
v Action/task permission to the Manage Virtual Switches task

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in the
“Response body contents” on page 195.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 0 The API user does not have the required permission for this operation.

404 (Not Found) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/virtualization-hosts/0e4a5d94-a8c1-11e0-9492-00262df332b3/operations/get-switch-controllers HTTP/1.1
x-api-session: lkcjo7eteu67cygzoknowww8caid5jiyck6yfupyqz3619t3r

Figure 85. Get Switch Controllers: Request

196 HMC Web Services API

Update Virtual Switch
The Update Virtual Switch operation modifies an existing virtual network switch for the z/VM
Virtualization Host.

HTTP method and URI
POST /api/virtualization-host/{virt-host-id}/virtual-switches/{virtual-switch-id}

URI variables

Variable Description

{virt-host-id} Object ID of the Virtualization Host

{virtual-switch-id} Element ID of the virtual switch

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Wed, 07 Dec 2011 05:49:49 GMT
content-type: application/json;charset=UTF-8
content-length: 653
{

"controllers": [
{

"is-available": true,
"is-eth": true,
"is-gvrp": true,
"is-ip": true,
"is-isolation": true,
"is-linkagg": true,
"is-vlan-arp": true,
"name": "DTCVSW1",
"vdev-range": "0600-F000"

},
{

"is-available": true,
"is-eth": true,
"is-gvrp": true,
"is-ip": true,
"is-isolation": true,
"is-linkagg": true,
"is-vlan-arp": true,
"name": "DTCENS1",
"vdev-range": "*"

}
]

}

Figure 86. Get Switch Controllers: Response

Chapter 10. Virtualization management 197

Request body contents

For IEDN virtual switch:

Field name Type Rqd/Opt Description

router String
Enum

Optional;

Allowed only if layer-mode
is "ip"

The router property of iedn-virtual-switch object

queue-size Integer Optional The queue-size property of iedn-virtual-switch
object.

ip-timeout Integer Optional The ip-timeout property of iedn-virtual-switch
object.

is-connect-uplinks Boolean Optional The is-connect-uplinks property of
iedn-virtual-switch object

is-use-any-
available-
controller

Boolean Optional The is-use-any-available-controller property of
iedn-virtual-switch object. If the value is true and
virtual switch is successfully updated and there is
a controller available in the z/VM, this property
will be set to false, and the available controller will
be used and shown in the controllers property.

controllers Array of
Strings

Optional;

Allowed only if
is-use-any-available-
controller is false

The controllers property of iedn-virtual-switch
object.

real-uplinks Array of
real-
uplink
objects

Required if
is-connect-uplinks is true

The real-uplinks property of iedn-virtual-switch
object. If is-connect-uplinks is true, the list is
required and contains 1-3 real-uplink objects.

bridge-value-type String Optional;

Allowed only if
bridge-device-number has
been specified

The bridge-value-type property of the
iedn-virtual-switch object

bridge-device-
number

String Optional;

Allowed only if the
is-bridge-capable property
of the virtualization host is
true and the layer-mode
property of the virtual
switch is "eth"

The bridge-device-number property of the
iedn-virtual-switch object

bridge-connection-
status

String Optional;

Allowed only if
bridge-device-number has
been specified

Values:

v "connect" - Connect the bridge port. (Default
value)

v "disconnect" - Disconnect the bridge port

mtu-size-
enforcement

String Optional;

Allowed only if
theis-bridge-capable
property of the
virtualization host is true

The mtu-size-enforcement property of the
iedn-virtual-switch object

198 HMC Web Services API

Field name Type Rqd/Opt Description

mtu-size Integer Optional;

Allowed only if the
is-bridge-capable property
of the virtualization host is
true and the
mtu-size-enforcement
property of the virtual
switch is "user-defined"

The mtu-size property of the iedn-virtual-switch
object. Required if mtu-size-enforcement is
"user-defined".

For QDIO virtual switch:

Field name Type Rqd/Opt Description

router String
Enum

Optional;

Allowed only if layer-mode
is "ip"

The router property of the qdio-virtual-switch
object

queue-size Integer Optional The queue-size property of qdio-virtual-switch
object.

ip-timeout Integer Optional The ip-timeout property of qdio-virtual-switch
object.

is-connect-uplinks Boolean Optional The is-connect-uplinks property of
qdio-virtual-switch object

is-use-any-
available-
controller

Boolean Optional The is-use-any-available-controller property of
qdio-virtual-switch object. If the value is true and
virtual switch is successfully updated and there is a
controller available in the z/VM, this property will
be set to false, and the available controller will be
used and shown in the controllers property.

controllers Array of
Strings

Optional;

Allowed only if
is-use-any-available-
controller is false

The controllers property of qdio-virtual-switch
object.

real-uplinks Array of
real-
uplink
objects

Required if
is-connect-uplinks is true

The real-uplinks property of qdio-virtual-switch
object. If is-connect-uplinks is true, the list is
required and contains 1-3 real-uplink objects.

bridge-value-type String Optional;

Allowed only if
bridge-device-number has
been specified

The bridge-value-type property of the
qdio-virtual-switch object

bridge-device-
number

String Optional;

Allowed only if
theis-bridge-capable
property of the
virtualization host is true
and the layer-mode
property of the virtual
switch is "eth"

The bridge-device-number property of the
qdio-virtual-switch object

Chapter 10. Virtualization management 199

Field name Type Rqd/Opt Description

bridge-connection-
status

String Optional;

Allowed only if
bridge-device-number has
been specified

Values:

v "connect" - Connect the bridge port. (Default
value)

v "disconnect" - Disconnect the bridge port

mtu-size-
enforcement

String Optional;

Allowed only if the
is-bridge-capable property
of the virtualization host is
true

The mtu-size-enforcement property of the
qdio-virtual-switch object

mtu-size Integer Optional;

Allowed only if
theis-bridge-capable
property of the
virtualization host is true
and the
mtu-size-enforcement
property of the virtual
switch is "user-defined"

The mtu-size property of the qdio-virtual-switch
object. Required if mtu-size-enforcement is
"user-defined".

Description

This operation modifies the virtual switch for the identified virtual server.

Authorization requirements

This operation has the following authorization requirements:
v Action/task role permission to the Manage Virtual Switches task
v Object access permission to hosting-environment of the Virtualization Host with object-id {virt-host-id}.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

87 The iedn-virtual-switch object bridge-device-number property specified is
already in use.

88 The iedn-virtual-switch object bridge-device-number property specified is
not defined available to the z/VM Virtualization Host.

403 (Forbidden) 0 The API user does not have the required permission for this operation.

404 (Not Found) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

200 HMC Web Services API

HTTP error status
code

Reason
code Description

409 (Conflict) 80 The Virtualization Host} already has a vSwitch with a bridge where the
qdio-virtual-switch object bridge-value-type property is "primary".

81 The Virtualization Host already has four vSwitches with a bridge where the
qdio-virtual-switch object bridge-value-type property is "secondary". Four is
the maximum.

82 The bridge-connection-status property for an iedn-virtual-switch or
qdio-virtual-switch object must be "disconnected" to update bridge
properties.

83 To change the bridge-device-number property for an iedn-virtual-switch or
qdio-virtual-switch object, it must first be set to "none". This removes the
bridge device.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM Virtualization Host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM Virtualization Host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Delete Virtual Switch
The Delete Virtual Switch operation deletes an existing virtual network switch specified by an element
identifier for the z/VM Virtualization Host with the given object identifier.

HTTP method and URI
DELETE /api/virtualization-hosts/{virt-host-id}/virtual-switches/{virtual-switch-id}

URI variables

Variable Description

{virt-host-id} Object ID of the Virtualization Host

{virtual-switch-id} Element ID of the virtual switch

Description

This operation deletes the virtual switch for the identified Virtualization Host.

Authorization requirements

This operation has the following authorization requirements:
v Action/task role permission to the Manage Virtual Switches task
v Object access permission to hosting-environment of the Virtualization Host with object-id {virt-host-id}.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

Chapter 10. Virtualization management 201

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 0 The API user does not have the required permission for this operation.

404 (Not Found) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM Virtualization Host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM Virtualization Host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Activating a Virtualization Host
This operation is not directly accessible; it will occur as a side effect of activating the hosting
environment. If auto-start-virtual-servers is true, the Virtualization Host activation will also activate all
virtual servers on the Virtualization Host whose auto-start property is true.

See the Activate sections of the hosting environment objects for operation details, including URI
parameters, response body contents, authorization requirements, and HTTP status and reason codes.

Asynchronous result description

Once the activation job has completed, a job-completion notification is sent and results are available for
the asynchronous portion of this operation. These results are retrieved using the Query Job Status
operation directed at the job URI provided in the response body from the Activate Virtualization Host
request.

The result document returned by the Query Job Status operation is specified in the description for the
Query Job Status operation. When the status of the job is "complete", the results include a job
completion status code and reason code (fields job-status-code and job-reason-code) which are set as
indicated in operation description in “Job Status and Reason Codes” on page 203. The results also include
a job-results nested object that has the following form:

Field name Type Description

failed-virtual-servers Array of
String/URI

Array of the virtual servers whose activation failed. This field only exists
if the virtualization host activated, but one or more virtual servers failed
to activate, indicated by job-status-code 500 and job-reason-code 102.

202 HMC Web Services API

Job Status and Reason Codes

Job status code
Job reason
code Description

200 (OK) N/A Activation completed successfully.

500 (Server Error) 100 Virtualization host activation failed.

101 Virtualization host activation job timed out.

102 Virtualization host activation succeeded, but some virtual servers failed
to activate, see the response body for a list of virtual servers that failed
to activate.

Deactivating a Virtualization Host
This operation is not directly accessible; it will occur as a side effect of deactivating the hosting
environment.

See the Deactivate sections of the hosting environment objects for operation details, including URI
parameters, response body contents, authorization requirements, and HTTP status and reason codes.

Asynchronous result description

Once the deactivation job has completed, a job-completion notification is sent and results are available for
the asynchronous portion of this operation. These results are retrieved using the Query Job Status
operation directed at the job URI provided in the response body from the Deactivate Virtualization Host
request.

The result document returned by the Query Job Status operation is specified in the description for the
Query Job Status operation. When the status of the job is "complete", the results include a job
completion status code and reason code (fields job-status-code and job-reason-code) which are set as
indicated in operation description below. The results also include a job-results nested object that has the
following form:

Field name Type Description

failed-virtual-servers Array of
String/URI

Array of the virtual servers whose deactivation failed. This field only
exists if the virtualization host deactivated, but one or more virtual
servers failed to deactivate, indicated by job-status-code 500 and
job-reason-code 102.

Job Status and Reason Codes

Job status code
Job reason
code Description

200 (OK) N/A Deactivation completed successfully.

500 (Server Error) 100 Virtualization host deactivation failed.

101 Virtualization host deactivation job timed out.

102 Virtualization host deactivation succeeded, but some virtual servers
failed to deactivate, see the response body for a list of virtual servers that
failed to deactivate.

SMAPI Error Response Body
If an operation encounters an error while communicating with a z/VM Virtualization Host via SMAPI, a
503 (Service Unavailable) status code is returned with reason code 100. If an operation is able to

Chapter 10. Virtualization management 203

communicate with a z/VM Virtualization Host and execute a command via SMAPI, but the SMAPI
command returns a non-zero return code, a 503 (Service Unavailable) status code is returned with reason
code 101 and the standard error response body is extended with the following information about the
SMAPI command failure:

Field name Type Description

smapi-command String The name of the SMAPI command that encountered the error

smapi-return-code String The return code returned when executing the SMAPI command

smapi-reason-code String The reason code returned when executing the SMAPI command

smapi-message String The error message returned when executing the SMAPI command or
"null" if no error message was provided

Inventory Service Data
Information about the Virtualization Hosts managed by the HMC can be optionally included in the
inventory data provided by the Inventory Service.

Inventory entries for Virtualization Host objects are included in the response to the Inventory Service's
Get Inventory operation when the request specifies (explicitly by inventory class, implicitly via a
containing category, or by default) that objects of the various Virtualization Host type-specific inventory
classes are to be included. An entry for a particular Virtualization Host is included only if the API user
has object-access permission to that object and the applicable type-specific inventory class has been
specified, as described in the following table:

Inventory class Includes Virtualization Hosts with “type” value

power-vm-virtualization-host power-vm

prsm-virtualization-host prsm

x-hyp-virtualization-host x-hyp

zvm-virtualization-host zvm

For each Virtualization Host object to be included, the inventory response array includes the following:
v An entry that is a JSON object with the same contents as is specified in the Response Body Contents

section for the Get Virtualization Host Properties operation. That is, the data provided is the same as
would be provided if a Get Virtualization Host Properties operation were requested targeting this
object.

v An array entry for each Virtual Switch object associated with the virtualization host. For each such
resource, an entry is included that is a JSON object with the same contents as specified in the Response
Body Contents section of the Get Virtual Switch Properties operation. As a result, the data provided is
the same as would be obtained if a Get Virtual Switch Properties operation where requested for each
resource listed by a List Virtual Switches operation targeting the virtualization host.

v An array entry for each Virtualization Host Storage Resource object associated with the virtualization
host. For each such resource, an entry is included that is a JSON object with the same contents as
specified in the Response Body Contents section of the Get Virtualization Host Storage Resource
Properties operation, however storage path accessibility status is not provided. (More specifically, the
accessible property of path-information-fcp and path-information-eckd nested objects will always null.)
This data is described in Chapter 11, “Storage Management,” on page 295. As a result, the data
provided is the same as would be obtained if a Get Virtualization Host Storage Resource Properties
operation were requested with the include-path-accessibility query parameter specified as false for
each resource listed by a List Virtualization Host Storage Resources operation targeting the
virtualization host.

v An array entry for each Virtualization Host Storage Group object associated with the virtualization
host. For each such group, an entry is included that is a JSON object with the same contents as
specified in the Response Body Contents section of the Get Virtualization Host Storage Group

204 HMC Web Services API

Properties operation. This data is described in Chapter 11, “Storage Management,” on page 295. As a
result, the data provided is the same as would be obtained if a Get Virtualization Host Storage Group
Properties operation where requested for each group listed by a List Virtualization Host Storage
Groups operation targeting the virtualization host.

The array entry for a virtualization host object will appear in the results array before entries for
associated virtual switches, virtualization host storage resources, or groups.

Sample inventory data

The following fragments are examples of the JSON objects that would be included in the Get Inventory
response to describe a single Virtualization Host object of a particular type. These objects would appear
as array entries in the response array.

{
"acceptable-status": [

"operating"
],
"auto-start-virtual-servers": false,
"class": "virtualization-host",
"description": "",
"has-unacceptable-status": "true",
"minimum-memory-size-for-virtual-server": 256,
"name": "B.1.14",
"object-id": "baab1cd2-2990-11e0-8d5b-001f163803de",
"object-uri": "/api/virtualization-hosts/baab1cd2-2990-11e0-8d5b-001f163803de",
"parent": "/api/ensembles/87d73ffc-75b2-11e0-9ba3-0010184c8026/nodes/37c6f8a9-8d5e-3e5d-8466-
be79e49dd340",
"status": "operating",
"type": "power-vm",
"virtual-server-shutdown-timeout": 300

}

Figure 87. Virtualization host object: Sample inventory data for a virtualization host of type "power-vm"

{
"acceptable-status": [

"operating",
"channel-acceptable"

],
"auto-start-virtual-servers": false,
"class": "virtualization-host",
"description": "Initial description",
"has-unacceptable-status": "false",
"hosting-environment": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340",
"is-locked": false,
"name": "R32",
"object-id": "bab76208-2990-11e0-8d5b-001f163803de",
"object-uri": "/api/virtualization-hosts/bab76208-2990-11e0-8d5b-001f163803de",
"parent": "/api/ensembles/87d73ffc-75b2-11e0-9ba3-0010184c8026/nodes/37c6f8a9-8d5e-3e5d-8466-
be79e49dd340",
"status": "operating",
"type": "prsm",
"virtual-server-shutdown-timeout": 200

}

Figure 88. Virtualization host object: Sample inventory data for a virtualization host of type "prsm"

Chapter 10. Virtualization management 205

Virtual Server Object
A virtual server object represents a single zEnterprise virtual server.

Data Model
This object includes the properties defined the “Base managed object properties schema” on page 33, with
the following class-specific specialization:

{
"acceptable-status": [

"operating"
],
"auto-start-virtual-servers": true,
"class": "virtualization-host",
"description": "",
"has-unacceptable-status": "true",
"hosting-environment": "/api/blades/b8210bc0-2d1e-11e0-ae81-e41f13fe1430",
"is-locked": false,
"maximum-allowed-ide-devices": 3,
"maximum-allowed-virtual-processors": 16.0,
"maximum-memory-size-for-virtual-server": 125829,
"memory-increment-in-megabytes": 1,
"minimum-memory-size-for-virtual-server": 1,
"mixed-mode-boot-restriction": true,
"name": "B.1.03",
"object-id": "931b25d6-82e1-11e0-b9e4-f0def10bff8d",
"object-uri": "/api/virtualization-hosts/931b25d6-82e1-11e0-b9e4-f0def10bff8d",
"parent": "/api/ensembles/87d73ffc-75b2-11e0-9ba3-0010184c8026/nodes/37c6f8a9-8d5e-3e5d-8466-
be79e49dd340",
"status": "operating",
"type": "x-hyp",
"virtual-server-shutdown-timeout": 302

}

Figure 89. Virtualization host object: Sample inventory data for a virtualization host of type "x-hyp"

206 HMC Web Services API

Table 41. Virtual server object: base managed object properties specializations

Name Qualifier Type Description of specialization

name (w)(pc) String
(1-64)

The display name of the virtual server. Names must be unique to
other existing virtual servers on the virtualization host.

The format of the name varies based on the virtual server type:

v "zvm": 1-8 characters, characters may be uppercase alphanumeric
or any of the following characters: “@#$+:”

v "power-vm", "x-hyp": 1-64 characters, must begin with an
alphabetic characters, other characters may be characters may be
alphanumeric, a space, or any of the following characters:
“!@#$%^*()_+-=,.:;'~”

v "prsm": 1-8 characters, alphanumeric

For virtual servers of type "prsm", this property is the LPAR name
as defined in the active IOCDS and is immutable.

This property is also immutable for virtual servers whose type
property is "zvm", though it is user-defined through the Create
Virtual Server operation.

For "power-vm" and "x-hyp" virtual servers, this property may only
be modified when the virtual server's status is "not-operating".

description (w)(pc) String Read-only for virtual servers of type "prsm".

object-uri — String/
URI

The canonical URI path for a virtual server object is of the form
/api/virtual-servers/{object-id}.

parent — String/
URI

The URI path of the virtualization host that hosts this virtual server.

class — String (14) Always "virtual-server".

Chapter 10. Virtualization management 207

Table 41. Virtual server object: base managed object properties specializations (continued)

Name Qualifier Type Description of specialization

status (sc) String
Enum

The current operational status of the managed resource.

"prsm" values:

v "not-activated" - indicates the virtual server's LPAR image was
not activated.

v "operating" - indicates all CPs are operating

v "not-operating" - indicates no CPs are operating

v "not-communicating" - indicates the HMC is not communicating
with the support element

v "exceptions" - indicates the virtual server has a problem of some
sort, such as not being able to access storage

v "status-check" - indicates at least one CP is operating, but at least
one CP is not operating. When a "prsm" virtual server has this
status, its LPAR Image is not available.

"power-vm" and "x-hyp" values:

v "operating" - indicates virtual server is in an activated and
running state

v "not-operating" - indicates the virtual server is deactivated, in the
process of loading, or has a error

v "not-communicating" - indicates the HMC is not communicating
with the support element

v "exceptions" - indicates the virtual server has a problem of some
sort, such as not being able to access storage

v "status-check" - indicates the virtual server is powered on, but
the virtualization host is not communicating so there is no status
available

v "migrating" - indicates the virtual server is in the process of
migrating to another virtualization host

v "starting" - indicates the virtual server in the process of powering
on

v "stopping" - indicates the virtual server in the process of
powering off.

"zvm" values:

v "operating" – indicates the virtual machine is logged on and has
no current failure conditions

v "not-operating"– indicates the virtual machine is logged on, but
currently has some sort of failure condition

v "not-activated" – indicates the virtual machine is not logged on

v "not-communicating" - indicates the HMC is not communicating
with the support element

v "logoff-timeout-started" – indicates a logoff timeout has been
started for the virtual machine

v "storage-limit-exceeded" – indicates the storage limit has been
exceeded for the virtual machine

v "forced-sleep" – indicates the virtual machine is logged on, but
has been placed into a forced sleep state

v "unknown" – indicates the status of the virtual machine reported
by z/VM was not recognized.

208 HMC Web Services API

Table 41. Virtual server object: base managed object properties specializations (continued)

Name Qualifier Type Description of specialization

acceptable-status (w)(pc) Array of
String
Enum

For virtual servers of type "prsm", this property is immutable.

For "zvm" virtual servers, the following status values may not be
set as acceptable: "not-communicating" and "unknown".

additional-status (sc) String
Enum

The property is not provided for virtual servers of type
"power-vm", "x-hyp", or "prsm".

For "zvm" virtual servers, this property only applies when the
status is "not-operating" and only if the status is "not-operating"
because of the current state of its hosting-environment. In other
cases for a "zvm" virtual server, the value of this property is null.

Values when non-null:

v "host-env-not-activated" - indicates the "zvm" virtual server is
not operating because the hosting-environment is not activated

v "host-env-not-capable" - indicates the "zvm" virtual server is not
operating because the hosting-environment is not allowing
communications. This can be due to a temporary condition at the
support element for the associated CPC or can be due to SMAPI
communication problems.

v "host-env-not-operating" – indicates the "zvm" virtual server is
not operating because the hosting-environment is not operating

Data model notes

For an x Hyp virtual server, the UUID assigned by zManager as the virtual server's object ID and thus
provided as the virtual server's object-id property is also used as the virtual server's System Management
BIOS (SMBIOS) UUID. As a result, this value is visible to software running within the virtual server as
the UUID field of the SMBIOS System Identification (Type 1) structure. Guest operating system interfaces
or utilities, such as the Linux lspci command, may be available to query this value. Because the object ID
is available both from outside the guest as well as within, it can serve as a reliable correlating value for
management application that have a need to associate data obtained from these two environments.

Class specific additional properties
In addition to the properties defined in included schemas, this object includes the following additional
class-specific properties.

Note: Many properties are only valid for virtual servers of specific “type”. These value are only included
in a virtual server object if the virtual server is of that type. For example a virtual server with type
"power-vm" will define a processing-mode property ("power-vm" only) and mac-prefix property
("power-vm", "zvm") but not an initial-share-mode property ("zvm" only).

Other properties are only valid when mutable prerequisite properties have specific values. When such
properties are not valid, their value is null. For instance a "power-vm" virtual server's
initial-virtual-processors property value is null when the processing-mode value is "dedicated".

Chapter 10. Virtualization management 209

Table 42. Virtual server object: class specific additional properties

Name Qualifier Type Description

Supported
“type”
values

type — String
Enum

Type of the virtual server. Values:

v "power-vm" - a virtual server that has been defined on
an IBM POWER7® blade

v "x-hyp" - a virtual server that has been defined on an
IBM System x blade

v "zvm" - a virtual server that has been defined on an
IBM z/VM operating system instance that is
participating as an ensemble-managed Virtualization
Host

v "prsm" - the virtual server representation of an LPAR
image.

All

gpmp-status (pc) String
Enum

Status of the System z Guest Platform Management
Provider (GPMP). Values:

v "unknown" – Guest performance agent status could not
be determined

v "not-operating" – Guest performance agent is not
operating

v "operating" – Guest performance agent is operating

v "status-check" – There is a failure in communications
between the virtual server and the guest performance
agent.

If virtual server type is "prsm", gpmp-status is only
available if virtual server is running z/OS®.

All

cpu-perf-mgmt-
enabled

(w)(pc) Boolean If true, management of processor performance is enabled
for this virtual server if management of processor
performance is enabled at the ensemble level.
Note: Management of processor performance at the
ensemble level is enabled by virtual server type. See the
ensemble object's power-vm-cpu-perf-mgmt-enabled and
zvm-cpu-perf-mgmt-enabled properties.

power-
vm, zvm

hostname (pc) String Virtual server host name. This data is only available if the
guest platform management provider is running on the
virtual server.

power-
vm,
x-hyp,
zvm

os-name (pc) String The name given to this system by its operating system.
This data is only available if the guest platform
management provider is running on the virtual server.

All

os-type (pc) String The type of operating system that is running on the
virtual server. This data is only available if the guest
platform management provider is running on the virtual
server.

All

os-level (pc) String The release level of the operating system, as reported by
the OS itself. This data is only available if the guest
platform management provider is running on the virtual
server.

All

210 HMC Web Services API

Table 42. Virtual server object: class specific additional properties (continued)

Name Qualifier Type Description

Supported
“type”
values

mac-prefix (pc) mac-prefix
Object

MAC address provides the means of identification that
forwards frames within the LAN segment. This prefix is
the first part of all MAC addresses assigned for the
virtual server. The remaining bits are dynamically
assigned when the virtualization host has to generate a
MAC address for a network adapter.

power-
vm, zvm

processing-mode1 (w) String
Enum

The manner in which virtual processors are associated
with the physical processors available on the
virtualization host. Values:

v "shared" - In shared mode, the virtual servers can use
fractions of physical processors. The processor capacity
is assigned in 0.1 units of physical processor, equivalent
to 1.0 virtual processing unit. The virtual processor
units can be shared among multiple virtual servers.

v "dedicated" - In dedicated mode, the processors are
assigned in whole units of physical processors. The
processors that are dedicated to the virtual server
cannot be used by other virtual servers. The virtual
server cannot use any processors other than its own
dedicated processors.

power-vm

minimum-
dedicated-
processors1

(w) Integer Defines the minimum number of dedicated processors
that the virtual server can use.3

Prerequisite: processing-mode is "dedicated".

Limits:

v >= 1

v <= maximum-allowed-dedicated-processors

power-vm

initial-dedicated-
processors1, 2

(w)(pc) Integer Defines the initial number of dedicated processors that the
virtual server can use; the number of dedicated processors
to be provided to the virtual server when it is next
activated.3

Prerequisite: processing-mode is "dedicated".

"power-vm" Limits:

v >= 1

v <= maximum-allowed-dedicated-processors

v >= minimum-dedicated-processors

power-vm

maximum-
dedicated-
processors1

(w) Integer The upper limit for the number of dedicated processors to
for the virtual server to consume.3

Prerequisite: processing-mode is "dedicated"

"power-vm" Limits:

v >= 1

v <= maximum-allowed-dedicated-processors

v >= minimum-dedicated-processors

v >= initial-dedicated-processors

power-vm

Chapter 10. Virtualization management 211

Table 42. Virtual server object: class specific additional properties (continued)

Name Qualifier Type Description

Supported
“type”
values

minimum-virtual-
processors1

(w) Integer Defines the minimum number of virtual processors that
the virtual server can use.3

Prerequisite: processing-mode is "shared".

Limits:

v >= 1

v <= 10 * minimum-processing-units

v >= minimum-processing-units

power-vm

initial-virtual-
processors1, 2

(1applies to
PowerVM and x
Hyp only, 2applies
only to PowerVM)

(w) Integer Defines the initial number of virtual processors that the
virtual server can use; the number of virtual processors to
be provided to the virtual server when it is next
activated.3

Prerequisites:

v "x-hyp", "zvm": none

v "power-vm": processing-mode is "shared"

"power-vm" limits:

v >= 1

v <= 10 * initial-processing-units

v >= initial-processing-units

v >= minimum-virtual-processors

"x-hyp" limits:

v >= 1

v <= maximum-allowed-virtual-processors

"zvm" limits:

v >= 1

power-
vm,
x-hyp,
zvm

maximum-virtual-
processors1

(1applies to
PowerVM only)

(w) Integer The upper limit for the number of virtual processors to
for the virtual server to consume.3

Prerequisites:

v "x-hyp", "zvm": none

v "power-vm": processing-mode is "shared"

"power-vm" limits:

v >= 1

v <= 10 * maximum-processing-units

v >= maximum-processing-units

v >= minimum-virtual-processors

v >= initial-virtual-processors

v <= maximum-allowed-virtual-processors

"zvm" limits:

v >= 1

v >= initial-virtual-processors

v <= maximum-allowed-virtual-processors

power-
vm, zvm

212 HMC Web Services API

Table 42. Virtual server object: class specific additional properties (continued)

Name Qualifier Type Description

Supported
“type”
values

minimum-
processing-units1

(w) Float The minimum number of processing units required for
this virtual server to start running.

Prerequisite: processing-mode is "shared".

Limits:

v >= 0.1 * minimum-virtual-processors

v <= minimum-virtual-processors

v <= maximum-allowed-processing-units

v Fixed to two decimal places

power-vm

initial-processing-
units1, 2

(w) Float The number of processing units representing the initial
processor scheduling target for this virtual server. If
resources are available, the virtual server may receive
more than this amount.4

Prerequisite: processing-mode is "shared".

Limits:

v >= .1 * initial-virtual-processors

v <= initial-virtual-processors

v <= maximum-allowed-processing-units

v >= minimum-processing-units

v Fixed to two decimal places

power-vm

maximum-
processing-units1

(w) Float The maximum number of processing units that will be
allocated to the virtual server (processor utilization
capping).

Prerequisite: processing-mode is "shared".

If you have enabled processor management, Maximum
processing units defines the upper limit for zManager. A
virtual server with a capacity equal to this maximum
value cannot receive resources from other virtual servers
on the blade.

Limits:

v >= 0.1 * maximum-virtual-processors

v <= maximum-virtual-processors

v <= maximum-allowed-processing-units

v >= minimum-processing-units

v >= initial-processing-units

v Fixed to two decimal places

power-vm

Chapter 10. Virtualization management 213

Table 42. Virtual server object: class specific additional properties (continued)

Name Qualifier Type Description

Supported
“type”
values

initial-share-
mode

(w) String
Enum

Defines the virtual servers' initial share of system
resources either relative to other virtual servers or
absolutely. Values:

v "relative" - Grants all virtual servers different priorities
for processor and I/O. A relative share allocates to a
virtual server a portion of the total system resources
minus those resources allocated to virtual servers with
an absolute share. Also, a virtual server with a relative
share receives access to system resources that is
proportional with respect to other virtual servers with
relative shares. For example, if a virtual server (VM1)
has a relative share of 100, and a second virtual server
(VM2) has a relative share of 200, VM2 receives twice
as much access to system resources as VM1.

v "absolute" - Grants universal access and priority over
all other virtual servers. An absolute share allocates to a
virtual server an absolute percentage of all available
system resources. For example, if you assign a virtual
server an absolute share of 50%, CP allocates to that
virtual server approximately 50% of all available
resources (regardless of the number of other virtual
servers running).

zvm

initial-shares (w)(pc) Float If initial-share-mode is "relative", defines the initial share
value for the virtual server relative to other virtual servers
on the virtualization host. When maximum-share-mode is
"relative", this value must be an Integer between 1 and
min (maximum-shares, 10000).

If initial-share-mode is "absolute", defines the initial
share value for the virtual server absolutely. When
maximum-share-mode is "absolute", this value must be a
Number between 0.1 and min (maximum-shares, 100),
fixed to one decimal place.

zvm

share-limit (w) String Define how the virtual server's share of system resources
is limited. Values:

v "none" - Specifies that a server share of processing
resource is not limited.

v "soft" - Specifies that the share of processing resource is
limited but at times these servers can receive more than
their limit, if no other server can use the available
resources.

v "hard" - Specifies that the share of processing resource
is limited. These servers can not receive more than their
limit.

zvm

214 HMC Web Services API

Table 42. Virtual server object: class specific additional properties (continued)

Name Qualifier Type Description

Supported
“type”
values

maximum-share-
mode

(w) String
Enum

Defines the virtual servers' maximum share of system
resources either relative to other virtual servers or
absolutely.

Prerequisites: share-limit is "soft" or "hard".

Values:

v "relative" - Grants all virtual servers different priorities
for processor and I/O. A relative share allocates to a
virtual server a portion of the total system resources
minus those resources allocated to virtual servers with
an absolute share. Also, a virtual server with a relative
share receives access to system resources that is
proportional with respect to other virtual servers with
relative shares. For example, if a virtual server (VM1)
has a relative share of 100, and a second virtual server
(VM2) has a relative share of 200, VM2 receives twice
as much access to system resources as VM1.

v "absolute" - Grants universal access and priority over
all other virtual servers. An absolute share allocates to a
virtual server an absolute percentage of all available
system resources. For example, if you assign a virtual
server an absolute share of 50%, CP allocates to that
virtual server approximately 50% of all available
resources (regardless of the number of other virtual
servers running).

zvm

maximum-shares (w) Float If maximum-share-mode is "relative", defines the
maximum share value for the virtual server relative to
other virtual servers on the virtualization host. When
maximum-share-mode is "relative", this value must be an
Integer between 1 and min (maximum-shares, 10000).

If maximum-share-mode is "absolute", defines the
maximum share value for the virtual server absolutely.
When maximum-share-mode is "absolute", this value
must be a Number between 0.1 and min
(maximum-shares, 100), fixed to one decimal place.

Prerequisites: share-limit is "soft" or "hard".

zvm

minimum-
memory1

(w) Integer Minimum memory value for use by the virtual server,
specified in megabytes (MB). Must be a multiple of
virtualization host's memory-increment-in-mega-bytes
value.

"power-vm" limits:

v >= minimum-memory-size-for-virtual-server

v multiple of memory-increment-in-mega-bytes

power-vm

Chapter 10. Virtualization management 215

Table 42. Virtual server object: class specific additional properties (continued)

Name Qualifier Type Description

Supported
“type”
values

initial-memory1, 2

(1applies to
PowerVM and x
Hyp only, 2applies
only to PowerVM)

(w)(pc) Integer Initial memory value for use by the virtual server,
specified in MB. Must be a multiple of virtualization
host's memory-increment-in-mega-bytes value.

"power-vm" limits:

v >= minimum-memory-size-for-virtual-server

v multiple of memory-increment-in-mega-bytes

v >= minimum-memory

v <= maximum-memory

v <= maximum-memory-size-for-virtual-server

"x-hyp" limits:

v >= minimum-memory-size-for-virtual-server

v multiple of memory-increment-in-mega-bytes

v <= maximum-memory-size-for-virtual-server

"zvm" limits:

v >= minimum-memory-size-for-virtual-server

v multiple of memory-increment-in-mega-bytes

v <= maximum-memory

v <= maximum-memory-size-for-virtual-server

power-
vm,
x-hyp,
zvm

maximum-
memory1

(1applies to
PowerVM only)

(w) Integer Maximum memory value for use by the virtual server,
specified in MB. Must be a multiple of virtualization
host's memory-increment-in-mega-bytes value.

"power-vm" limits:

v >= minimum-memory-size-for-virtual-server

v multiple of memory-increment-in-mega-bytes

v >= minimum-memory

v >= initial-memory

v <= maximum-memory-size-for-virtual-server

"zvm" limits:

v >= minimum-memory-size-for-virtual-server

v multiple of memory-increment-in-mega-bytes

v <= maximum-memory-size-for-virtual-server

power-
vm, zvm

workloads (c)(pc) Array of
String/
URI

The canonical URI path of each workload resource group
to which the virtual server is assigned.

All

network-adapters — Array of
objects

Array of nested Network Adapter objects defining the
virtual server's network adapters. The nested objects are
of type network-adapter-power, network-adapter-x-hyp,
network-adapter-zvm or network-adapter-prsm
depending on the type of the virtual server.

All

virtual-disks — Array of
objects

Array of nested Virtual Disk objects defining the virtual
server's virtual disks.

power-
vm,
x-hyp,
zvm

216 HMC Web Services API

Table 42. Virtual server object: class specific additional properties (continued)

Name Qualifier Type Description

Supported
“type”
values

mounted-media-
name

— String
(0-255)

The display name of the mounted ISO or null if no media
is mounted.

power-
vm, x-hyp

boot-mode (w)(pc) String
Enum

The boot mode of the virtual server. Values:

v "normal" - The virtual server boots in normal mode.

v "sms" - The virtual server boots to the System
Management Services (SMS) menu.

v "diagnostic-default-boot-list"- The sequence of devices
read at startup.

v "diagnostic-stored-boot-list" - The virtual server
performs a service mode boot using the service mode
boot list saved in NVRAM.

v "open-firmware-prompt" - The virtual server boots to
the open firmware prompt.

power-vm

Chapter 10. Virtualization management 217

Table 42. Virtual server object: class specific additional properties (continued)

Name Qualifier Type Description

Supported
“type”
values

boot-sequence (w)(pc) Array of
String
Enum

List of boot sources. Values:

v "virtual-disk" – virtual-disks will be tried in order

v "network-adapter" – the first network-adapter will be
used as a boot source

v "virtual-media" – virtual media will be used as a boot
source

List must contain one and only one element for type
"power-vm"

"virtual-disk" is not a valid value if the virtual server's
virtual-disks property is empty.

"network-adapter" is not a valid value if the virtual
server's network-adapter property is empty.

"power-vm" network-adapter boot notes:
v If boot-network-adapter-client-ip, boot-network-adapter-

subnet-ip, boot-network-adapter-gateway-ip, and
boot-network-adapter-server-ip are not defined, boot
network settings defined via DHCP.

v If boot-network-adapter-client-ip, boot-network-adapter-
subnet-ip, and boot-network-adapter-server-ip are
defined, but boot-network-adapter-gateway-ip is not
defined, boot network settings are manually defined
and netboot is limited to its own subnet.

v If boot-network-adapter-client-ip, boot-network-adapter-
subnet-ip, boot-network-adapter-gateway-ip, and
boot-network-adapter-server-ip are all defined, boot
network settings are manually defined and netboot is
not limited to its own subnet.

"x-hyp" virtual-disk boot notes:
v Booting is always enabled for Virtual DVDs (virtual

media), virtual disks, and virtual network adapters if
devices of these types are defined for the virtual server.
Although it is possible to change the order in which
booting is attempted, it is not possible to disable
booting from devices of these types if they are present
for the virtual server. See the text directly after this
table for considerations that apply to the value of the
boot-sequence property.

v If the virtual server resides on a node that is being
managed by Support Element Version 2.11.1, a virtual
network interface (if present) must be either the first or
last entry in the virtual server's boot sequence. That is,
the value "network-adapter" must appear as either the
first or last entry in the boot-sequence property.

"x-hyp" virtual-disk boot notes:

v If the virtualization host's mixed-mode-boot-restriction
value is true and the virtual-disks property defines both
"virtio" and "ide" virtual disks, the virtual server will
only boot from an "ide" virtual-disk when the
boot-sequence value contains "virtual-disk".

power-
vm, x-hyp

218 HMC Web Services API

Table 42. Virtual server object: class specific additional properties (continued)

Name Qualifier Type Description

Supported
“type”
values

boot-network-
adapter-client-ip

(w) String
(0-39)

The IP address of the virtual server used during network
boot in dotted-decimal form (“nnn.nnn.nnn.nnn”).

Prerequisites: boot-sequence contains "network-adapter".

power-vm

boot-network-
adapter-subnet-ip

(w) String
(0-17)

The IPv4 subnet mask of the network used during
network boot of the virtual server in dotted-decimal form
(“nnn.nnn.nnn.nnn”).

Prerequisites: boot-sequence contains "network-adapter".

power-vm

boot-network-
adapter-gateway-
ip

(w) String
(0-39)

The IP address of the gateway system used during
network boot of the virtual server in dotted-decimal form
(“nnn.nnn.nnn.nnn”).

Prerequisites: boot-sequence contains "network-adapter".

power-vm

boot-network-
adapter-server-ip

(w) String
(0-39)

The IP address of the boot server on which the disk boot
source files reside in dotted-decimal form
(“nnn.nnn.nnn.nnn”).

Prerequisites: boot-sequence contains "network-adapter".

power-vm

keylock (w) String
Enum

Indicates the state of the system key lock at boot time.
Value:

v "normal" – Enables a regular operating system boot of
the virtual server including all services, under program
control.

v "manual" - Requires system operator to manually boot
the virtual server. This setting is useful for service
scenarios. The virtual server boots to the diagnostics
menu, then you have to open a console to the virtual
server and work with the displayed menu to choose the
next steps.

power-vm

auto-start (w)(pc)

(w only
for
PowerVM
and x
Hyp)

Boolean If true, this virtual server is automatically started when its
hosting virtualization host is started.

All

dlpar-enabled (w) Boolean If true, this virtual server is configured for Dynamic
Logical Partitioning. Note: This setting does not enable
any DLPAR prerequisites (such as the Resource
Monitoring and Control network).

power-vm

dlpar-active — Boolean If true, DLPAR support is enabled and specific virtual
server properties may be updated when the virtual server
status is "operating".

power-vm

gpmp-support-
enabled

(w)(pc)

(ro for
PR/SM)

Boolean If true, guest platform management provider support is
enabled, allowing the GPMP to gather performance data
for work running on the virtual server.
Note: This only defines if support is enabled, not if it is
active.

All

Chapter 10. Virtualization management 219

Table 42. Virtual server object: class specific additional properties (continued)

Name Qualifier Type Description

Supported
“type”
values

gpmp-version — String Guest Platform Performance Manager version or keyword
"unavailable" if not known.

If virtual server type is "prsm", "gpmp-version" is only
available if virtual server is running z/OS.

power-
vm,
x-hyp,
zvm

password (w) String (1-8) The password or passphrase to be used for authentication.
Password must meet the guidelines defined by the VM
system. 1-8 uppercase characters long.

zvm

privilege-classes (w) String
(1-32)

String defining z/VM CP privilege classes denoted by the
letters A through Z (uppercase), the numbers 1 through 6,
and the word “ANY”. 1-32 characters long

zvm

ipl-device (w)(pc) String (1-8) Specifies the virtual device that you want to IPL. It is the
virtual device number or sysname of the virtual device.5

A virtual device number is a four character hex number.

The sysname is a 1 - 8 uppercase alphanumeric-character
name of the named saved system you want to IPL.

zvm

ipl-load-
parameters

(w)(pc) String (0-8) The z/VM LOADPARM option value; used to pass a load
parameter of up to 8 bytes of data to the operating system
you are IPLing.5

0-8 characters long, character may be uppercase
alphanumeric, a space, or a period

zvm

ipl-parameters (w)(pc) String
(0-64)

String defining the z/VM IPL parameter list.5

0:64 characters.

zvm

associated-logical-
partition

— String/URI The canonical URI path for the Logical Partition that is
the PR/SM virtual server.

prsm

inband-
monitoring-
enabled

(w)(pc) Boolean If true, in-band monitoring support is enabled, allowing
the hypervisor to gather performance metrics for the
virtual server.

Prerequisites: parent virtualization host's
inband-monitoring-supported value is true.

power-
vm, x-hyp

220 HMC Web Services API

Table 42. Virtual server object: class specific additional properties (continued)

Name Qualifier Type Description

Supported
“type”
values

keyboard-
language

(w)(pc) String String describing the locale required by graphical consoles
connecting to the virtual server.

The value is null if the parent virtualization host's
supported-keyboard-languages array is null or empty.

String value is the locale's language, country, and variant
values separated by underscores:
v The language value is either an empty string or a

lowercase ISO 639 language code (2-4 characters).
v The country value is either an empty string or an

uppercase ISO 3166 two-letter code.
v The variant value is either an empty string or a string

defining variations for a language/country pair. For
example, Serbian locales have Cyrillic (“Cyrl”) and
Latin (“Latn”) variants.

If the language is an empty string, the string will begin
with an underscore. If both the language and country
fields are empty strings, the value will be an empty string.

Example values: “en”, “en_GB”, “en_US”, “sr_RS”,
“sr_RS_Cyrl”, and “sr_RS_Latn”.

Value must be defined in the parent virtualization host's
supported-keyboard-languages value array.

x-hyp

perf-policies (pc) Array of
Objects

The list of workloads and performance policies that are
active on the virtual server, each with the activation status
of the policy on the virtual server. The list will contain
one element for each workload with a performance policy
that has been activated on the virtual server in the form
of a Virtual Server Performance Policy Nested Object, as
described in Table 43 on page 222.

All

power-vm-
partition-id

— Integer The identifier of the PowerVM partition in which the
virtual server is running. A virtual server is assigned to a
PowerVM partition during the virtual server activation
process, and may be assigned to a different partition each
time it is activated. Therefore, this property has a value
only when the virtual server's status property is
"operating". If the virtual server is in some other status,
the value of this property is null.

power-vm

Chapter 10. Virtualization management 221

Table 42. Virtual server object: class specific additional properties (continued)

Name Qualifier Type Description

Supported
“type”
values

Notes:
1 These properties represent configuration values for the virtual server that are used to establish the virtual
server's initial configuration when it is activated.
2 These properties update runtime values when the virtual server status is "operating" and DLPAR is active
(dlpar-active value is true). If DLPAR is not active, updating these properties will not affect runtime values.
DLPAR support is only available for "power-vm".
3 Note: Because zManager-managed "power-vm" virtual servers consume resources on the Power ASB only when
activated, it is possible to overcommit and define a set of virtual servers on a virtualization host that together
require more virtual processors than can be simultaneously supported. PowerVM resource limits are enforced at
the time that a virtual server is activated.
4 This value is a configuration value that is used to set the scheduling goal when the virtual server is activated.
If CPU performance management is active for this virtual server, the run time value may be adjusted as the
virtual server operates. This will not change the “initial” value and thus does not trigger property change event.
The current processing unit goal for the virtual server will be available as a virtual server metric.
5 The maximum length of the IPL Directory statement resulting from the ipl-device, ipl-load-parameters, and
ipl-parameters values may not exceed 72 characters. Refer to the z/VM CP Planning and Administration Guide for
details on the IPL Directory statement.

The following considerations apply to the value of the boot-sequence property:
v Because a virtual server always has a virtual DVD device, the value "virtual-media" must always

appear somewhere within the value of the boot-sequence property.
v If the virtual server has one or more virtual disks defined, then the value "virtual-disk" must appear

within boot-sequence property. When the first virtual disk is defined for a virtual server, the
boot-sequence property is updated to add "virtual-disk" as the last entry in the list. When the last
virtual disk is removed, the value "virtual-disk" is removed from the boot-sequence property.

v Similarly, if the virtual server has one or more virtual network interfaces defined, then the value
"network-adapter" must also appear within the boot-sequence property. When the first virtual network
interface is defined for a virtual server, the boot-sequence property is updated to add
"network-adapter" as the last entry in the list. When the last virtual network interface is removed, the
value "network-adapter" is removed from the boot-sequence property.

The Virtual Server Performance Policy Nested Object is nested within a virtual server object to
encapsulate the performance policies that are active on the virtual server and their activation status with
respect to the virtual server.

Table 43. Virtual Server Performance Policy Nested Object

Name Type Description

workload-uri String/URI The canonical URI path of the workload resource group to which the
performance policy identified by policy-uri is assigned.

policy-name String The name property of the Performance Policy object.

activation-status String/URI The status of activating the performance policy on the virtual server.
Possible values are:

v "initializing" - Status is initializing (not yet known).

v "successful" - The policy has been successfully activated on the virtual
server.

v "failed"- Policy activation failed.

v "pending" - Policy activation is pending (in progress).

222 HMC Web Services API

mac-prefix object: A mac-prefix object defines a "power-vm" or "zvm" virtual server's mac-prefix
property value.

Table 44. mac-prefix object properties

Name Type Description

mac-address String
(17)

The MAC address represented as 6 groups of two lower-case hexadecimal digits
separated by colons (:), e.g. “01:23:45:67:89:ab”. Length is 17 characters. The
MAC address uses the ensemble prefix.

prefix-length Integer The bit length of the MAC address prefix. This is a 2-digit value with these
parameters in the range 12-44.

network-adapter objects: The bit length of the MAC address prefix. This is a 2-digit value with these
parameters in the range 12-44.

The network-adapter-power object defines a network adapter of a virtual-server of type "power-vm".

Table 45. network-adapter-power object properties

Name Qualifier Type Description

element-id — String Unique ID for the virtual network adapter within the scope of the
containing virtual server.

It is a randomly generated integer value when the object is
created. Currently this value will change if this object is modified
or the group of network adapters of the virtual server is
reordered.

element-uri — String/ URI The canonical URI path for the virtual network adapter is of the
form /api/virtual-servers/{virtual-server-id}/network-
adapters/{element-id}, where {virtual-server-id} is the object-id of
the virtual server.

network-uri (w) String/ URI The canonical URI path for the associated virtual network or null
if the network adapter is not connected to a virtual network.

mac-address — String (17) The MAC address of the network adapter represented as 6
groups of two lowercase hexadecimal digits separated by colons (
:), e.g. “01:23:45:67:89:ab”. Length is 17 characters. The MAC
address uses the ensemble prefix.

The network-adapter-x-hyp object defines a network adapter of a virtual-server object of type "x-hyp".

Table 46. network-adapter-x-hyp object properties

Name Qualifiers Type Description

element-id — String Unique ID for the virtual network adapter within the scope of the
containing virtual server.

element-uri — String/ URI The canonical URI path for the virtual network adapter is of the
form /api/virtual-servers/{virtual-server-id}/network-
adapters/{element-id}, where {virtual-server-id} is the object-id of
the virtual server.

emulation-mode — String
Enum

The network adapter emulation mode. Values:

v "e1000" – Intel E1000

v "rtl8139" – Realtek 8139

v "virtio" – RedHat virtio

network-uri (w) String/ URI The canonical URI path for the associated virtual network or null
if the network adapter is not connected to a virtual network.

Chapter 10. Virtualization management 223

Table 46. network-adapter-x-hyp object properties (continued)

Name Qualifiers Type Description

mac-address — String (17) The MAC address of the network adapter represented as 6 groups
of two lowercase hexadecimal digits separated by colons (:), e.g.
“01:23:45:67:89:ab”. Length is 17 characters.

The network-adapter-zvm object defines a network adapter of a virtual-server object of type "zvm".

Note: Some properties are only valid for network adapters of specific “type”. These value are only
included in a network-adapter-zvm object if the network adapter is of that type. For example, a network
adapter with type rmc will not define an interface-type property.

Other properties are only valid when mutable prerequisite properties have specific values. When such
properties are not valid, their value is null. For instance a network-adapter-zvm's real-device-address
property value is null when the interface-type value is "virtual-iedn".

Table 47. network-adapter-zvm object properties

Name Qualifier Type Description

element-id — String (1-4) Unique ID for the virtual network adapter within the scope of
the containing virtual server. This element-id is actually the
virtual-device-address listed in this table.

This element ID is not immutable. It will be changed if the
virtual-device-address of this object is modified.

element-uri — String/ URI The canonical URI path for the virtual network adapter is of the
form /api/virtual-servers/{virtual-server-id}/network-
adapters/{element-id}, where {virtual-server-id} is the object-id
of the virtual server.

This URI is not immutable because the element-id component of
it can change. See the description for the element-id property.

virtual-device-
address

(w) String (1-4) Virtual device address

1-4 character hex string

device-count — Integer The number of device addresses to reserve

type (ro) String Enum Network adapter type. Values:

v "osx": OSX is a CHPID type. A network adapter that connects
through an OSX CHPID to provide connectivity to a virtual
network of the IEDN (Intra-ensemble Data Network).

v "osd": OSD is a CHPID type. A network adapter that connects
through an OSD CHPID to provide connectivity to external
network.

v "iqd": IQD is a CHPID type. A network adapter that connects
through an IQD CHPID to provide connectivity to a
HiperSockets™ network that is not part of the IEDN.

v "iqdx": IQDX is a CHPID type that provides connectivity to
the IEDN HiperSockets network.

v "rmc": Identifies the network adapter is the Remote
Monitoring and Control network adapter.

224 HMC Web Services API

Table 47. network-adapter-zvm object properties (continued)

Name Qualifier Type Description

interface-type (w) String Enum Network adapter switch type. Legal values based on type value.

osx values:

v "none"

v "virtual-iedn": Virtual IEDN switch

v "physical-iedn": Phycsical IEDN switch

osd values:

v "none"

v "virtual-iedn": Virtual IEDN switch

v "virtual-qdio": Virtual QDIO switch

v "physical-qdio": Physical QDIO switch

iqd values:

v "none"

v "physical-iqdn": Physical IQDN switch

iqdx values:

v "none"

v "physical-iedn": Physical IQDX switch

real-device-address (w) String (1-4) The device address that has been assigned to the port on the
switch that the “dedicated” NIC is mapped to.

Prerequisites: interface-type is "physical-iedn", "physical-qdio",
or "physical-iqdn"

1-4 character hex number (range 0-FFFF).

switch-uri (w) String/URI The switch to which the network adapter is connected.

Prerequisites: interface-type is not "none".

v If interface-type is "virtual-iedn" or "virtual-qdio", the value
is the element-uri of the virtual-switch object in use by the
z/VM network adapter.

v If interface-type is "physical-iedn" and type is "osx", the
value is the element-uri of the network-adapter-prsm object
in use by the z/VM network adapter.

Chapter 10. Virtualization management 225

Table 47. network-adapter-zvm object properties (continued)

Name Qualifier Type Description

port-mode (w) String Enum The port mode, or null if the virtual-switch to which the
network adapter was connected no longer exists.

Prerequisites: interface-type is "virtual-iedn" or "virtual-qdio".
If interface-type is "virtual-qdio", the virtual switch identified
by switch-uri must be VLAN aware (its is-vlan-aware property
is true).

Values:

v "trunk": When the switch port is configured in trunk mode, it
will allow the flow of traffic from multiple virtual networks
(i.e. VLANS). The port must be configured with those virtual
networks.

v "access": When the switch port is configured in access mode,
it will support a single virtual network. Traffic from the
virtual server's network adapter will be tagged with the
virtual network configured for this port, and traffic destined
to the virtual server on this port will be verified that it is
tagged with the configured virtual network.

vlan-ids (w) String (0-19) A space-delimited String defining the VLAN IDs.

Prerequisites: interface-type is "virtual-qdio"

Value may contain one of the following:

v zero to four VLAN IDs

v zero to two ranges of VLAN IDs.

A VLAN ID is a decimal integer from 1-4094.

A range is defined by two VLAN IDs separated by a hyphen.

If port-mode is "access" this string must define a single VLAN
ID.

Examples: “”, “0 10”, “0 10 100 2000”, “0-10 2000-2000”, “0-10
1000-2000”

network-uris (w) Arrays of
String/URI

A list of associated Virtual Networks. Each item represents the
canonical URI path for the associated virtual network.

Prerequisites: interface-type is "virtual-iedn" or "physical-iedn".

List must contain at least one network URI. If port-mode is
"access", list must contain exactly one URI.

The network-adapter-prsm object defines a network adapter of a virtual-server object of type "prsm".

Table 48. network-adapter-prsm object properties

Name Qualifier Type Description

element-id — String Unique ID for the virtual network adapter within the scope of
the containing virtual server.

element-uri — String/URI The canonical URI path for the virtual network adapter is of the
form /api/virtual-servers/{virtual-server-id}/network-
adapters/{element-id}, where {virtual-server-id} is the object-id
of the virtual server.

type — String Enum The physical switch type. Either "osx" or "idqx".

226 HMC Web Services API

Table 48. network-adapter-prsm object properties (continued)

Name Qualifier Type Description

css — String (1) The channel subsystem ID

chpid — String (2) The channel path ID

network-uris (w) Array of
String/ URI

A list including the canonical URI path for each associated
virtual network.

Virtual disk objects: A Virtual Disk is virtual storage space provided by a virtualization host to a guest
virtual server. A Virtual Disk is based upon a storage resource, but may be further virtualized by a
Virtualization Host.

Every virtual disk object contains the following base properties in addition to type-specific properties:

Table 49. Virtual disk object properties

Name Qualifier Type Description

element-id — String (36) The unique identifier for the virtual disk instance. This identifier is
in the form of a UUID.

element-uri — String/URI Canonical URI path of the virtual disk object, in the form
/api/virtual-servers/{virtual-server-id}/virtual-disks/
{element-id}, where {virtual-server-id} is the object-id of the
virtual server.

name (w) String (1-64) The name of the virtual disk. It must consist only of alphanumeric
characters, spaces and the following special characters: “._-”, and
it must begin with an alphabetic character.

description (w) String
(0-1024)

The description for the virtual disk. It must consist only of
alphanumeric characters, spaces and the following special
characters: “._-”.

type — String Enum The type of virtual disk. Values:

v "fullpack" - A virtual disk that is backed by an entire
virtualization host storage resource

v "storage-group-based" - A virtual disk that is backed by
resources allocated from a virtualization host storage group.
This type only applies to virtual disks of a virtual server whose
type property is "zvm".

v "linked" - A virtual disk that is linked to a virtual disk owned
by another virtual server. This type only applies to virtual disks
of a virtual server whose type property is "zvm".

size — Long The size of the virtual disk, in bytes.

owner — String/URI Canonical URI path of the virtual server that owns this virtual
disk.

emulation-mode (w) String Enum The disk I/O emulation mode. Values:

v "virtio" – This virtual disk emulates VIRTIO

v "ide" – This virtual disk emulates IDE

Only valid for virtual disks of a virtual server whose type
property of "x-hyp".

A fullpack-virtual-disk object contains information about a fullpack virtual disk of a non-z/VM virtual
server (i.e., the virtual server's type property is not "zvm", and the virtual disk's type property is
"fullpack").

Chapter 10. Virtualization management 227

In addition to base properties, a fullpack-virtual-disk object contains the following properties:

Table 50. fullpack-virtual-disk object properties

Name Qualifier Type Description

backing-
virtualization-
host-storage-
resource

(w) String/URI Canonical URI path of the virtualization host storage resource
object that backs this virtual disk.

A fullpack-virtual-disk-zvm object contains information about a z/VM virtual server's fullpack virtual
disk (i.e., the virtual server's type property is "zvm", and the virtual disk's type property is "fullpack").

In addition to base properties, a fullpack-virtual-disk-zvm object contains the following properties:

Table 51. fullpack-virtual-disk-zvm object properties

Name Qualifier Type Description

device-address — String (1-4) The virtual device address. This is the device address by which
the virtual server knows this virtual disk. The string form of a 1-4
digit hexadecimal number.

access-mode (w) String Enum The access mode describing the virtual server's permission to read
and/or write to this virtual disk. The values are defined in
Table 54 on page 229.

read-password (w) String (0-8) The read password for this virtual disk. Characters must be
uppercase.

write-password (w) String (0-8) The write password for this virtual disk. Characters must be
uppercase.

multi-password (w) String (0-8) The multiple-write password for this virtual disk. Characters must
be uppercase.

backing-
virtualization-
host-storage-
resource

— String/URI Canonical URI path of the virtualization host storage resource
object that backs this virtual disk

A storage-group-based-virtual-disk object contains information about a virtual server's
storage-group-based virtual disk (i.e., the virtual disk's type property is "storage-group-based").

In addition to base properties, a storage-group-based-virtual-disk object contains the following properties:

Table 52. storage-group-based-virtual-disk object properties

Name Qualifier Type Description

device-address — String (1-4) The virtual device address. This is the device address by which
the virtual server knows this virtual disk. The string form of a 1-4
digit hexadecimal number.

access-mode (w) String Enum The access mode describing the virtual server's permission to read
and/or write to this virtual disk. The values are defined Table 54
on page 229.

read-password (w) String (0-8) The read password for this virtual disk. Characters must be
uppercase.

write-password (w) String (0-8) The write password for this virtual disk. Characters must be
uppercase.

multi–password (w) String (0-8) The multiple-write password for this virtual disk. Characters must
be uppercase.

228 HMC Web Services API

Table 52. storage-group-based-virtual-disk object properties (continued)

Name Qualifier Type Description

backing-storage-
group

— String/URI Canonical URI path of the virtualization host storage group object
that backs this virtual disk.

A linked-virtual-disk object contains information about a virtual server's linked virtual disk (i.e., the
virtual disk's type property is "linked").

In addition to base properties, a linked-virtual-disk object contains the following properties:

Table 53. linked-virtual-disk object properties

Name Qualifier Type Description

device-address — String (1-4) The virtual device address. This is the device address by which the
virtual server knows this virtual disk. The string form of a 1-4
digit hexadecimal number.

access-mode (w) String Enum The access mode describing the virtual server's permission to read
and/or write to this virtual disk. The values are defined in
Table 54.

base-virtual-disk — String/URI Canonical URI path of the virtual disk to which this virtual disk is
ultimately linked.

source-virtual-
disk

— String/URI Canonical URI path of the virtual disk to which this virtual disk is
directly linked.

The possible access modes for a virtual disk of a z/VM virtual server are listed in the following table.
This table is effectively a String enumeration of the valid values for the access-modes property of a
virtual disk object.

Table 54. Valid values for the access-modes property of a virtual disk object

Type Description

String Enum The virtual disk's access mode. These modes correspond exactly to the disk access modes in the
z/VM user directory. Values:

v "read-only"

v "read-write"

v "multi-write"

v "unsupported" – any access mode other than the supported ones listed here. A virtual disk created
by some means other than zManager-provided functions could be created with such an access
mode.

Usage notes for virtual disks:

v For virtual disk objects whose type property is "linked", the “source” virtual disk is always the same
as the “base” virtual disk. The base virtual disk property is provided for the case where a virtual disk
is a link to a virtual disk which is itself a link to some other virtual disk. As such a configuration is not
supported by zManager, base and source will be identical.

Operations
If a virtual server operation accesses a z/VM virtualization host and encounters an error while
communicating with the virtualization host via SMAPI, the response body is a SMAPI Error Response
Body.

Chapter 10. Virtualization management 229

List Virtual Servers of an Ensemble
The List Virtual Servers of an Ensemble operation lists the virtual servers managed by the ensemble
with the given identifier.

HTTP method and URI
GET /api/ensembles/{ensemble-id}/virtual-servers

In this request, the URI variable {ensemble-id} is the object ID of the Ensemble object.

Query parameters:

Name Type Rqd/Opt Description

name String Optional Filter pattern (regular expression) to limit returned objects to
those that have a matching name property.

type String
Enum

Optional Filter string to limit returned objects to those that have a
matching type property.

Value must be a valid virtual server type property value.

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

virtual-servers Array of
objects

Array of virtual-server-info objects, described in the next table. Returned
array may be empty.

Each nested virtual-server-info object contains the following fields:

Field name Type Description

object-uri String/
URI

The canonical URI path of the Virtual Server object

name String The name property of the Virtual Server object

type String
Enum

The type property of the Virtual Server object

status String
Enum

The status property of the Virtual Server object

Description

This operation lists the virtual servers that are managed by the identified ensemble. The object-uri,
object-id, name, type, and status are provided for each.

If the object-id {ensemble-id} does not identify an ensemble object to which the API user has object-access
permission, a 404 status code is returned.

If the name query parameter is specified, the returned list is limited to those virtual servers that have a
name property matching the specified filter pattern. If the name parameter is omitted, this filtering is not
done.

If the type query parameter is specified, the parameter is validated to ensure it is a valid virtual server
type property value. If the value is not valid, a 400 (Bad Request) is returned. If the value is valid, the

230 HMC Web Services API

returned list is limited to those virtual servers that have a type property matching the specified value. If
the type parameter is omitted, this filtering is not done.

A virtual server is included in the list only if the API user has object-access permission for that object. If
an HMC is a manager of a virtual server but the API user does not have permission to it, that object is
simply omitted from the list but no error status code results.

If the ensemble does not manage any virtual servers or if no virtual servers are to be included in the
results due to filtering, an empty list is provided and the operation completes successfully.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the ensemble whose object-id is {ensemble-id}
v Object access permission to each virtual server object to be included in the result.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 230.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

105 A type query parameter defines an invalid value.

404 (Not Found) 1 An ensemble with object-id {ensemble-id} does not exist on HMC or API user
does not have object-access permission for it.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/ensembles/f8fc3a9c-03f2-11e1-ba83-0010184c8334/virtual-servers HTTP/1.1
x-api-session: 64zdknfzh24fqw8f9v5g99h96rhrxhodmawtknx4iutmgqrfvf

Figure 90. List Virtual Servers of an Ensemble: Request

Chapter 10. Virtualization management 231

List Virtual Servers of a CPC
The List Virtual Servers of a CPC operation lists the virtual servers managed by the CPC with the given
identifier.

HTTP method and URI
GET /api/cpcs/{cpc-id}/virtual-servers

In this request, the URI variable {cpc-id} is the object ID of the CPC object.

Query parameters:

Name Type Rqd/Opt Description

name String Optional Filter pattern (regular expression) to limit returned objects to
those that have a matching name property.

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Sat, 12 Nov 2011 21:09:23 GMT
content-type: application/json;charset=UTF-8
content-length: 1008
{

"virtual-servers": [
{

"name": "APIVM2",
"object-uri": "/api/virtual-servers/63911688-03f4-11e1-881f-001f163805d8",
"status": "operating",
"type": "prsm"

},
{

"name": "SS-Web-Svr-1",
"object-uri": "/api/virtual-servers/7ba96572-0d72-11e1-892f-f0def14b63af",
"status": "not-operating",
"type": "x-hyp"

},
{

"name": "SSWSVR3",
"object-uri": "/api/virtual-servers/86819708-0d72-11e1-bf89-f0def14b63af",
"status": "not-activated",
"type": "zvm"

},
{

"name": "ZOS",
"object-uri": "/api/virtual-servers/636768f6-03f4-11e1-881f-001f163805d8",
"status": "operating",
"type": "prsm"

},
{

"name": "SS-web-Srv-2",
"object-uri": "/api/virtual-servers/960529e2-0d3b-11e1-9f64-f0def14b63af",
"status": "operating",
"type": "power-vm"

}
]

}

Figure 91. List Virtual Servers of an Ensemble: Response

232 HMC Web Services API

Name Type Rqd/Opt Description

type String
Enum

Optional Filter string to limit returned objects to those that have a
matching type property.

Value must be a valid virtual server type property value.

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

virtual-servers Array of
objects

Array of nested virtual-server-info objects, described in the next table.

Each nested virtual-server-info object contains the following fields:

Field name Type Description

object-uri String/
URI

The canonical URI path of the Virtual Server object

name String The name property of the Virtual Server object

type String
Enum

The type property of the Virtual Server object

status String
Enum

The status property of the Virtual Server object

Description

This operation lists the virtual servers that are managed by the identified CPC. The object-uri, name,
type, and status are provided for each.

If the object-id {cpc-id} does not identify a CPC object to which the API user has object-access permission
or if the CPC is not a member of an ensemble, a 404 status code is returned.

If the name query parameter is specified, the returned list is limited to those virtual servers that have a
name property matching the specified filter pattern. If the name parameter is omitted, this filtering is not
done.

If the type query parameter is specified, the parameter is validated to ensure it is a valid virtual server
type property value. If the value is not valid, a 400 (Bad Request) is returned. If the value is valid, the
returned list is limited to those virtual servers that have a type property matching the specified value. If
the type parameter is omitted, this filtering is not done.

A virtual server is included in the list only if the API user has object-access permission for that object. If
an HMC is a manager of a virtual server but the API user does not have permission to it, that object is
simply omitted from the list but no error status code results.

If the CPC does not manage any virtual servers or if no virtual servers are to be included in the results
due to filtering, an empty list is provided and the operation completes successfully.

Chapter 10. Virtualization management 233

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the cpc whose object ID is {cpc-id}
v Object access permission to each virtual server object to be included in the result.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 233.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

105 A type query parameter defines an invalid value.

404 (Not Found) 1 A CPC with object-id {cpc-id} does not exist on HMC or API user does not
have object-access permission for it.

100 The CPC with object-id {cpc-id} is not a member of an ensemble.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/virtual-servers HTTP/1.1
x-api-session: 64zdknfzh24fqw8f9v5g99h96rhrxhodmawtknx4iutmgqrfvf

Figure 92. List Virtual Servers of a CPC: Request

234 HMC Web Services API

List Virtual Servers of a Virtualization Host
The List Virtual Servers of a Virtualization Host operation lists the virtual servers managed by the
virtualization host with the given identifier.

HTTP method and URI
GET /api/virtualization-hosts/{virt-host-id}/virtual-servers

In this request, the URI variable {virt-host-id} is the object ID of the Virtualization Host object.

Query parameters:

Name Type Rqd/Opt Description

name String Optional Filter pattern (regular expression) to limit returned objects to
those that have a matching name property.

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

virtual-servers Array of
objects

Array of nested virtual-server-info objects, described in the next table.

Each nested virtual-server-info object contains the following fields:

Field name Type Description

object-uri String/
URI

The object-uri property of the Virtual Server object.

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Sat, 12 Nov 2011 21:09:23 GMT
content-type: application/json;charset=UTF-8
content-length: 423
{

"virtual-servers": [
{

"name": "ZOS",
"object-uri": "/api/virtual-servers/636768f6-03f4-11e1-881f-001f163805d8",
"status": "operating",
"type": "prsm"

},
{

"name": "SS-web-Srv-2",
"object-uri": "/api/virtual-servers/960529e2-0d3b-11e1-9f64-f0def14b63af",
"status": "operating",
"type": "power-vm"

}
]

}

Figure 93. List Virtual Servers of a CPC: Response

Chapter 10. Virtualization management 235

Field name Type Description

name String The name property of the Virtual Server object

type String
Enum

The type property of the Virtual Server object

status String
Enum

The status property of the Virtual Server object

Description

This operation lists the virtual servers that are managed by the identified virtualization host. The
object-uri, name, type, and status are provided for each.

If the object-id {virt-host-id} does not identify a virtualization host object for which the API user has
object-access permission to its hosting-environment, a 404 status code is returned.

If the name query parameter is specified, the returned list is limited to those virtual servers that have a
name property matching the specified filter pattern. If the name parameter is omitted, this filtering is not
done.

A virtual server is included in the list only if the API user has object-access permission for that object. If
an HMC is a manager of a virtual server but the API user does not have permission to it, that object is
simply omitted from the list but no error status code results.

If the virtualization host does not manage any virtual servers or if no virtual servers are to be included in
the results due to filtering, an empty list is provided and the operation completes successfully.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to hosting-environment of the virtualization host with object-id {virt-host-id}
v Object access permission to each virtual server object to be included in the result.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 235.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

105 A type query parameter defines an invalid value.

404 (Not Found) 1 A Virtualization Host with object-id {virt-host-id} does not exist on HMC or
API user does not have object-access permission for its hosting-environment.

503 (Service
Unavailable

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

236 HMC Web Services API

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Create Virtual Server
The Create Virtual Server operation creates a "power-vm", "x-hyp", or "zvm" virtual server with the
given properties on the identified Virtualization Host. This operation is not supported for "prsm"
Virtualization Hosts/virtual servers.

HTTP method and URI
POST /api/virtualization-hosts/{virt-host-id}/virtual-servers

In this request, the URI variable {virt-host-id} is the object ID of the Virtualization Host object.

Request body contents

Properties are only valid if they are supported for a virtual server whose type property matches the given
type property value. For instance a virtual server with type "power-vm" will define a processing-mode
property (PowerVM only) and mac-prefix property (PowerVM, z/VM) but not an initial-share-mode
property (z/VM only).

Properties may also only be valid if prerequisite properties have specific values. For example a PowerVM
virtual server's initial-virtual-processors is only valid when the processing-mode value is "shared".

GET /api/virtualization-hosts/71822c16-0401-11e1-8eda-001f163805d8/virtual-servers HTTP/1.1
x-api-session: 64zdknfzh24fqw8f9v5g99h96rhrxhodmawtknx4iutmgqrfvf

Figure 94. List Virtual Servers of a Virtualization Host: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Sat, 12 Nov 2011 21:08:38 GMT
content-type: application/json;charset=UTF-8
content-length: 434
{

"virtual-servers": [
{

"name": "SS-Web-Svr-1",
"object-uri": "/api/virtual-servers/7ba96572-0d72-11e1-892f-f0def14b63af",
"status": "operating",
"type": "x-hyp"

},
{

"name": "SS-FTP-Svr-1",
"object-uri": "/api/virtual-servers/5483e6b2-09fc-11e1-9f08-001f163805d8",
"status": "not-operating",
"type": "x-hyp"

}
]

}

Figure 95. List Virtual Servers of a Virtualization Host: Response

Chapter 10. Virtualization management 237

See the “Data Model” on page 206 for a complete definition of all properties including for what virtual
server types they are valid and their prerequisites.

Field name Type Rqd/Opt Description

type String
Enum

Required The value to be set as the virtual server's type property. The value
may not be "prsm".

name String Required The value to be set as the virtual server's name property.

description String Optional The value to be set as the virtual server's description property.
Default value: <blank>

cpu-perf-mgmt-
enabled

Boolean Optional The value to be set as the virtual server's cpu-perf-mgmt-enabled
property. Default value: true. Valid only when the ensemble's
management-enablement-level is "automate".

processing-mode String
Enum

Optional The value to be set as the virtual server's processing-mode property.
Default value: shared

minimum-virtual-
processors

Integer Optional The value to be set as the virtual server's minimum-virtual-
processors property. Default value: 1

initial-virtual-
processors

Integer Optional The value to be set as the virtual server's initial-virtual-processors
property. Default value: 1

maximum-virtual-
processors

Integer Optional The value to be set as the virtual server's maximum-virtual-
processors property. Default value based on type:
v power-vm: max (maximum-allowed-dedicated-processors,

initial-virtual-processors)
v zvm: 1

minimum-dedicated-
processors

Integer Optional The value to be set as the virtual server's minimum-dedicated-
processors property. Default value: 1

initial-dedicated-
processors

Integer Optional The value to be set as the virtual server's initial-dedicated-
processors property. Default value: 1

maximum-dedicated-
processors

Integer Optional The value to be set as the virtual server's maximum-dedicated-
processors property. Default value: maximum-allowed-dedicated-
processors

minimum-processing-
units

Number Optional The value to be set as the virtual server's minimum-processing-
units property. Default value: 0.1

initial-processing-
units

Number Optional The value to be set as the virtual server's initial-processing-units
property. Default value: 0.1

maximum-processing-
units

Number Optional The value to be set as the virtual server's maximum-processing-
units property. Default value: min (maximum-virtual-processors,
maximum-allowed-processing-units)

initial-share-mode String
Enum

Optional The value to be set as the virtual server's initial-share-mode
property. Default value: "relative"

initial-shares Number Optional The value to be set as the virtual server's initial-shares property.
Default value based on initial-share-mode:
v relative: 100
v absolute: 10.0

share-limit String
Enum

Optional The value to be set as the virtual server's share-limit property.
Default value: "none"

maximum-share-mode String
Enum

Optional The value to be set as the virtual server's maximum-share-mode
property. Default value: "relative"

maximum-shares Number Optional The value to be set as the virtual server's maximum-shares property.
Default value based on maximum-share-mode:
v relative: 100
v absolute: 10.0

238 HMC Web Services API

Field name Type Rqd/Opt Description

minimum-memory Integer Optional The value to be set as the virtual server's minimum-memory
property. Default value: max (256, initial-memory)

initial-memory Integer Optional The value to be set as the virtual server's initial-memory property.
Default value: 1024

maximum-memory Integer Optional The value to be set as the virtual server's maximum-memory
property. Default value: initial-memory

boot-mode String
Enum

Optional The value to be set as the virtual server's boot-mode property.
Default: normal

book-network-
adapter-client-ip

String Optional The value to be set as the virtual server's boot-network-adapter-
client-ip property. Default value: <blank>

boot-network-
adapter-subnet-ip

String Optional The value to be set as the virtual server's boot-network-adapter-
subnet-ip property. Default value: <blank>

boot-network-
adapter-gateway-ip

String Optional The value to be set as the virtual server's boot-network-adapter-
gateway-ip property. Default value: <blank>

boot-network-
adapter-server-ip

String Optional The value to be set as the virtual server's boot-network-adapter-
server-ip property. Default value: <blank>

keylock String
Enum

Optional The value to be set as the virtual server's keylock property. Default
value: "normal"

auto-start Boolean Optional The value to be set as the virtual server's auto-start property.
Default value: false. Prerequisite: type is "power-vm" or "x-hyp".

dlpar-enabled Boolean Optional The value to be set as the virtual server's dlpar-enabled property.
Default value: false

gpmp-support-
enabled

Boolean Optional The value to be set as the virtual server's gpmp-support-enabled
property. Default value: false. Prerequisite: type is "power-vm",
"zvm" or "x-hyp".

rmc-virtual-device-
address

String Optional The virtual device address of the resource monitoring and control
network to create in order to support the System z Guest Platform
Management Provider (GPMP).

Prerequisite: type is "zvm" and gpmp-support-enabled is true.

Required if gpmp-support-enabled is true.

1-4 character hex string

password String Required
if type is
"zvm"

The value to be set as the virtual server's password property.
Prerequisite: type is "zvm"

privilege-classes String Optional The value to be set as the virtual server's privilege-classes property.
Default value “G”

ipl-device String Optional The value to be set as the virtual server's ipl-device property.
Default value “CMS”

ipl-load–parameters String Optional The value to be set as the virtual server's ipl-load-parameters
property. Default value <blank>

ipl-parameters String Optional The value to be set as the virtual server's ipl-parameters property.
Default value “AUTOCR”.

inband-monitoring-
enabled

Boolean Optional The value to be set as the virtual server's inband-monitoring-
enabled property. Default value: false

keyboard-language String Optional The value to be set as the virtual server's keyboard-language
property. Default value: the first value in the virtualization host's
supported-keyboard-languages array or null if that array is null or
empty.

Chapter 10. Virtualization management 239

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

object-uri String/
URI

The object-uri property of the created Virtual Server object.

Description

This operation creates a virtual server with the values specified on the identified Virtualization Host and
then returns its object-uri in the response body. The response also includes a Location header that
provides this URI.

Any properties identified as “Required” must be included in the request body. Any properties identified
as “Optional” may be excluded from the request body; if an optional property is not found in the request
body, its value will be set to its default value.

If the API user does not have authority to perform the Create Virtual Server task or the zManager
management enablement level for the ensemble does not allow the setting of a provided property, a 403
(Forbidden) status code is returned. A 404 (Not Found) status code is returned if the object-id {virt-host-id}
does not identify a Virtualization Host object for which the API user has object-access permission to its
hosting-environment. If the Virtualization Host is of type "zvm" and its status is not-activated, a 409
(Conflict) status code is returned.

If the Request Body Contents fail to validate, a 400 (Bad Request) status code is returned. This may occur
because the document fails to define a required property or defines a property that is not supported for
the given virtual server type. This may also occur if the document fails to define a single valid virtual
server, for instance defining a property with an invalid value (e.g. an initial-memory value less than zero
or a virtual server type of "zvm" when the Virtualization Host type is "power-vm"). A 400 (Bad Request)
will also be returned if the request body contains a property that is not valid given the value of a
prerequisite property (e.g. defining a value for initial-dedicated-memory when the value of
processing-mode is "shared").

If the Request Body Contents are valid, the virtual server is created on the target Virtualization Host and
its properties are defined to their corresponding request body content's properties' values. If a property is
omitted from the request body, its default value is used when creating the virtual server. The newly
created virtual server will have empty list values defined for its storage-adapters. For PowerVM and x
Hyp virtual servers, the network-adapters property will contain the definition of the network-adapter for
the Default network and it will have a boot-sequence array that contains only "network-adapter". For
z/VM virtual servers, the network-adapters property value will be an empty list. The virtual server will
also be a member of the default workload resource group.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the Virtualization Host's hosting-environment
v Action/task permission to Create Virtual Server task.
v Action/task permission to the Virtual Server Performance Details task if the gpmp-support-enabled

or cpu-perf-mgmt-enabled field is specified in the request body.

240 HMC Web Services API

HTTP status and reason codes

On success, HTTP status code 201 (Created) is returned and the response body is provided as described
in “Response body contents” on page 240.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

101 A virtual server with the name specified in the request body already exists
on the Virtualization Host with object-id {virt-host-id}.

102 The object-id {virt-host-id} identifies a Virtualization Host whose type
property value differs from the type defined in the request body.

103 A “shares” (initial-shares or maximum-shares) property value type is not
correct based on the value of its corresponding “share-mode”
(initial-share-mode or maximum-share-mode). For example, the
initial-share-mode is defined as "relative" but the initial-shares value is not
an Integer.

403 (Forbidden) 1 API user does not have action permission to the Create Virtual Server task.

100 The ensemble's management-enablement-level property value does not
allow the updating of a provided property.

404 (Not Found) 1 A Virtualization Host with object-id {virt-host-id} does not exist on HMC or
API user does not have object-access permission for its hosting-environment.

409 (Conflict) 2 The operation cannot be performed because the object designated by the
request URI is currently busy performing some other operation.

101 Parent Virtualization Host has a status value that is not valid to perform the
operation (attempted to create a virtual server of type "zvm" and
Virtualization Host is not active).

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM Virtualization Host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM Virtualization Host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Chapter 10. Virtualization management 241

Example HTTP interaction

Delete Virtual Server
The Delete Virtual Server operation deletes the identified virtual server. This operation is not supported
for PR/SM virtual servers.

HTTP method and URI
DELETE /api/virtual-servers/{virtual-server-id}

In this request, the URI variable {virtual-server-id} is the object ID of the virtual server object.

Description

A 409 (Conflict) status code is returned if the virtual server has a status other than "not-operating" or
"not-activated". A 409 (Conflict) status code is also returned if the virtual server is busy for the duration
of the request.

This operation deletes the identified virtual server, which includes the following:
v The virtual server's network adapters are disconnected and deleted.
v The virtual server's virtual disks are removed from the virtual server.
v Virtual servers of type "zvm" are also removed from the z/VM Directory.
v The virtual server is removed from the Virtualization Host.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the virtual server
v Object access permission to the virtual server's Virtualization Host's hosting-environment.
v Action/task permission to Delete Virtual Server task

POST /api/virtualization-hosts/2f7bf364-03f8-11e1-8eda-001f163805d8/virtual-servers HTTP/1.1
x-api-session: 64zdknfzh24fqw8f9v5g99h96rhrxhodmawtknx4iutmgqrfvf
content-type: application/json
content-length: 161
{

"description": "Spacely Sprockets Web Store Web Server #2",
"initial-memory": 2048,
"initial-virtual-processors": 2,
"name": "SS-Web-Svr-2",
"type": "power-vm"

}

Figure 96. Create Virtual Server: Request for a virtual server of type "power-vm"

201 Created
server: zSeries management console API web server / 1.0
location: /api/virtual-servers/7d298eb8-0d72-11e1-8c83-f0def14b63af
cache-control: no-cache
date: Sat, 12 Nov 2011 21:08:41 GMT
content-type: application/json;charset=UTF-8
content-length: 74
{

"object-uri": "/api/virtual-servers/7d298eb8-0d72-11e1-8c83-f0def14b63af"
}

Figure 97. Create Virtual Server: Response for a virtual server of type "power-vm"

242 HMC Web Services API

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

403 (Forbidden) 1 API user does not have action permission to the Delete Virtual Server task.

404 (Not Found) 1 A virtual server with object-id {virtual-server-id} does not exist on HMC or
API user does not have object-access permission for it or its virtualization
host’s hosting-environment.

409 (Conflict) 1 Virtual server status is not valid to perform the operation (must be either
"not-operating" or "not-activated").

2 The operation cannot be performed because the object designated by the
request URI is currently busy performing some other operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM Virtualization Host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM Virtualization Host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Get Virtual Server Properties
The Get Virtual Server Properties operation retrieves the properties of a single Virtual Server object that
is designated by its object-id.

HTTP method and URI
GET /api/virtual-servers/{virtual-server-id}

In this request, the URI variable {virtual-server-id} is the object ID of the virtual server object.

DELETE /api/virtual-servers/7ba96572-0d72-11e1-892f-f0def14b63af HTTP/1.1
x-api-session: 64zdknfzh24fqw8f9v5g99h96rhrxhodmawtknx4iutmgqrfvf

Figure 98. Delete Virtual Server: Request

204 No Content
date: Sat, 12 Nov 2011 21:09:24 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 99. Delete Virtual Server: Response

Chapter 10. Virtualization management 243

Query parameters

Name Type Req/Opt Description

properties String Optional Identifies the properties to be returned for the Virtual Server object.
The only supported value is "common", which indicates that only a
specific subset of properties that are quickly available and common
to all types of virtual server should be returned. This properties
included in this subset is specified in “Response body contents.” If
this query parameter is omitted, then all properties for the virtual
server as defined in “Data Model” on page 206 are returned.

Response body contents

On successful completion, the response body is a JSON object that provides the current values of the
properties for the virtual server object.

If the properties query parameter is not specified, the response body provides all of the properties for the
virtual server as defined in the Data Model section above. Field names and data types in the JSON object
are the same as the property names and data types defined in the data model.

If the properties=common query parameter is specified, the response body provides the values for only
the following properties: acceptable-status, auto-start, class, description, has-unacceptable-status,
hostname, is-locked, name, object-id, object-uri, os-level, os-name, os-type, parent, status, type, and
workloads. Field names and data types in the JSON object are the same as the property names and data
types defined in the data model. These properties are common to all types of virtual servers, and can be
provided more quickly than the entire set of properties for the virtual server.

Description

Returns the current values of the properties for the virtual server object as defined in the “Data Model”
on page 206.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the virtual server object designated by {virtual-server-id}.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 A Virtualization Host with object-id {virtual-server-id} does not exist on HMC
or API user does not have object-access permission for it.

244 HMC Web Services API

HTTP error status
code

Reason
code Description

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM Virtualization Host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM Virtualization Host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Usage notes

Retrieval of the full property set for a virtual server will generally require an interaction with the SE, and
in some cases (for example, for z/VM virtual servers) may also require an interaction with the
virtualization host. Some API applications may choose to represent virtual servers in a generic, rather
than highly type-specialized, way and thus not need the full set of properties for each virtual server. The
properties=common query parameter is provided to allow for improved performance for such
applications by avoiding the processing that would be incurred in retrieving unneeded properties. The
properties specified by properties=common are available for all virtual server types, and are generally
cached on the HMC so that they can be retrieved quickly and without requiring an interaction with the
SE or virtualization host.

Example HTTP interaction

GET /api/virtual-servers/7ba96572-0d72-11e1-892f-f0def14b63af HTTP/1.1
x-api-session: 64zdknfzh24fqw8f9v5g99h96rhrxhodmawtknx4iutmgqrfvf

Figure 100. Get Virtual Server Properties: Request

Chapter 10. Virtualization management 245

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Tue, 15 Nov 2011 17:11:03 GMT
content-type: application/json;charset=UTF-8
content-length: 3175
{

"acceptable-status": [
"operating"

],
"auto-start": false,
"boot-mode": "normal",
"boot-network-adapter-client-ip": "192.168.1.22",
"boot-network-adapter-gateway-ip": "192.168.1.1",
"boot-network-adapter-server-ip": "192.168.1.254",
"boot-network-adapter-subnet-ip": "255.255.255.0",
"boot-sequence": [

"network-adapter"
],
"class": "virtual-server",
"cpu-perf-mgmt-enabled": true,
"description": "Spacely Sprockets Web Store Web Server #2",
"dlpar-active": false,
"dlpar-enabled": false,
"gpmp-status": "not-operating",
"gpmp-support-enabled": false,
"gpmp-version": "unavailable",
"has-unacceptable-status": true,
"hostname": null,
"inband-monitoring-enabled": false,
"initial-dedicated-processors": null,
"initial-memory": 2048,
"initial-processing-units": 0.20000000000000001,
"initial-virtual-processors": 2,
"is-locked": false,
"keylock": "normal",
"mac-prefix": {

"mac-address": "02:d0:19:aa:76:00",
"prefix-length": 40

},
"maximum-dedicated-processors": null,
"maximum-memory": 2048,
"maximum-processing-units": 7.0,
"maximum-virtual-processors": 7,
"minimum-dedicated-processors": null,
"minimum-memory": 2048,
"minimum-processing-units": 0.10000000000000001,
"minimum-virtual-processors": 1,
"mounted-media-name": "gpa.iso",
"name": "SS-Web-Svr-2",

Figure 101. Get Virtual Server Properties: Response for virtual servers of "power-vm" (Part 1)

246 HMC Web Services API

"network-adapters": [
{

"element-id": "596dd87c-0db7-11e1-9251-f0def14b63af",
"element-uri": "/api/virtual-servers/588d8c18-0db7-11e1-b1f1-f0def14b63af/
network-adapters/596dd87c-0db7-11e1-9251-f0def14b63af",
"mac-address": null,
"network-uri": "/api/virtual-networks/f920171e-03f2-11e1-8e8e-0010184c8334"

},
{

"element-id": "c4bbdcea-0fac-11e1-903e-f0def14b63af",
"element-uri": "/api/virtual-servers/588d8c18-0db7-11e1-b1f1-f0def14b63af/
network-adapters/c4bbdcea-0fac-11e1-903e-f0def14b63af",
"mac-address": null,
"network-uri": "/api/virtual-networks/f3aece54-0db8-11e1-9e2c-00215e69dea0"

}
],
"object-id": "588d8c18-0db7-11e1-b1f1-f0def14b63af",
"object-uri": "/api/virtual-servers/588d8c18-0db7-11e1-b1f1-f0def14b63af",
"os-level": null,
"os-name": null,
"os-type": null,
"parent": "/api/virtualization-hosts/2f7bf364-03f8-11e1-8eda-001f163805d8",
"processing-mode": "shared",
"status": "not-operating",
"type": "power-vm",
"virtual-disks": [

{
"backing-virtualization-host-storage-resource": "/api/virtualization-hosts/
2f7bf364-03f8-11e1-8eda-001f163805d8/virtualization-host-storage-resources/
37699380-0fa9-11e1-b69e-f0def14b63af",
"description": "Boot filesystem",
"element-id": "c547fb4e-0fac-11e1-842b-f0def14b63af",
"element-uri": "/api/virtual-servers/588d8c18-0db7-11e1-b1f1-f0def14b63af/
virtual-disks/c547fb4e-0fac-11e1-842b-f0def14b63af",
"name": "boot",
"owner": "/api/virtual-servers/588d8c18-0db7-11e1-b1f1-f0def14b63af",
"size": 17179869184,
"type": "fullpack"

},
{

"backing-virtualization-host-storage-resource": "/api/virtualization-hosts/
2f7bf364-03f8-11e1-8eda-001f163805d8/virtualization-host-storage-resources/
b0e6c160-0fa9-11e1-b69e-f0def14b63af",
"description": "Pysical vol for sysvg",
"element-id": "c568a13c-0fac-11e1-903e-f0def14b63af",
"element-uri": "/api/virtual-servers/588d8c18-0db7-11e1-b1f1-f0def14b63af/
virtual-disks/c568a13c-0fac-11e1-903e-f0def14b63af",
"name": "pv01a",
"owner": "/api/virtual-servers/588d8c18-0db7-11e1-b1f1-f0def14b63af",
"size": 8589934592,
"type": "fullpack"

}
],
"workloads": [

"/api/workload-resource-groups/f9fbe5fa-03f2-11e1-8e8e-0010184c8334"
]

}

Figure 102. Get Virtual Server Properties: Response for virtual servers of "power-vm" (part 2)

Chapter 10. Virtualization management 247

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Tue, 15 Nov 2011 18:23:31 GMT
content-type: application/json;charset=UTF-8
content-length: 1121
{

"acceptable-status": [
"operating"

],
"associated-logical-partition": "/api/logical-partitions/8394537b-1cc3-3607-88ad-06845b263439",
"class": "virtual-server",
"cpu-perf-mgmt-enabled": false,
"description": "",
"gpmp-status": "not-operating",
"gpmp-support-enabled": false,
"gpmp-version": "unavailable",
"has-unacceptable-status": true,
"is-locked": false,
"name": "LP03 ",
"network-adapters": [

{
"chpid": "42",
"css": "0",
"element-id": "OSX 0.42",
"element-uri": "/api/virtual-servers/916f73c8-de39-11e0-a58e-f0def161133a/
network-adapters/OSX%200.42",
"network-uris": null,
"type": "osx"

},
{

"chpid": "43",
"css": "0",
"element-id": "OSX 0.43",
"element-uri": "/api/virtual-servers/916f73c8-de39-11e0-a58e-f0def161133a/
network-adapters/OSX%200.43",
"network-uris": null,
"type": "osx"

}
],
"object-id": "916f73c8-de39-11e0-a58e-f0def161133a",
"object-uri": "/api/virtual-servers/916f73c8-de39-11e0-a58e-f0def161133a",
"os-level": "6.2.0 - 1101",
"os-name": "LP03",
"os-type": "z/VM",
"parent": "/api/virtualization-hosts/8e9cad8c-de39-11e0-a58e-f0def161133a",
"status": "operating",
"type": "prsm",
"workloads": [

"/api/workload-resource-groups/1fe39a72-de39-11e0-90a6-00215e67351a"
]

}

Figure 103. Get Virtual Server Properties: Response for virtual servers of type "prsm"

248 HMC Web Services API

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Tue, 15 Nov 2011 16:56:19 GMT
content-type: application/json;charset=UTF-8
content-length: 2618
{

"acceptable-status": [
"operating"

],
"auto-start": false,
"boot-sequence": [

"network-adapter"
],
"class": "virtual-server",
"description": "Spacely Sprockets Web Store Web Server #1",
"gpmp-status": "not-operating",
"gpmp-support-enabled": false,
"gpmp-version": "unavailable",
"has-unacceptable-status": true,
"hostname": null,
"inband-monitoring-enabled": false,
"initial-memory": 2048,
"initial-virtual-processors": 1,
"is-locked": false,
"keyboard-language": "ar",
"mounted-media-name": "gpa.iso",
"name": "SS-Web-Svr-1",
"network-adapters": [

{
"element-id": "b5f6a412-0faa-11e1-957c-f0def14b63af",
"element-uri": "/api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af/
network-adapters/b5f6a412-0faa-11e1-957c-f0def14b63af",
"emulation-mode": "virtio",
"mac-address": "02:ff:a6:b3:3c:c6",
"network-uri": "/api/virtual-networks/f3aece54-0db8-11e1-9e2c-00215e69dea0"

},
{

"element-id": "582b5d0e-0db7-11e1-b1f1-f0def14b63af",
"element-uri": "/api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af/
network-adapters/582b5d0e-0db7-11e1-b1f1-f0def14b63af",
"emulation-mode": "e1000",
"mac-address": "02:ff:1f:b8:e4:fa",
"network-uri": "/api/virtual-networks/f920171e-03f2-11e1-8e8e-0010184c8334"

}
],
"object-id": "576569dc-0db7-11e1-b1f1-f0def14b63af",
"object-uri": "/api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af",
"os-level": null,
"os-name": null,
"os-type": null,
"parent": "/api/virtualization-hosts/71822c16-0401-11e1-8eda-001f163805d8",
"status": "not-operating",
"type": "x-hyp",

Figure 104. Get Virtual Server Properties: Response for virtual servers of type "x-hyp" (Part 1)

Chapter 10. Virtualization management 249

"virtual-disks": [
{

"backing-virtualization-host-storage-resource": "/api/virtualization-hosts/
71822c16-0401-11e1-8eda-001f163805d8/virtualization-host-storage-resources/
efe826a0-094c-11e1-98b6-001f163805d8",
"description": "Pysical vol for sysvg",
"element-id": "b72419a0-0faa-11e1-957c-f0def14b63af",
"element-uri": "/api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af/
virtual-disks/b72419a0-0faa-11e1-957c-f0def14b63af",
"emulation-mode": "virtio",
"name": "pv01",
"owner": "/api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af",
"size": 8589934592,
"type": "fullpack"

},
{

"backing-virtualization-host-storage-resource": "/api/virtualization-hosts/
71822c16-0401-11e1-8eda-001f163805d8/virtualization-host-storage-resources/
efde1d9a-094c-11e1-a3f6-001f163805d8",
"description": "Boot filesystem",
"element-id": "b6ef9f22-0faa-11e1-957c-f0def14b63af",
"element-uri": "/api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af/
virtual-disks/b6ef9f22-0faa-11e1-957c-f0def14b63af",
"emulation-mode": "ide",
"name": "boot",
"owner": "/api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af",
"size": 17179869184,
"type": "fullpack"

}
],
"workloads": [

"/api/workload-resource-groups/f9fbe5fa-03f2-11e1-8e8e-0010184c8334"
]

}

Figure 105. Get Virtual Server Properties: Response for virtual servers of type "x-hyp" (Part 2)

250 HMC Web Services API

Update Virtual Server Properties
The Update Virtual Server Properties operation updates one or more of the writeable properties of a
Virtual Server. This operation is not supported for PR/SM virtual servers.

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Wed, 07 Dec 2011 05:31:36 GMT
content-type: application/json;charset=UTF-8
content-length: 1133
{

"acceptable-status": [
"operating"

],
"additional-status": null,
"auto-start": false,
"class": "virtual-server",
"cpu-perf-mgmt-enabled": false,
"description": "",
"gpmp-status": "not-operating",
"gpmp-support-enabled": false,
"gpmp-version": "unavailable",
"has-unacceptable-status": false,
"hostname": null,
"initial-memory": 32,
"initial-share-mode": "relative",
"initial-shares": 100.0,
"initial-virtual-processors": 1,
"ipl-device": "CMS",
"ipl-load-parameters": "",
"ipl-parameters": "AUTOCR",
"is-locked": false,
"mac-prefix": {

"mac-address": "02:ca:0d:00:00:00",
"prefix-length": 24

},
"maximum-memory": 0,
"maximum-share-mode": null,
"maximum-shares": null,
"maximum-virtual-processors": 64,
"name": "MEV1A",
"network-adapters": [],
"object-id": "1738f85e-1b6f-11e1-a8ab-f0def165da96",
"object-uri": "/api/virtual-servers/1738f85e-1b6f-11e1-a8ab-f0def165da96",
"os-level": null,
"os-name": null,
"os-type": null,
"parent": "/api/virtualization-hosts/911f4808-de39-11e0-a58e-f0def161133a",
"password": "999999",
"privilege-classes": "BDEG",
"share-limit": "none",
"status": "operating",
"type": "zvm",
"virtual-disks": [],
"workloads": [

"/api/workload-resource-groups/1fe39a72-de39-11e0-90a6-00215e67351a"
]

}

Figure 106. Get Virtual Server Properties: Response for virtual servers of type "zvm"

Chapter 10. Virtualization management 251

HTTP method and URI
POST /api/virtual-servers/{virtual-server-id}

In this request, the URI variable {virtual-server-id} is the object ID of the virtual server object.

Request body contents

Fields are only valid if they are supported for a virtual server of the targeted type. For instance a virtual
server with type property "power-vm" may define a processing-mode property (PowerVM only) and
mac-prefix property (PowerVM, z/VM) but not an initial-share-mode property (z/VM only).

Properties may also only be valid if prerequisite properties have specific values. For example a PowerVM
virtual server's initial-virtual-processors is only valid when the processing-mode value is "shared".

All fields in the following table are optional. If a field is not included in the request body contents, its
value will not be updated (unless a prerequisite field is changed, as noted in the table).

See the “Data Model” on page 206 for a complete definition of all properties including for what virtual
server types they are valid and their prerequisites.

Field name Type Description

name String The value to be set as the virtual server's name property. Prerequisite: virtual
server type is not "zvm".

description String The value to be set as the virtual server's description property.

acceptable-status Array of
String
Enum

The value to be set as the virtual server's acceptable-status property.

cpu-perf-mgmt-enabled Boolean The value to be set as the virtual server's cpu-perf-mgmt-enabled property.
Default value: true. Valid only when the ensemble's management-
enablement-level is "automate".

processing-mode String
Enum

The value to be set as the virtual server's processing-mode property.

minimum-virtual-
processors

Integer The value to be set as the virtual server's minimum-virtual-processors
property. Default value (used if processing-mode changes to "shared"): 1

initial-virtual-
processors

Integer The value to be set as the virtual server's initial-virtual-processors property.
Default value (used if processing-mode changes to "shared"): 1

maximum-virtual-
processors

Integer The value to be set as the virtual server's maximum-virtual-processors
property. Default value for power-vm (used if processing-mode changes to
"shared"): max (maximum-allowed-dedicated-processors,
initial-virtual-processors)

minimum-dedicated-
processors

Integer The value to be set as the virtual server's minimum-dedicated-processors
property. Default value (used if processing-mode changes to "dedicated"): 1

initial-dedicated-
processors

Integer The value to be set as the virtual server's initial-dedicated-processors
property. Default value (used if processing-mode changes to "dedicated"): 1

maximum-dedicated-
processors

Integer The value to be set as the virtual server's maximum-dedicated-processors
property. Default value: maximum-allowed-dedicated-processors Default
value (used if processing-mode changes to "dedicated"):
maximum-allowed-dedicated-processors

minimum-processing-
units

Number The value to be set as the virtual server's minimum-processing-units
property. Default value (used if processing-mode changes to "shared"): 0.1

initial-processing-
units

Number The value to be set as the virtual server's initial-processing-units property.
Default value (used if processing-mode changes to "shared"): 0.1

252 HMC Web Services API

Field name Type Description

maximum-processing-
units

Number The value to be set as the virtual server's maximum-processing-units
property. Default value (used if processing-mode changes to "shared"): min
(maximum-virtual-processors, maximum-allowed-processing-units)

initial-share-mode String
Enum

The value to be set as the virtual server's initial-share-mode property.

initial-shares Float The value to be set as the virtual server's initial-shares property. Default
value based on initial-share-mode (used if initial-share-mode changes):
v relative: 100
v absolute: 10.0

share-limit String
Enum

The value to be set as the virtual server's share-limit property.

maximum-share-mode String
Enum

The value to be set as the virtual server's maximum-share-mode property.
Default value (used if share-limit changes from "none" to "soft" or "hard"):
relative

maximum-shares Float The value to be set as the virtual server's maximum-shares property. Default
value based on maximum-share-mode (used if maximum-share-mode
changes):
v relative: 100
v absolute: 10.0

minimum-memory Integer The value to be set as the virtual server's minimum-memory property.

initial-memory Integer The value to be set as the virtual server's initial-memory property.

maximum-memory Integer The value to be set as the virtual server's maximum-memory property.

boot-mode String
Enum

The value to be set as the virtual server's boot-mode property.

boot-sequence Array of
String
Enum

The value to be set as the virtual server's boot-sequence property.

book-network-adapter-
client-ip

String The value to be set as the virtual server's boot-network-adapter-client-ip
property. Default value (used if boot-sequence changes to
["network-adapter"]): <blank>

boot-network-adapter-
subnet-ip

String The value to be set as the virtual server's boot-network-adapter-subnet-ip
property. Default value (used if boot-sequence changes to
["network-adapter"]): <blank>

boot-network-adapter-
gateway-ip

String The value to be set as the virtual server's boot-network-adapter-gateway-ip
property. Default value (used if boot-sequence changes to
"network-adapter"): <blank>

boot-network-adapter-
server-ip

String The value to be set as the virtual server's boot-network-adapter-server-ip
property. Default value (used if boot-sequence changes to
"network-adapter"): <blank>

keylock String
Enum

The value to be set as the virtual server's keylock property.

auto-start Boolean The value to be set as the virtual server's auto-start property.

dlpar-enabled Boolean The value to be set as the virtual server's dlpar-enabled property.

gpmp-support-enabled Boolean The value to be set as the virtual server's gpmp-support-enabled property.

Chapter 10. Virtualization management 253

Field name Type Description

rmc-virtual-device-
address

String The virtual device address of the resource monitoring and control network
to create in order to support the System z Guest Platform Management
Provider (GPMP).

Prerequisite: type is "zvm" and gpmp-support-enabled is true.

Required if gpmp-support-enabled changes to true.

1-4 character hex string

password String The value to be set as the virtual server's password property.

privilege-classes String The value to be set as the virtual server's privilege-classes property.

ipl-device String The value to be set as the virtual server's ipl-device property.

ipl-load–parameters String The value to be set as the virtual server's ipl-load-parameters property.

ipl-parameters String The value to be set as the virtual server's ipl-parameters property.

inband-monitoring-
enabled

Boolean The value to be set as the virtual server's inband-monitoring-enabled
property.

keyboard-language String The value to be set as the virtual server's keyboard-language property.

Description

This operation updates a virtual server's properties with the values specified on the identified
Virtualization Host.

If the API user does not have access action permission to Virtual Server Details or the zManager
management enablement level for the ensemble does not allow the setting of a provided property, a 403
(Forbidden) status code is returned. A 404 (Not Found) status code is also returned if the object-id
{virt-host-id} does not identify a Virtualization Host object to which the API user has object-access
permission. If the Virtualization Host is of type "zvm" and its status is "not-activated", a 409 (Conflict)
status code is returned.

If the Request Body Contents fail to validate, a 400 (Bad Request) status code is returned. This may occur
because the document defines a field that is not supported for the given virtual server type or includes a
field that is not supported because a prerequisite is not met (e.g. attempting to set maximum-share-mode
when share-limit is "none").

If the Request Body Contents are valid, the virtual server's properties are updated to their corresponding
request body content's field's values. All fields are optional and may be excluded from the request body;
if an optional field is not found in the request body, its property's value will not be modified. As
indicated, a property's value is set to its default value if the field is not included in the request body and
a prerequisite or other linked field is changed (e.g. if initial-share-mode is changed from "relative" to
"absolute", and initial-shares is not defined in the request body, initial-shares will be defaulted to 10.0).

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the virtual server object designated by {virtual-server-id}
v Action/task permission to the Virtual Server Details task.
v Action/task permission to the Virtual Server Performance Details task if the gpmp-support-enabled

or cpu-perf-mgmt-enabled field is to be updated, otherwise action/task permission to the Virtual
Server Details task for all other fields.

254 HMC Web Services API

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

100 The operation does not support a virtual server of the given type.

101 A virtual server with the name specified in the request body already exists
on the Virtualization Host with object-id {virt-host-id}.

103 A “shares” (initial-shares or maximum-shares) property value type is not
correct based on the value of its corresponding “share-mode”
(initial-share-mode or maximum-share-mode). For example, the
initial-share-mode is defined as "relative" but the initial-shares value is not
an integer.

403 (Forbidden) 1 API user does not have action permission to the Virtual Server Details task.

100 The ensemble's management-enablement-level property value does not
allow the updating of a provided property.

404 (Not Found) 1 A virtual-server with object-id {virtual-server-id} does not exist on HMC or
API user does not have object-access permission for it.

409 (Conflict) 1 Virtual server status is not valid to perform the operation (does not allow
the updating of a specified virtual server property).

2 The operation cannot be performed because the object designated by the
request URI is currently busy performing some other operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

2 The request could not be processed because the HMC is not currently
communicating with an element of a zBX needed to perform the requested
operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM Virtualization Host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM Virtualization Host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Chapter 10. Virtualization management 255

Example HTTP interaction

Create Network Adapter
The Create Network Adapter operation creates a virtual network adapter for the PowerVM, x Hyp, or
z/VM virtual server with the given identifier. This operation is not supported for PR/SM virtual servers.

HTTP method and URI
POST /api/virtual-servers/{virtual-server-id}/network-adapters

In this request, the URI variable {virtual-server-id} is the object ID of the virtual server object.

Request body contents

Request body contents vary based on virtual server type.

For "power-vm":

Field name Type Rqd/Opt Description

network-uri String/
URI

Optional The network-uri property of the network-adapter-power object.
Default: null

For "x-hyp":

Field name Type Rqd/Opt Description

network-uri String/
URI

Optional The network-uri property of the network-adapter-x-hyp object.
Default: null

emulation-mode String
Enum

Required The emulation-mode property of the network-adapter-x-hyp object.

For "zvm":

POST /api/virtual-servers/7ba96572-0d72-11e1-892f-f0def14b63af HTTP/1.1
x-api-session: 64zdknfzh24fqw8f9v5g99h96rhrxhodmawtknx4iutmgqrfvf
content-type: application/json
content-length: 169
{

"auto-start": true,
"description": "Spacely Sprockets Web Store Web Server #1A",
"initial-virtual-processors": 2,
"keyboard-language": "en_US",
"name": "SS-Web-Svr-1A"

}

Figure 107. Update Virtual Server Properties: Request for a virtual server of type "x-hyp"

204 No Content
date: Sat, 12 Nov 2011 21:08:38 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 108. Update Virtual Server Properties: Response for a virtual server of type "x-hyp"

256 HMC Web Services API

Field name Type Rqd/Opt Description

virtual-device-
address

String Required The virtual-device-address property of
network-adapter-zvm object

type String Required The type property of network-adapter-zvm object. The
value may not be "rmc".

interface-type String
Enum

Required The interface-type property of network-adapter-zvm
object

real-device-address String Optional The real-device-address property of
network-adapter-zvm object

switch-uri String/
URI

Required if interface-type
is any value except none

If the interface-type is virtual-iedn, or virtual-qdio,
specify the switch-uri property of the of the
network-adapter-zvm object. If the interface-type is
physical-iedn, physical-qdio, or physical-iqdn, specify
the element-uri of a network-adapter-prsm object in
the list of network adapters from the
network-adapters property of the z/VM virtual
server's parent property's virtual server object.

port-mode String
Enum

Required if interface-type
is virtual-iedn or
virtual-qdio

The port-mode property of network-adapter-zvm
object

vlan-ids String Required if interface-type
is virtual-qdio

The vlan-ids property of network-adapter-zvm object

network-uris Array of
String/
URI

Required if interface-type
is virtual-iedn or
physical-iedn

The network-uris property of network-adapter-zvm
object

Response body contents

On successful completion, the response body contains the URI of the created network-adapter object.

Field name Type Description

element-uri String/URI The element-uri property of the created network adapter object.

Description

This operation creates the network adapters for the identified virtual server and then returns the URI of
the created object. The response also includes a Location header that provides this URI.

If the virtual server is of type "power-vm" or "x-hyp" and its status is neither "not-operating"nor
"not-activated", a 409 (Conflict) status code is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the virtual server object designated by {virtual-server-id}
v Action/task permission to the Virtual Server Details task.

HTTP status and reason codes

On success, HTTP status code 201 (Created) is returned and the response body is provided as described
in “Response body contents.”

Chapter 10. Virtualization management 257

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

409 (Conflict) 1 Virtual server status is not valid to perform the operation.

2 Virtual server object with ID {virtual-server-id} was busy and request timed
out.

109 The switch-uri conflicts with the network adapter type

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM Virtualization Host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM Virtualization Host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

POST /api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af/network-adapters HTTP/1.1
x-api-session: 3vkw2ncjqhmmpzo6bsyjojjlfgzd0kjoqbvhskz2m6z7esmjrr
content-type: application/json
content-length: 104
{

"emulation-mode": "e1000",
"network-uri": "/api/virtual-networks/f920171e-03f2-11e1-8e8e-0010184c8334"

}

Figure 109. Create Network Adapter: Request for a virtual server of type "x-hyp"

258 HMC Web Services API

Update Network Adapter
The Update Network Adapter operation modifies an existing virtual network adapter specified by an
object identifier for the PowerVM, x Hyp, z/VM, or PR/SM virtual server with the given identifier.

HTTP method and URI
POST /api/virtual-servers/{virtual-server-id}/network-adapters/{network-adapter-id}

URI variables

Variable Description

{virtual-server-id} Object ID of the Virtual Server object

{network-adapter-id} Element ID of the network adapter

Request body contents

Request body contents vary based on virtual server type.

For "prsm":

Field name Type Rqd/Opt Description

network-uris Array of
String/
URI

Optional The network-uris property of the network-adapter-prsm object.

For "power-vm":

Field name Type Rqd/Opt Description

network-uri String/
URI

Optional The network-uri property of the network-adapter-power object.
Specify a value of null to indicate that the network adapter should
not be connected to a virtual network.

For "x-hyp":

201 Created
server: zSeries management console API web server / 1.0
location: /api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af/network-adapters/

4a5073e6-0f9b-11e1-94dc-f0def14b63af
cache-control: no-cache
date: Tue, 15 Nov 2011 15:05:48 GMT
content-type: application/json;charset=UTF-8
content-length: 129
{

"element-uri": "/api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af/
network-adapters/4a5073e6-0f9b-11e1-94dc-f0def14b63af"

}

Figure 110. Create Network Adapter: Response for a virtual server of type "x-hyp"

Chapter 10. Virtualization management 259

Field name Type Rqd/Opt Description

network-uri String/
URI

Optional The network-uri property of the network-adapter-x-hyp object.
Specify a value of null to indicate that the network adapter should
not be connected to a virtual network.

emulation-mode String
Enum

Optional The emulation-mode property of the network-adapter-x-hyp object.

For "zvm":

Field name Type Rqd/Opt Description

virtual-device-
address

String Optional The virtual-device-address property of
network-adapter-zvm object

interface-type String
Enum

Optional The interface-type property of network-adapter-zvm
object

real-device-address String Optional The real-device-address property of
network-adapter-zvm object

switch-uri String/
URI

Optional; Allowed only if
interface-type is
virtual-iedn or
virtual-qdio

The switch-uri property of network-adapter-zvm
object.

port-mode String
Enum

Optional; Allowed only if
interface-type is
virtual-iedn or
virtual-qdio

The port-mode property of network-adapter-zvm
object

vlan-ids String Optional; Allowed only if
interface-type is
virtual-qdio

The vlan-ids property of network-adapter-zvm object

network-uris Array of
String/
URI

Optional; Allowed only if
interface-type is
virtual-iedn or
physical-iedn

The network-uris property of network-adapter-zvm
object

Description

This operation modifies the network adapters for the identified virtual server and then returns its
properties.

If virtual server is of type "zvm" and the target network adapter is the Remote Monitoring and Control
network adapter (type "rmc"), a 400 (Bad Request) is returned.

If the virtual server is of type "power-vm" or "x-hyp" and its status is neither "not-operating" nor
"not-activated", a 409 (Conflict) status code is returned. If the virtual server is of type "zvm", the network
adapter interface-type is "virtual-iedn" or "virtual-qdio", and the virtual-switch to which the network
adapter was connected no longer exists, a 409 (Conflict) status code is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the virtual server.
v Object access permission to the Virtual Network object(s)
v Action/task permission to the Virtual Server Details task

260 HMC Web Services API

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

106 The targeted network adapter is the Resource Monitoring and Control
network adapter.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

409 (Conflict) 1 Virtual server status is not valid to perform the operation.

2 Virtual server object with ID {virtual-server-id} was busy and request timed
out.

108 The virtual switch to which the network adapter was connected is no longer
defined in z/VM.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM Virtualization Host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM Virtualization Host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

POST /api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af/network-adapters/
4a5073e6-0f9b-11e1-94dc-f0def14b63af HTTP/1.1

x-api-session: 3vkw2ncjqhmmpzo6bsyjojjlfgzd0kjoqbvhskz2m6z7esmjrr
content-type: application/json
content-length: 105
{

"emulation-mode": "virtio",
"network-uri": "/api/virtual-networks/f3aece54-0db8-11e1-9e2c-00215e69dea0"

}

Figure 111. Update Network Adapter: Request for a virtual server of type "x-hyp"

Chapter 10. Virtualization management 261

Delete Network Adapter
The Delete Network Adapter operation deletes an existing virtual network adapter specified by an object
identifier for the PowerVM, x Hyp, or z/VM virtual server with the given identifier. This operation is not
supported for PR/SM virtual servers.

HTTP method and URI
DELETE /api/virtual-servers/{virtual-server-id}/network-adapters/{network-adapter-id}

URI variables

Variable Description

{virtual-server-id} Object ID of the Virtual Server object

{network-adapter-id} Element ID of the network adapter

Description

This operation deletes the network adapters for the identified virtual server.

If virtual server is of type "zvm" and the target network adapter is the Remote Monitoring and Control
network adapter (type "rmc"), a 400 (Bad Request) is returned.

If the virtual server is of type "power-vm" or "x-hyp" and its status is neither "not-operating" nor
"not-activated", a 409 (Conflict) status code is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the virtual server
v Action/task role permission to the Virtual Server Details task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

204 No Content
date: Tue, 15 Nov 2011 15:05:48 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 112. Update Network Adapter: Response for a virtual server of type "x-hyp"

262 HMC Web Services API

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

106 The targeted network adapter is the Resource Monitoring and Control
network adapter.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

409 (Conflict) 1 Virtual server status is not valid to perform the operation.

2 Virtual server object with ID {virtual-server-id} was busy and request timed
out.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM Virtualization Host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM Virtualization Host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Reorder Network Adapter
The Reorder Network Adapter operation reorders the virtual network adapter defined for the PowerVM
or x Hyp virtual server with the given identifier. This operation is not supported for z/VM and PR/SM
virtual servers.

HTTP method and URI
POST /api/virtual-servers/{virtual-server-id}/operations/reorder-network-adapters

In this request, the URI variable {virtual-server-id} is the object ID of the virtual server object.

DELETE /api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af/network-adapters/
4a5073e6-0f9b-11e1-94dc-f0def14b63af HTTP/1.1

x-api-session: 3vkw2ncjqhmmpzo6bsyjojjlfgzd0kjoqbvhskz2m6z7esmjrr

Figure 113. Delete Network Adapter: Request

204 No Content
date: Tue, 15 Nov 2011 15:05:50 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 114. Delete Network Adapter: Response

Chapter 10. Virtualization management 263

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

network-adapter-
uris

Array of
String/
URI

Required Ordered list of element-uris for the network adapter object. The
order of this array is significant.

Description

This operation reorders the network adapters for the identified virtual server.

If the virtual server is of type "power-vm" or "x-hyp" and its status is neither "not-operating" nor
"not-activated", a 409 (Conflict) status code is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the virtual server
v Object access permission to the Virtual Network object(s)
v Action/task permission to the Virtual Server Details task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

409 (Conflict) 1 Virtual server status is not valid to perform the operation.

2 Virtual server object with ID {virtual-server-id} was busy and request timed
out.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM Virtualization Host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM Virtualization Host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

264 HMC Web Services API

Example HTTP interaction

Create Virtual Disk
The Create Virtual Disk operation adds a virtual disk to the specified virtual server. This operation is not
supported for PR/SM virtual servers.

HTTP method and URI
POST /api/virtual-servers/{virtual-server-id}/virtual-disks

In this request, the URI variable {virtual-server-id} is the object ID of the virtual server that will own the
new virtual disk.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

name String Required The name property of the virtual disk object.

description String Optional The description property of the virtual disk object.

size Long Required The size property of the virtual disk object. Required and only valid
for virtual disks with a type of "storage-group-based".

type String
Enum

Required The type property of the virtual disk object.

emulation-mode String
Enum

Required The emulation-mode property of the virtual disk object. Required
and only valid for all virtual disks for a virtual server with type of
x-"hyp".

access-mode String
Enum

Required The access-mode property of the virtual disk object. Required and
only valid for all virtual disks for a virtual server with type of
"zvm". Value may not be "unsupported".

POST /api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af/operations/reorder-network-adapters HTTP/1.1
x-api-session: 3vkw2ncjqhmmpzo6bsyjojjlfgzd0kjoqbvhskz2m6z7esmjrr
content-type: application/json
content-length: 256
{

"network-adapter-uris": [
"/api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af/network-adapters/
4a5073e6-0f9b-11e1-94dc-f0def14b63af",
"/api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af/network-adapters/
582b5d0e-0db7-11e1-b1f1-f0def14b63af"

]
}

Figure 115. Reorder Network Adapter: Request

204 No Content
date: Tue, 15 Nov 2011 15:05:48 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 116. Reorder Network Adapter: Response

Chapter 10. Virtualization management 265

Field name Type Rqd/Opt Description

device-address String
(1-4)

Required The device-address property of the virtual disk object. Required for
all virtual disks for a virtual server with type of "zvm".

read-password String
(0-8)

Optional The read-password property of the virtual disk. For all virtual disks
for a virtual server with type "zvm" and a virtual disk type of either
"fullpack" or "storage-group-based".

write-password String
(0-8)

Optional The write-password property of the virtual disk. For all virtual
disks for a virtual server with type "zvm" and a virtual disk type of
either "fullpack" or "storage-group-based".

multi-password String
(0-8)

Optional The multiple-write password property of the virtual disk. For all
virtual disks for a virtual server with type "zvm" and a virtual disk
type of either "fullpack" or "storage-group-based".

password String
(0-8)

Optional The password for the linked virtual disk. For virtual disks with a
type of "linked".

backing-
virtualization-
host-storage-
resource

String/
URI

Required The backing-virtualization-host-storage-resource property of the
virtual disk. Required and only valid for virtual disks with a type of
"fullpack".

source-virtual-disk String/
URI

Required The source-virtual-disk property of the virtual disk. Required and
only valid for virtual disks with a type of "linked".

backing-storage-
group

String/
URI

Required The backing-storage-group property of the virtual disk. Required
and only valid for virtual disks with a type of "storage-group-
based".

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

element-uri String/URI The element-uri of the newly created Virtual Disk object.

Description

The Create Virtual Disk operation adds a virtual disk to the virtual server specified by the
{virtual-server-id} portion of the request URI.

Upon successful completion, the element-uri field of the Response Body and the value of the Location
response header identify the new virtual disk.

If this operation changes the value of any property for which property-change notifications are due, those
notifications are emitted asynchronously to this operation.

The URI path must designate an existing virtual server object and the API user must have object-access
permission to it. If either of these conditions is not met, status code 404 (Not Found) is returned. In
addition, the API user must also have action/task permission to the Virtual Server Details action as well,
otherwise status code 403 (Forbidden) is returned.

If the request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating
the validation error encountered.

If the virtual server is of type "power-vm" or "x-hyp" and its status is not "operating" ,"not-operating" or
"not-activated", a 409 (Conflict) status code is returned.

266 HMC Web Services API

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the virtual server object designated by {virtual-server-id}
v Object access permission to the storage resources to be used by the virtual disk:

– If virtual disk type is "fullpack", object access permission to the storage resource used by the
virtualization host storage resource object designated by backing-virtualization-host-storage-
resource.

– If virtual disk type is "storage-group-based", object access permission to the storage resource used
by every virtualization host storage resource owned by the virtualization host storage group object
designated by backing-storage-group.

– If virtual disk type is "linked", object access permission to the storage resources used by the virtual
disk designated by source-virtual-disk and to the virtual server that owns it.

v Action/task permission to the Virtual Server Details task.

HTTP status and reason codes

On success, HTTP status code 201 (Created) is returned and both the response body and the Location
response header contain the URI of the newly created object.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

100 The operation does not support a virtual server of the given type.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

107 The backing-virtualization-host-storage-resource property does not
designate an existing virtualization host storage resource object, or the API
user does not have object access permission to it.

108 The backing-storage-group property does not designate an existing
virtualization host storage group object, or the API user does not have object
access permission to it.

109 The source-virtual-disk property does not designate an existing virtual disk
object, or the API user does not have object access permission to it.

409 (Conflict) 1 Virtual server status is not valid to perform the operation.

2 Virtual server object with ID {virtual-server-id} was busy and request timed
out.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM Virtualization Host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM Virtualization Host via SMAPI failed.

Chapter 10. Virtualization management 267

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Delete Virtual Disk
The Delete Virtual Disk operation removes a specified virtual disk from the specified virtual server. This
operation is not supported for PR/SM virtual servers.

HTTP method and URI
DELETE /api/virtual-servers/{virtual-server-id}/virtual-disks/{virtual-disk-id}

URI variables

Variable Description

{virtual-server-id} Object ID of the virtual server object

{virtual-disk-id} Element ID of the virtual disk object

Description

The Delete Virtual Disk operation removes a specified virtual disk from the specified virtual server. The
virtual disk is identified by the {virtual-disk-id} variable in the URI, and the virtual server is identified by
the {virtual-server-id} variable in the URI.

POST /api/virtual-servers/588d8c18-0db7-11e1-b1f1-f0def14b63af/virtual-disks HTTP/1.1
x-api-session: 29chofb3vqxpijctnd2kf5fiwnfll8z62mq3yomtqjyz8bx2gn
content-type: application/json
content-length: 259
{

"backing-virtualization-host-storage-resource": "/api/virtualization-hosts/
2f7bf364-03f8-11e1-8eda-001f163805d8/virtualization-host-storage-resources/
37699380-0fa9-11e1-b69e-f0def14b63af",
"description": "Boot filesystem",
"name": "boot",
"type": "fullpack"

}

Figure 117. Create Virtual Disk: Request for a virtual server of type "power-vm"

201 Created
server: zSeries management console API web server / 1.0
location: /api/virtual-servers/588d8c18-0db7-11e1-b1f1-f0def14b63af/virtual-disks/

c547fb4e-0fac-11e1-842b-f0def14b63af
cache-control: no-cache
date: Tue, 15 Nov 2011 17:10:57 GMT
content-type: application/json;charset=UTF-8
content-length: 126
{

"element-uri": "/api/virtual-servers/588d8c18-0db7-11e1-b1f1-f0def14b63af/virtual-disks/
c547fb4e-0fac-11e1-842b-f0def14b63af"

}

Figure 118. Create Virtual Disk: Response for a virtual server of type "power-vm"

268 HMC Web Services API

Upon successfully removing the virtual disk, HTTP status code 204 (No Content) is returned and no
response body is provided.

The URI path must designate an existing virtual server object and the API user must have object-access
permission to it. Furthermore, the URI path must designate an existing virtual disk object. If any of these
conditions is not met, status code 404 (Not Found) is returned. In addition, the API user must also have
action/task permission to the Virtual Server Details action as well, otherwise status code 403 (Forbidden)
is returned.

If the virtual server is of type "power-vm" or "x-hyp" and its status is neither "not-operating" nor
"not-activated", a 409 (Conflict) status code is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the virtual server object designated by {virtual-server-id}.
v If virtual disk type is "fullpack", object access permission to the virtualization host storage resource

object designated by backing-virtualization-host-storage-resource
v If virtual disk type is "storage-group-based", object access permission to all virtualization host storage

resources owned by the virtualization host group object designated by backing-storage-group.
v If virtual disk type is "linked", object access permission to virtual disk designated by

source-virtual-disk and the virtual server that owns it.
v Action/task permission to the Virtual Server Details task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

100 The operation does not support a virtual server of the given type.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI {virtual-server-id} does not designate an existing
virtual server object, or the API user does not have object access permission
to it.

2 The object ID in the URI {virtual-disk-id} does not designate an existing
virtual disk object. (Bad URI Object ID)

409 (Conflict) 1 Virtual server status is not valid to perform the operation.

2 Virtual server object with ID {virtual-server-id} was busy and request timed
out.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM Virtualization Host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM Virtualization Host via SMAPI failed.

Chapter 10. Virtualization management 269

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Get Virtual Disk Properties
The Get Virtual Disk Properties operation retrieves the properties of a single virtual disk object that is
designated by its object ID and the object ID of the owning virtual server. This operation is not supported
for PR/SM virtual servers.

HTTP method and URI
GET /api/virtual-servers/{virtual-server-id}/virtual-disks/{virtual-disk-id}

URI variables

Variable Description

{virtual-server-id} Object ID of the virtual server that will own the virtual disk.

{virtual-disk-id} Element ID of the virtual disk object for which properties are to be obtained.

Response body contents

On successful completion, the response body contains a JSON object that provides the current values of
the properties for the virtual disk object as defined in the Data Model section above. Field names and
data types in the JSON object are the same as the property names and data types defined in the data
model.

Description

This operation returns the current properties for the virtual disk object specified by {virtual-disk-id}.

On successful execution, all of the current properties as defined by the “Data Model” on page 206 are
provided in the response body and HTTP status code 200 (OK) is returned.

The URI path must designate an existing virtual server object and the API user must have object-access
permission to it. Furthermore, the URI path must designate an existing virtual disk object. If any of these
conditions is not met, status code 404 (Not Found) is returned. In addition, the API user must have

DELETE /api/virtual-servers/588d8c18-0db7-11e1-b1f1-f0def14b63af/virtual-disks/
c547fb4e-0fac-11e1-842b-f0def14b63af HTTP/1.1

x-api-session: 29chofb3vqxpijctnd2kf5fiwnfll8z62mq3yomtqjyz8bx2gn

Figure 119. Delete Virtual Disk: Request

204 No Content
date: Tue, 15 Nov 2011 17:11:03 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 120. Delete Virtual Disk: Response

270 HMC Web Services API

action/task permission to the Virtual Server Details action, otherwise status code 403 (Forbidden) is
returned.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the virtual server object designated by {virtual-server-id}
v If virtual disk type is "fullpack", object access permission to the virtualization host storage resource

object designated by backing-virtualization-host-storage-resource
v If virtual disk type is "storage-group-based", object access permission to all virtualization host storage

resources owned by the virtualization host storage group object designated by backing-storage-group.
v If virtual disk type is "linked", object access permission to virtual disk designated by

source-virtual-disk and the virtual server that owns it.
v Action/task permission to the Virtual Server Details task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

100 The operation does not support a virtual server of the given type.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI {virtual-server-id} does not designate an existing
virtual server object, or the API user does not have object access permission
to it.

2 The object ID in the URI {virtual-disk-id} does not designate an existing
virtual disk object.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM Virtualization Host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM Virtualization Host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/virtual-servers/588d8c18-0db7-11e1-b1f1-f0def14b63af/virtual-disks/
c547fb4e-0fac-11e1-842b-f0def14b63af HTTP/1.1

x-api-session: 29chofb3vqxpijctnd2kf5fiwnfll8z62mq3yomtqjyz8bx2gn

Figure 121. Get Virtual Disk Properties: Request for a virtual server of type "power-vm"

Chapter 10. Virtualization management 271

Update Virtual Disk Properties
The Update Virtual Disk Properties operation updates one or more of the writeable properties of a
virtual disk object. This operation is not supported for PR/SM virtual servers.

HTTP method and URI
POST /api/virtual-servers/{virtual-server-id}/virtual-disks/{virtual-disk-id}

URI variables

Variable Description

{virtual-server-id} Object ID of the virtual server that owns the virtual disk.

{virtual-disk-id} Element ID of the virtual disk object for which properties are to be updated.

Request body contents

The request body is expected to contain a JSON object that provides the new values of any writeable
property that is to be updated by this operation. Field names and data types in this JSON object are
expected to match the corresponding property names and data types defined in the data model for this
object type. The JSON object can and should omit fields for properties whose values are not to be
changed by this operation. All such fields are optional.

The JSON object may also contain the following non-data-model field:

Field name Type Rqd/Opt Description

password String
(0-8)

Optional The new password for a linked virtual disk. For virtual disks with a
type of "linked"

Request body access-mode property value may not be "unsupported".

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Tue, 15 Nov 2011 17:10:57 GMT
content-type: application/json;charset=UTF-8
content-length: 516
{

"backing-virtualization-host-storage-resource": "/api/virtualization-hosts/
2f7bf364-03f8-11e1-8eda-001f163805d8/virtualization-host-storage-resources/
37699380-0fa9-11e1-b69e-f0def14b63af",
"description": "Boot filesystem",
"element-id": "c547fb4e-0fac-11e1-842b-f0def14b63af",
"element-uri": "/api/virtual-servers/588d8c18-0db7-11e1-b1f1-f0def14b63af/virtual-disks/
c547fb4e-0fac-11e1-842b-f0def14b63af",
"name": "boot",
"owner": "/api/virtual-servers/588d8c18-0db7-11e1-b1f1-f0def14b63af",
"size": 17179869184,
"type": "fullpack"

}

Figure 122. Get Virtual Disk Properties: Response for a virtual server of type "power-vm"

272 HMC Web Services API

Description

This operation updates writeable properties of the virtual disk object specified by {virtual-disk-id}.

The request body contains an object with one or more fields with field names that correspond to the
names of properties for this object. On successful execution, the value of each corresponding property of
the object is updated with the value provided by the input field, and status code 204 (No Content) is
returned without supplying any response body. The request body does not need to specify a value for all
writeable properties, but rather can and should contain only fields for the properties to be updated.
Object properties for which no input value is provided remain unchanged by this operation.

If the update changes the value of any property for which property-change notifications are due, those
notifications are emitted asynchronously to this operation.

The URI path must designate an existing virtual disk object and the API user must have object-access
permission to it. Furthermore, the URI path must designate an existing virtual server object. If any of
these conditions is not met, status code 404 (Not Found) is returned. In addition, the API user must also
have action/task permission to the Virtual Server Details action as well, otherwise status code 403
(Forbidden) is returned.

The request body is validated against the data model for this object type to ensure that it contains only
writeable properties and the data types of those properties are as required. If the request body is not
valid, status code 400 (Bad Request) is returned with a reason code indicating the validation error
encountered.

If the virtual server is of type "power-vm" or "x-hyp" and its status is neither "not-operating" nor
"not-activated", a 409 (Conflict) status code is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the virtual server object designated by {virtual-server-id}
v If virtual disk type is "fullpack", object access permission to the virtualization host storage resource

object designated by backing-virtualization-host-storage-resource
v If virtual disk type is "storage-group-based", object access permission to all virtualization host storage

resources owned by the virtualization host storage group object designated by backing-storage-group.
v If virtual disk type is "linked", object access permission to virtual disk designated by

source-virtual-disk and the virtual server that owns it.
v Action/task permission to the Virtual Server Details task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

100 The operation does not support a virtual server of the given type.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

Chapter 10. Virtualization management 273

HTTP error status
code

Reason
code Description

404 (Not Found) 1 The object ID in the URI {virtual-server-id} does not designate an existing
virtual server object, or the API user does not have object access permission
to it.

2 The object ID in the URI {virtual-server-id} does not designate an existing
virtual disk object.

409 (Conflict) 1 Virtual server status is not valid to perform the operation.

2 Virtual server object with ID {virtual-server-id} was busy and request timed
out.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM Virtualization Host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM Virtualization Host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Reorder Virtual Disks
The Reorder Virtual Disks operation reorders the virtual disks defined for the PowerVM or x Hyp
virtual server with the given identifier. This operation is not supported for z/VM and PR/SM virtual
servers.

HTTP method and URI
POST /api/virtual-servers/{virtual-server-id}/operations/reorder-virtual-disks

In this request, the URI variable {virtual-server-id} is the object ID of the virtual server object.

POST /api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af/virtual-disks/
c1418fba-0fac-11e1-903e-f0def14b63af HTTP/1.1

x-api-session: 29chofb3vqxpijctnd2kf5fiwnfll8z62mq3yomtqjyz8bx2gn
content-type: application/json
content-length: 44
{

"emulation-mode": "virtio",
"name": "pv01"

}

Figure 123. Update Virtual Disk Properties: Request for a virtual server of type "x-hyp"

204 No Content
date: Tue, 15 Nov 2011 17:10:50 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 124. Update Virtual Disk Properties: Response for a virtual server of type "x-hyp"

274 HMC Web Services API

Request body contents

The JSON object may also contain the following field:

Field name Type Rqd/Opt Description

virtual-disk-uris Array of
String/
URI

Required Ordered list of virtual disk object element-uri property values. The
order of URIs in the array defines the new order of the virtual
disks.

The array size must equal the number of virtual disks for the virtual
server and the array must include the element-uri of each virtual
disk in the virtual server exactly once.

Description

This operation reorders the virtual disks for the identified virtual server.

If the URI path does not designate an existing virtual server object or the API user does not have object
access permission to that virtual server and the storage-resource objects backing its virtual disks, a 404
(Not Found) status code is returned. If the virtual server is of type "zvm" or "prsm", a 400 (Bad Request)
status code is returned. If the API user does not have action/task permission to the Virtual Server
Details action, a 403 (Forbidden) status code is returned.

If virtual-disk-uris array size is not equal to the number of virtual disks in the virtual server or the array
does not include the element-uri of each virtual disk in the virtual server, a 400 (Bad Request) status code
is returned.

If the virtual server is of type "power-vm" or "x-hyp" and its status is neither "not-operating" nor
"not-activated", a 409 (Conflict) status code is returned.

If the request body contents are valid, the virtual server's virtual disks are reordered to match the order
of their element-uri properties in the virtual-disk-uris array.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the virtual server object designated by {virtual-server-id}
v Object access permission to the storage resources used by each virtual disk in the virtual server:

– If virtual disk type is "fullpack", object access permission to the storage resource used by the
virtualization host storage resource object designated by backing-virtualization-host-storage-
resource.

– If virtual disk type is "storage-group-based", object access permission to the storage resource used
by every virtualization host storage resource owned by the virtualization host storage group object
designated by backing-storage-group.

– If virtual disk type is "linked", object access permission to the storage resources used by the virtual
disk designated by source-virtual-disk and the virtual server that owns it.

v Action/task permission to the Virtual Server Details task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

Chapter 10. Virtualization management 275

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

100 The operation does not support a virtual server of the given type.

106 The virtual-disk-uris array contains an invalid number values.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI {virtual-server-id} does not designate an existing
virtual server object, or the API user does not have object access permission
to it.

2 The object ID in the URI {virtual-server-id} does not designate an existing
virtual disk object.

409 (Conflict) 1 Virtual server status is not valid to perform the operation.

2 Virtual server object with ID {virtual-server-id} was busy and request timed
out.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM Virtualization Host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM Virtualization Host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

POST /api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af/operations/reorder-virtual-disks HTTP/1.1
x-api-session: 29chofb3vqxpijctnd2kf5fiwnfll8z62mq3yomtqjyz8bx2gn
content-type: application/json
content-length: 247
{

"virtual-disk-uris": [
"/api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af/virtual-disks/
c1418fba-0fac-11e1-903e-f0def14b63af",
"/api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af/virtual-disks/
c1149ce4-0fac-11e1-903e-f0def14b63af"

]
}

Figure 125. Reorder Virtual Disks: Request

204 No Content
date: Tue, 15 Nov 2011 17:10:50 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 126. Reorder Virtual Disks: Response

276 HMC Web Services API

Activate Virtual Server
The Activate Virtual Server operation accepts a request to asynchronously activate the identified virtual
server.

HTTP method and URI
POST /api/virtual-servers/{virtual-server-id}/operations/activate

In this request, the URI variable {virtual-server-id} is the object ID of the virtual server object.

Response body contents

Once the activation request is accepted, the response body contains a JSON object with the following
fields:

Field name Type Description

job-uri String/URI URI that may be queried to retrieve activation status updates.

Asynchronous result description

Once the activation job has completed, a job-completion notification is sent and results are available for
the asynchronous portion of this operation. These results are retrieved using the Query Job Status
operation directed at the job URI provided in the response body from the Activate Virtual Server
request.

The result document returned by the Query Job Status operation is specified in the description for the
Query Job Status operation. When the status of the job is "complete", the results include a job
completion status code and reason code (fields job-status-code and job-reason-code) which are set as
indicated in the operation description. The job-results field is null for asynchronous virtual server
activation jobs.

Description

This operation asynchronously activates the identified virtual server. If the URI does not identify a valid
virtual server a 404 (Not Found) status code is returned. If the user does not have authority to perform
the Activate action, a 403 (Forbidden) status code is returned.

The virtual server activation job is then initiated and a 202 (Accepted) status code is returned. The
response body includes a URI that may be queried to retrieve the status of the activation job. See “Query
Job Status” on page 44 for information on how to query job status. When the activate job has completed,
an asynchronous result message is sent, including “Job status and reason codes” on page 278.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the virtual server
v Action/task permission to the Activate task.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in “Response body contents.”

Chapter 10. Virtualization management 277

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 API user does not have access action permission to Activate.

404 (Not Found) 1 A virtual server with object-id {virtual-server-id} does not exist on HMC or
API user does not have object-access permission for it.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

HTTP error status
code

Reason
code Description

200 (OK) N/A Activation completed successfully

500 (Server Error) 100 Virtual server activation failed

101 Virtual server activation job timed out

Example HTTP interaction

Deactivate Virtual Server
The Deactivate Virtual Server operation accepts a request to asynchronously deactivate the identified
virtual server.

POST /api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af/operations/activate HTTP/1.1
x-api-session: 1f6hv807yexwhfyk1p8ygrc8876y48adda2dfpvuz4t9iqeo9k

Figure 127. Activate Virtual Server: Request

202 Accepted
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Wed, 16 Nov 2011 18:49:07 GMT
content-type: application/json;charset=UTF-8
content-length: 60
{

"job-uri": "/api/jobs/aa24c23e-1083-11e1-87b6-0010184c8334"
}

Figure 128. Activate Virtual Server: Response

278 HMC Web Services API

HTTP method and URI
POST /api/virtual-servers/{virtual-server-id}/operations/deactivate

In this request, the URI variable {virtual-server-id} is the object ID of the virtual server object.

Response body contents

Once the deactivation request is accepted, the response body contains a JSON object with the following
fields:

Field name Type Description

job-uri String/URI URI that may be queried to retrieve deactivation status updates.

Asynchronous result description

Once the deactivation job has completed, a job-completion notification is sent and results are available for
the asynchronous portion of this operation. These results are retrieved using the Query Job Status
operation directed at the job URI provided in the response body from the Deactivate Virtual Server
request.

The result document returned by the Query Job Status operation is specified in the description for the
Query Job Status operation. When the status of the job is "complete", the results include a job
completion status code and reason code (fields job-status-code and job-reason-code) which are set as
indicated in operation description below. The job-results field is null for asynchronous virtual server
deactivation jobs.

Description

This operation asynchronously deactivates the identified virtual server. If the URI does not identify a
valid virtual server a 404 (Not Found) status code is returned. If the user does not have authority to
perform the Deactivate action, a 403 (Forbidden) status code is returned.

The virtual server deactivation job is then initiated and a 202 (Accepted) status code is returned. The
response body includes a URI that may be queried to retrieve the status of the deactivation job. See
“Query Job Status” on page 44 for information on how to query job status. When the deactivate job has
completed, an asynchronous result message is sent, including “Job status and reason codes” on page 280.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the virtual server
v Action/task permission to the Deactivate task.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in “Response body contents.”

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

Chapter 10. Virtualization management 279

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 API user does not have access action permission to Activate.

404 (Not Found) 1 A virtual server with object-id {virtual-server-id} does not exist on HMC or
API user does not have object-access permission for it.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

HTTP error status
code

Reason
code Description

200 (OK) N/A Deactivation completed successfully

500 (Server Error) 100 Virtual server deactivation failed

101 Virtual server deactivation job timed out

Example HTTP interaction

Mount Virtual Media
The Mount Virtual Media operation starts an asynchronous operation to mount the specified
zManager-provided ISO to the identified PowerVM or x Hyp virtual server. This operation is not
supported for PR/SM and z/VM virtual servers.

HTTP method and URI
POST /api/virtual-servers/{virtual-server-id}/operations/mount-virtual-media

In this request, the URI variable {virtual-server-id} is the object ID of the virtual server object.

POST /api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af/operations/deactivate HTTP/1.1
x-api-session: 1f6hv807yexwhfyk1p8ygrc8876y48adda2dfpvuz4t9iqeo9k

Figure 129. Deactivate Virtual Server: Request

202 Accepted
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Wed, 16 Nov 2011 18:50:49 GMT
content-type: application/json;charset=UTF-8
content-length: 60
{

"job-uri": "/api/jobs/e6eb3504-1083-11e1-87b6-0010184c8334"
}

Figure 130. Deactivate Virtual Server: Response

280 HMC Web Services API

Request body contents

The request body is a JSON object with the following fields:

Field name Type Description

iso String
Enum

The ID of the zManager-provided ISO to mount to the virtual server. Values:
v "gpmp"– Guest Platform Performance Management ISO
v "virtio" – RedHat VirtIO driver CD

Asynchronous result description

Once the mount job has completed, a job-completion notification is sent and results are available for the
asynchronous portion of this operation. These results are retrieved using the Query Job Status operation
directed at the job URI provided in the response body from the Mount Virtual Media request.

The result document returned by the Query Job Status operation is specified in the description for the
Query Job Status operation. When the status of the job is "complete", the results include a job
completion status code and reason code (fields job-status-code and job-reason-code) which are set as
indicated in operation description below. The job-results field is null for asynchronous mount virtual
media jobs.

Description

The Mount Virtual Media operation starts an asynchronous operation to mount the specified
zManager-provided ISO to the identified PowerVM or x Hyp virtual server. This operation is not
supported for PR/SM and z/VM virtual servers.

Virtual media is a virtual DVD drive that can be attached to a virtual server. Because virtual media is
allocated from IBM blade storage instead of on a real media, it may be faster to use than a physical real
device.

Preloaded ISO images come in two variants. The first is an ISO image that is packaged on the SE, such as
the GPMP Installation Image. When mounting this type of ISO image to the virtual server, the image will
be uploaded from the SE to the hypervisor. The second type is an ISO image preloaded onto the
hypervisor firmware, such as the Red Hat VirtIO Driver Image. When mounting this type of ISO image,
no uploading will occur.

The response from this operation, success or failure, will be presented asynchronously. Once the mount
operation job has completed, a job-completion notification is sent and results are available for the
asynchronous portion of this operation. These results are retrieved using the Query Job Status operation
directed at the job URI provided in the response body from the Mount Virtual Media request.

If the API user does not have action permission for the Mount Virtual Media task, a 403 (Forbidden)
status code is returned. A 404 (Not Found) status code is returned if the object-id {virtual-server-id} does
not identify a virtual server object to which the API user has object-access permission.

A mount operation cannot be performed when a virtual server or its Virtualization Host is busied by
another operation or when the Virtualization Host status is not "operating". Under these conditions a 409
(Conflict) status code is returned.

The mount virtual media job is then initiated and a 202 (Accepted) status code is returned. The response
body includes a URI that may be queried to retrieve the status of the mount job. See “Query Job Status”
on page 44 for information on how to query job status. When the mount job has completed, an
asynchronous result message is sent, including “Job status and reason codes” on page 282.

Chapter 10. Virtualization management 281

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the virtual server
v Action/task permission to the Mount Virtual Media task.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

100 The operation does not support a virtual server of the given type.

403 (Forbidden) 1 API user does not have access action permission to Mount Virtual Media.

404 (Not Found) 1 A virtual server with object-id {virtual-server-id} does not exist on HMC or
API user does not have object-access permission for it.

409 (Conflict) 2 Virtual server object with ID {virtual-server-id} was busy and request timed
out.

101 Parent Virtualization Host has a status value that is not valid to perform the
operation.

105 Parent Virtualization Host object was locked/busy and the request timed
out.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

HTTP error status
code

Reason
code Description

200 (OK) N/A Mount completed successfully

500 (Server Error) 100 Mount failed

Usage notes
v The mount operation may take some time as the zManager-provided ISO may need to be internally

uploaded to the hosting virtualization host from other elements in the management hierarchy.
v Upload and mount of user-provided ISOs is supported by the Mount Virtual Media Image operation

available in version 1.2 of the Web Services API.

282 HMC Web Services API

Example HTTP interaction

Mount Virtual Media Image
The Mount Virtual Media Image operation starts a synchronous operation to mount a user-provided ISO
image to the identified PowerVM or x Hyp virtual server. This operation is not supported for PR/SM
and z/VM virtual servers. Virtual media is a virtual DVD drive that can be attached to a virtual server.
Because virtual media is allocated from IBM blade storage instead of on a real media, it may be faster to
use than a physical real device. The contents of the ISO image is specified as binary data in the body of
the POST request.

HTTP method and URI
POST /api/virtual-servers/{virtual-server-id}/operations/mount-virtual-media-image

In this request, the URI variable {virtual-server-id} is the object ID of the virtual server object.

Query parameters:

Name Type Rqd/Opt Description

image-name String Optional If specified, this will be used as the displayable name and returned as the
mounted-media-name in the virtual server properties. If omitted, the
service will generate a name for this use.

Request body contents

The request body is the binary contents of an ISO image file. A MIME media type of
application/octet-stream should be specified as the content-type on the request.

Description

This operation mounts the provided ISO image content to the identified virtual server.

POST /api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af/operations/mount-virtual-media HTTP/1.1
x-api-session: 29chofb3vqxpijctnd2kf5fiwnfll8z62mq3yomtqjyz8bx2gn
content-type: application/json
content-length: 15
{

"iso": "gpmp"
}

Figure 131. Mount Virtual Media: Request

202 Accepted
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Tue, 15 Nov 2011 17:10:50 GMT
content-type: application/json;charset=UTF-8
content-length: 60
{

"job-uri": "/api/jobs/c4e59922-0fac-11e1-bfcd-00215e69dea0"
}

Figure 132. Mount Virtual Media: Response

Chapter 10. Virtualization management 283

If the API user does not have action permission for the Mount Virtual Media task, a 403 (Forbidden)
status code is returned. A 404 (Not Found) status code is returned if the object-id {virtual-server-id} does
not identify a virtual server object to which the API user has object-access permission.

A mount operation cannot be performed when a virtual server or its virtualization host is busied by
another operation or when the virtualization host status is not "operating". Under these conditions a 409
(Conflict) status code is returned.

If the mount completes successfully a 204 (No Content) is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the virtual server.
v Action/task permission to the Mount Virtual Media task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

100 The operation does not support a virtual server of the given type.

403 (Forbidden) 1 API user does not have action permission to the Mount Virtual Media task.

404 (Not Found) 1 A virtual server with object-id {virtual-server-id} does not exist on HMC or
API user does not have object-access permission for it.

409 (Conflict) 2 Virtual server object with ID {virtual-server-id} was busy and request timed
out.

101 Parent Virtualization Host has a status value that is not valid to perform the
operation.

105 Parent Virtualization Host object was locked/busy and the request timed
out.

500 (Server Error) 100 Mount failed.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Usage notes
v Because the ISO image is transmitted synchronously as part of the request body of this operation, the

time to execute this operation can be expected to be, at least in part, proportional to the size of the ISO
image being uploaded.

v Mount of preloaded ISO images is supported by the Mount Virtual Media operation of the Web
Services API.

284 HMC Web Services API

Unmount Virtual Media
The Unmount Virtual Media operation unmounts the currently mounted ISO from the identified
PowerVM or x Hyp virtual server. This operation is not supported for PR/SM and z/VM virtual servers.

HTTP method and URI
POST /api/virtual-servers/{virtual-server-id}/operations/unmount-virtual-media

In this request, the URI variable {virtual-server-id} is the object ID of the virtual server object.

Request body contents

An optional request body can be specified as a JSON object with the following fields:

Field name Type Rqd/Opt Description

force Boolean Optional If true, a forced unmount is requested. Otherwise, a normal
unmount is requested. Default is false.

Description

This operation unmounts the currently mounted ISO from the identified virtual server. Note that there
are not separate unmount operations associated with the distinct Mount Virtual Media and Mount
Virtual Media Image operations; this single Unmount Virtual Media operation may be used regardless
of the mount operation used.

If the API user does not have action/task permission for the Mount Virtual Media task, a 403
(Forbidden) status code is returned. A 404 (Not Found) status code is returned if the object-id
{virtual-server-id} does not identify a virtual server object to which the API user has object-access
permission.

If a request body is provided with the force request field specified as true, a request is issued to the
virtualization host to attempt to force the unmount even if the media is locked by a guest OS. Otherwise,
a normal unmount operation is performed.

An unmount operation cannot be performed when a virtual server or its virtualization host is busied by
another operation or when the virtualization host status is not "operating". Under these conditions a 409
(Conflict) status code is returned.

The virtual media is then unmounted and a 204 (No Content) status code is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the virtual server.
v Action/task permission to the Mount Virtual Media task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

Chapter 10. Virtualization management 285

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

100 The operation does not support a virtual server of the given type.

403 (Forbidden) 1 API user does not have action permission to the Mount Virtual Media task.

404 (Not Found) 1 A virtual server with object-id {virtual-server-id} does not exist on HMC or
API user does not have object-access permission for it.

409 (Conflict) 2 Virtual server object with ID {virtual-server-id} was busy and request timed
out.

101 Parent Virtualization Host has a status value that is not valid to perform the
operation.

105 Parent Virtualization Host object was locked/busy and the request timed
out.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Migrate Virtual Server
The Migrate Virtual Server operation moves the identified PowerVM or x Hyp virtual server to the
target virtualization host. This operation is not supported for PR/SM and z/VM virtual servers.

HTTP method and URI
POST /api/virtual-servers/{virtual-server-id}/operations/migrate

In this request, the URI variable {virtual-server-id} is the object ID of the virtual server object.

POST /api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af/operations/unmount-virtual-media HTTP/1.1
x-api-session: 29chofb3vqxpijctnd2kf5fiwnfll8z62mq3yomtqjyz8bx2gn

Figure 133. Unmount Virtual Media: Request

204 No Content
date: Tue, 15 Nov 2011 17:10:55 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 134. Unmount Virtual Media: Response

286 HMC Web Services API

Request body contents

The request body is a JSON object with the following fields:

Field name Type Description

virt-host-id String Object ID of the target virtualization host object.

Response body contents

On successful completion, a response body is provided such that the caller may further target the
migrated virtual server.

Field name Type Description

object-uri String/URI The object-uri property of the migrated Virtual Server object on the new
virtualization host.

Description

This operation moves the identified virtual server to a new virtualization host.

Virtual server migration is a composite action consisting of the steps of creating a new virtual server on
the new virtualization host, configuring the new virtual server to correspond to the identified (original)
virtual server, and then deleting the identified virtual server. Upon completion, this operation returns the
object-uri of the new virtual server in the response body. The response also includes a Location header
that provides this URI.

The steps of the composite migration action may be observable through inventory and property change
notifications.

If the API user does not have action permission for the Migrate Virtual Server task, a 403 (Forbidden)
status code is returned. A 404 (Not Found) status code is returned if the object-id {virtual-server-id} does
not identify a virtual server object to which the API user has object-access permission. A 400 (Bad
Request) status code is returned if the request body fails to validate (e.g. the target virtualization host is
of a different type than the current virtualization host).

A migrate operation cannot be performed when the virtual server, its storage-resources, or
virtual-networks are busied by another operation. Migrate is also not possible when the virtual server's
status is something other than "not-operating" or "not-activated" or when its current virtualization host
or the target virtualization host status is "not-communicating" or "status-check". Migration is also not
possible when the virtual server has media mounted. Under any of these conditions a 409 (Conflict)
status code is returned.

Virtual server migration is then attempted. Migration may fail if the user does not have object-access to
the storage resources used by the virtual server's virtual disks. Migration may also fail if the virtual
server has virtual disks and the target virtualization host does not have virtualization host storage
resources for them. If these or other failure occurs, migration fails, the original virtual server is restored,
and a 503 (Service Unavailable) status code is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the virtual server
v Object access permission to the virtual server's virtualization host's hosting-environment
v Object access permission to the target virtualization host's hosting-environment

Chapter 10. Virtualization management 287

v Object access permission to the storage resources used by the virtual server's virtual disks
v Action/task permission to the Migrate Virtual Server task.

HTTP status and reason codes

On success, HTTP status code 201 (Created) is returned and the response body is provided as described
in “Response body contents” on page 287.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

100 The operation does not support a virtual server of the given type.

104 Target virtualization host is invalid because it is not the same type as the
current virtualization host.

403 (Forbidden) 1 API user does not have action permission to the Migrate Virtual Server task.

404 (Not Found) 1 A virtual server object with object-id {virtual-server-id} does not exist on
HMC or API user does not have object-access permission for it or its
virtualization host's hosting-environment.

1 A virtualization host with object-id {virt-host-id} does not exist on HMC or
API user does not have object-access permission for its hosting-environment.

409 (Conflict) 0 Migration is not possible for a reason other than those indicated by the other
409 (Conflict) reason codes.

1 Virtual server status is not valid to perform the operation (must be either
"not-operating" or "not-activated").

2 Virtual server object with ID {virtual-server-id} was busy and request timed
out.

101 Parent Virtualization Host has a status value that is not valid to perform the
operation.

103 Virtual server is an invalid target because it has virtual media is mounted.

105 The target virtualization host already has a virtual server with the same
name as the virtual server to be migrated.

106 One or more of the virtual server's storage resources was busy and the
request timed out.

107 One or more of the virtual server's virtual network objects was busy and the
request timed out.

108 One or more storage resources used by the virtual server are not available
on the target virtualization host.

503 (Service
Unavailable)

0 Migration failed.

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

288 HMC Web Services API

Initiate Virtual Server Dump
The Initiate Virtual Server Dump operation disruptively stops the identified PowerVM or x Hyp virtual
server and sends an operating system-specific command to begin a memory dump of the operating
system running on the virtual server. This operation is not supported for PR/SM or z/VM virtual
servers.

HTTP method and URI
POST /api/virtual-servers/{virtual-server-id}/operations/initiate-dump

In this request, the URI variable {virtual-server-id} is the object ID of the virtual server object.

Description

The Initiate Virtual Server Dump operation disruptively stops the virtual server and initiates a dump.

Virtual server status must not be "not-operating".

This operation disruptively stops the identified virtual server and sends an virtual-server-type-specific
signal to begin a memory dump of the operating system running on the virtual server.

If the API user does not have action permission for the Initiate Virtual Server Dump task, a 403
(Forbidden) status code is returned. A 404 (Not Found) status code is returned if the object-id
{virtual-server-id} does not identify a virtual server object to which the API user has object-access
permission. A 400 (Bad Request) status code is returned if the request body fails to validate or if the
operation is not supported for the given type of virtual server.

A 409 (Conflict) status code is returned if the virtual server status is "not-operating".

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the virtual server
v Action/task permission to the Initiate Virtual Server Dump task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

100 The operation does not support a virtual server of the given type.

403 (Forbidden) 1 API user does not have action permission to the Initiate Virtual Server
Dump task.

404 (Not Found) 1 A virtual server object with object-id {virtual-server-id} does not exist on
HMC or API user does not have object-access permission for it.

409 (Conflict) 1 Virtual server status is not valid to perform the operation (status is
"not-operating").

Chapter 10. Virtualization management 289

HTTP error status
code

Reason
code Description

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Inventory service data
Information about the virtual servers managed by the HMC can be optionally included in the inventory
data provided by the Inventory Service.

Inventory entries for Virtual Server objects are included in the response to the Inventory Service's Get
Inventory operation when the request specifies (explicitly by inventory class, implicitly via a containing
category, or by default) that objects of the various virtual server type-specific inventory classes are to be
included. An entry for a particular Virtual Server is included only if the API user has object-access
permission to that object and the applicable type-specific inventory class has been specified, as described
in the following table:

Inventory class Includes virtual servers with “type” value

power-vm-virtual-server

power-vm-virtual-server-common

power-vm

prsm-virtual-server

prsm-virtual-server-common

prsm

x-hyp-virtual-server

x-hyp-virtual-server-common

x-hyp

zvm-virtual-server

zvm-virtual-server-common

zvm

For each Virtual Server object to be included, the inventory response array includes entry that is a JSON
object with the same contents as is specified in the Response Body Contents section for the Get Virtual

POST /api/virtual-servers/588d8c18-0db7-11e1-b1f1-f0def14b63af/operations/initiate-dump HTTP/1.1
x-api-session: 6cq5qn64f6zv388z20hu6nzpx1ukaqrl4ekri6sgezaxcwgtz0

Figure 135. Initiate Virtual Server Dump: Request

204 No Content
date: Wed, 07 Dec 2011 05:07:39 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 136. Initiate Virtual Server Dump: Response

290 HMC Web Services API

Server Properties operation. That is, the data provided is the same as would be provided if a Get Virtual
Server Properties operation were requested targeting this object. For inventory class names that end with
–common (e.g. power-vm-virtual-server-common), the data is the same as would be provided for a Get
Virtual Sever Properties operation with the properties=common query parameter specified. For the
inventory class names that do not end in –common (e.g. power-vm-virtual-server), the results are the
same as would be provided for a Get Virtual Server Properties operation with no properties query
parameter specified.

Sample inventory data

{
"acceptable-status": [

"operating"
],
"auto-start": false,
"boot-mode": "normal",
"boot-network-adapter-client-ip": null,
"boot-network-adapter-gateway-ip": null,
"boot-network-adapter-server-ip": null,
"boot-network-adapter-subnet-ip": null,
"boot-sequence": [

"virtual-disk"
],
"class": "virtual-server",
"cpu-perf-mgmt-enabled": true,
"description": "Order processing for the Shimmer floor wax/dessert topping product",
"dlpar-active": false,
"dlpar-enabled": false,
"gpmp-status": "not-operating",
"gpmp-support-enabled": false,
"gpmp-version": "unavailable",
"has-unacceptable-status": true,
"hostname": null,
"initial-dedicated-processors": null,
"initial-memory": 1024,
"initial-processing-units": 0.10000000000000001,
"initial-virtual-processors": 1,
"is-locked": false,
"keylock": "normal",
"mac-prefix": {

"mac-address": "02:ee:6b:6c:70:00",
"prefix-length": 40

},
"maximum-dedicated-processors": null,
"maximum-memory": 1024,
"maximum-processing-units": 7.0,
"maximum-virtual-processors": 7,
"minimum-dedicated-processors": null,
"minimum-memory": 1024,
"minimum-processing-units": 0.10000000000000001,
"minimum-virtual-processors": 1,
"mounted-media-name": null,
"name": "Shimmer orders server",
"network-adapters": [

{

Figure 137. Virtual server object: Sample inventory data for a virtual server of type "power-vm" (Part 1)

Chapter 10. Virtualization management 291

"element-id": "0000",
"element-uri": "/api/virtual-servers/42eecf00-7b47-11e0-bc9e-001f163803de/network-adapters/0000",
"network-uri": "/api/virtual-networks/9b9fe4f8-75b2-11e0-9219-0010184c8026"

},
{

"element-id": "0010",
"element-uri": "/api/virtual-servers/42eecf00-7b47-11e0-bc9e-001f163803de/network-adapters/0010",
"network-uri": null

}
],
"object-id": "119338a2-4081-11e0-9e7c-f0def10bff8d",
"object-uri": "/api/virtual-servers/119338a2-4081-11e0-9e7c-f0def10bff8d",
"parent": "/api/virtualization-hosts/baab1cd2-2990-11e0-8d5b-001f163803de",
"processing-mode": "shared",
"status": "not-operating",
"type": "power-vm",
"virtual-disks": [

{
"backing-virtualization-host-storage-resource": "/api/virtualization-hosts/baab1cd2-2990-11e0-

8d5b-001f163803de/virtualization-host-storage-resources/abfce790-4080-11e0-8486-f0def10bff8d",
"description": "",
"element-id": "11b5b0a8-4081-11e0-8486-f0def10bff8d",
"element-uri": "/api/virtual-servers/119338a2-4081-11e0-9e7c-f0def10bff8d/virtual-disks/

11b5b0a8-4081-11e0-8486-f0def10bff8d",
"name": "Superman5",
"owner": "/api/virtual-servers/119338a2-4081-11e0-9e7c-f0def10bff8d",
"size": 5242880,
"type": "fullpack"

}
],
"workloads": [

"/api/workload-resource-groups/a4019e06-7685-11e0-8fca-0010184c8026"
]

}

Figure 138. Virtual server object: Sample inventory data for a virtual server of type "power-vm" (Part 2)

292 HMC Web Services API

"acceptable-status": [
"operating"

],
"associated-logical-partition": "/api/logical-partitions/0b239aa3-fea1-32e0-a38f-c632e7ee3b0c",
"class": "virtual-server",
"cpu-perf-mgmt-enabled": false,
"description": "",
"gpmp-status": "not-operating",
"gpmp-support-enabled": false,
"gpmp-version": "unavailable",
"has-unacceptable-status": true,
"is-locked": false,
"name": "VMALT2 ",
"network-adapters": [

{
"chpid": "F0",
"css": "0",
"element-id": "OSX 0.F0",
"element-uri": "/api/virtual-servers/d44575cc-40ea-11e0-9814-001f163803de/network-adapters/

OSX%200.F0",
"name": "OSX 0.F0",
"type": "osx"

},
{

"chpid": "A0",
"css": "0",
"element-id": "OSX 0.A0",
"element-uri": "/api/virtual-servers/d44575cc-40ea-11e0-9814-001f163803de/network-adapters/

OSX%200.A0",
"name": "OSX 0.A0",
"network-uris": [

"/api/virtual-networks/a9b6f8ce-771f-11e0-b1da-0010184c8026"
],
"type": "osx"

}
],
"object-id": "d44575cc-40ea-11e0-9814-001f163803de",
"object-uri": "/api/virtual-servers/d44575cc-40ea-11e0-9814-001f163803de",
"parent": "/api/virtualization-hosts/bab76208-2990-11e0-8d5b-001f163803de",
"status": "operating",
"type": "prsm",
"workloads": [

"/api/workload-resource-groups/a4019e06-7685-11e0-8fca-0010184c8026"
]

}

Figure 139. Virtual server object: Sample inventory data for a virtual server of type "prsm"

Chapter 10. Virtualization management 293

{
"acceptable-status": [

"operating"
],
"auto-start": false,
"boot-sequence": [

"virtual-media"
],
"class": "virtual-server",
"description": "",
"gpmp-status": "not-operating",
"gpmp-support-enabled": false,
"gpmp-version": "unavailable",
"has-unacceptable-status": true,
"hostname": null,
"initial-memory": 4096,
"initial-virtual-processors": 4,
"is-locked": false,
"mounted-media-name": "ubuntu-11.04-server-i386.iso",
"name": "XVS1",
"network-adapters": [],
"object-id": "a4588932-8648-11e0-bbc1-f0def10bff8d",
"object-uri": "/api/virtual-servers/a4588932-8648-11e0-bbc1-f0def10bff8d",
"parent": "/api/virtualization-hosts/931b25d6-82e1-11e0-b9e4-f0def10bff8d",
"status": "stopping",
"type": "x-hyp",
"virtual-disks": [],
"workloads": [

"/api/workload-resource-groups/a4019e06-7685-11e0-8fca-0010184c8026"
]

}

Figure 140. Virtual server object: Sample inventory data for a virtual server of type "x-hyp"

294 HMC Web Services API

Chapter 11. Storage Management

zManager provides a common interface across the different Virtualization Host types and storage types
that it supports. It allows a system administrator to create virtualized storage resources and attach them
to virtual servers. The basic flow for all supported types of Virtualization Hosts and storage resources is
as follows:

The server administrator defines his requirements to the storage administrator (e.g., the number of
storage resources, their type and size information).

The server administrator uses zManager storage management interfaces to export the
virtualization-host-specific information which is required to allow the Storage Area Network (SAN)
administrator to setup the SAN accordingly. This information consists primarily of the Host WWPN List.

When the SAN administrator has finished configuring storage resources, the server administrator can add
these new storage resources to the ensemble for management by performing one or more of the following
actions:
v Triggering discovery of newly detected storage resources for a Virtualization Host
v Compiling a Storage Access List (a file with information about the storage resources, such as unique

name and addressing information) and importing this list into zManager
v Manually adding each storage resource.

zManager offers interfaces to work with all ensemble-managed storage resources. For example, there are
interfaces to:
v List the various storage-related entities (storage resources, Virtualization Host storage resources,

Virtualization Host storage groups and virtual disks)
v List details of the various storage-related entities
v Identify storage resources that are to be managed by zManager
v Grant Virtualization Hosts access to storage resources
v Assign storage resources to a Virtualization Host storage group
v Assign storage resources to virtual servers by creating virtual disks on them.

Terms
Host World Wide Port Name (WWPN) List

The Host WWPN List consists of a list of WWPNs of the Fibre-Channel host ports of each
virtualization host. It can be exported for one or multiple virtualization hosts through a zManager
function. The WWPN list is useful when the system administrator requires additional storage
resources to be configured by the storage administrator. The storage administrator must enter
these WWPNs into the SAN switches and storage controllers in order to allow these specific
WWPNs to access the storage controllers / Logical Units.

Storage Access List (SAL)
The Storage Access List is provided by a storage administrator to a system administrator after
configuring storage resources (e.g., FCP Logical Units). The Storage Access List consists of a
number of host port WWPNs and entries for a configured storage resource with its properties,
such as addressing information, or device type information, in the form of a Comma-Separated
Values (CSV) file. Importing a Storage Access List offers a convenient way for letting zManager
know which hypervisor has access to which storage resource, avoiding the cumbersome and
error-prone process of adding storage resources (and their associated properties) manually.

© Copyright IBM Corp. 2012, 2013 295

Storage Resource
An addressable storage entity, allowing a virtualization host to write data to and read data from.
A storage resource may be one of the following: a SCSI Logical Unit, attached via FCP, a file, a
Volume attached via ESCON/FICON.

Virtualization Host Storage Resource
The representation of a storage resource from the perspective of a virtualization host. It is a
storage resource to which the virtualization host has access.

Virtualization Host Storage Group
Representation of a z/VM Storage Group in zManager. It consists of homogeneous storage
resources to which a z/VM virtualization host has access.

Virtual Disk
Virtual storage space provided by a virtualization host to a guest virtual server. A Virtual Disk is
based upon a storage resource, but may be further virtualized by a virtualization host.

Object model overview

Storage management operations summary
The following tables provide an overview of the operations provided. The tables are organized according
to the scope of the operations listed.

Table 55. Storage management: ensemble-level storage operations

Operation name HTTP method and URI path

“List Storage Resources” on page
299

GET /api/ensembles/{ensemble-id}/storage-resources

“Get Storage Resource Properties”
on page 302

GET /api/storage-resources/{storage-resource-id}

“Create Storage Resource” on
page 303

POST /api/ensembles/{ensemble-id}/storage-resources

Figure 141. Object model

296 HMC Web Services API

Table 55. Storage management: ensemble-level storage operations (continued)

Operation name HTTP method and URI path

“Update Storage Resource
Properties” on page 305

POST /api/storage-resources/{storage-resource-id}

“Delete Storage Resource” on
page 307

DELETE /api/storage-resources/{storage-resource-id}

“Export World Wide Port Names
List” on page 309

POST /api/ensembles/{ensemble-id}/operations/export-port-names

“Import Storage Access List” on
page 311

POST /api/ensembles/{ensemble-id}/operations/import-storage-access-list

Table 56. Storage management: virtualization host storage operations

Operation name HTTP method and URI path

“List Virtualization Host HBA
Ports” on page 316

GET /api/virtualization-hosts/{virt-host-id}/hba-ports

“List Virtualization Host Storage
Resources” on page 318

GET /api/virtualization-hosts/{virt-host-id}/virtualization-host-storage-
resources

“Get Virtualization Host Storage
Resource Properties” on page 321

GET /api/virtualization-hosts/{virt-host-id}/virtualization-host-storage-
resources/{virt-host-storage-resource-id}

“Create Virtualization Host
Storage Resource” on page 325

POST /api/virtualization-hosts/{virt-host-id}/virtualization-host-
storage-resources

“Delete Virtualization Host
Storage Resource” on page 328

DELETE /api/virtualization-hosts/{virt-host-id}/virtualization-host-
storage-resources/{virt-host-storage-resource-id}

“Add Virtualization Host Storage
Resource Paths” on page 330

POST /api/virtualization-hosts/{virt-host-id}/operations/add-paths

“Remove Virtualization Host
Storage Resource Paths” on page
333

POST /api/virtualization-hosts/{virt-host-id}/operations/remove-paths

“Discover Virtualization Host
Storage Resources” on page 336

POST /api/virtualization-hosts/{virt-host-id}/operations/discover-
virtualization-host-storage-resources

Table 57. Storage management: storage group operations

Operation name HTTP method and URI path

“List Virtualization Host Storage
Groups” on page 339

GET /api/virtualization-hosts/{virt-host-id}/virtualization-host-storage-
groups

“Get Virtualization Host Storage
Group Properties” on page 342

GET /api/virtualization-hosts/{virt-host-id}/virtualization-host-storage-
groups/{virt-host-storage-group-id}

“List Virtualization Host Storage
Resources in a Virtualization Host
Storage Group” on page 344

POST /api/virtualization-hosts/{virt-host-id}/operations/list-
virtualization-host-storage-resources-in-group

“Add Virtualization Host Storage
Resource to Virtualization Host
Storage Group” on page 346

POST /api/virtualization-hosts/{virt-host-id}/operations/add-
virtualization-host-storage-resource-to-group

“Remove Virtualization Host
Storage Resource from
Virtualization Host Storage
Group” on page 348

POST /api/virtualization-hosts/{virt-host-id}/operations/remove-
virtualization-host-storage-resource-from-group

Chapter 11. Storage Management 297

Table 58. Storage management: URI variables

Variable Description

{ensemble-id} Object ID of an ensemble object

{virt-host-id} Object ID of a virtualization host object

{virtual-server-id} Object ID of a virtual server object

{storage-resource-id} Object ID of a storage resource object

{virt-host-storage-resource-id} Element ID of a virtualization host storage resource object

{virt-host-storage-group-id} Element ID of a virtualization host storage group object

Note: Although virtual disk operations are also storage related, they have a closer affinity to
virtualization management. Thus, they are included within the specification for the “Virtual Server
Object” on page 206 in Chapter 10, “Virtualization management,” on page 161.

Storage resource object
A storage resource object represents a single physical storage resource available to one or more
zEnterprise Virtualization Hosts in an ensemble.

Data model
This object includes the properties defined in the “Base managed object properties schema” on page 33,
but does not provide the operational-status-related properties defined in that schema because it does not
maintain the concept of an operational status.

The following type-specific specializations apply to the other Base Managed Object properties:

Table 59. Storage resource object: base managed object properties specializations

Name Qualifier Type Description of specialization

object-uri — String/
URI

The canonical URI path for a storage resource object is of the form
/api/storage-resources/{storage-resource-id} where
{storage-resource-id} is the value of the object-id property of the
storage resource object.

parent — String/
URI

The parent object of a storage resource object is an ensemble object.

class — String The class of a storage resource object is "storage-resource".

description (w)(pc) String
(0-256)

The optional user-supplied description for the storage resource.
This is the description that will be displayed on the user interface.
It must consist only of alphanumeric characters, spaces and the
following special characters: “._-”.

name (w)(pc) String
(1-64)

The user-supplied name of the storage resource. This is the name
that will be displayed on the user interface. It must consist only of
alphanumeric characters, spaces and the following special
characters: “._-”, and it must begin with an alphabetic character.
This name must be unique within the Ensemble.

Class specific additional properties
In addition to the properties defined via included schemas, this object includes the following additional
type-specific properties:

298 HMC Web Services API

Table 60. Storage resource object: class specific properties

Name Qualifier Type Description

type — String
Enum

The type of the storage resource. Values:

v "eckd" – An Extended Count Key Data storage resource

v "fcp" – A Fibre-channel attached storage resource

v "zvm-fcp" – A Fibre-channel attached storage resource for use by
z/VM virtualization hosts

size (w)(pc) Long The size of the storage resource. The units for this property are
specified by the allocation-units property.

allocation-units (w) String
Enum

The units for the size property. Values:

v "bytes"– used only for storage resources whose type property is
"fcp" or "zvm-fcp".

v "cylinders" – used only for storage resources whose type
property is "eckd".

v "unknown"

allocation-status (pc) String
Enum

The status of the storage resource in terms of its current allocation.
A storage resource is considered to be allocated for use if there is a
virtual disk backed by this storage resource or the storage resource
backs a hypervisor storage resource that is a member of a
virtualization host storage group.

Values:

v "free" – the storage resource is not currently allocated for use.

v "used" – the storage resource is currently allocated for use.

unique-device-id (pc) String The unique device identifier assigned to this storage resource. This
is a worldwide unique identifier based on information about the
device. zManager creates a unique device identifier for each
storage resource whose type property is "fcp". A unique device
identifier is not created for storage resources with a type property
of "eckd" or "zvm-fcp"; for such storage resources, the value of
this property is always null.

Note that even for storage resources with a type property of "fcp",
the value of the property may be null or an empty string. This is
typically the case if zManager has not yet accessed the storage
resource and thus the unique device identifier is not yet known.

Operations
If a storage resource operation accesses a z/VM Virtualization Host and encounters an error while
communicating with the Virtualization Host via SMAPI, the response body is as described in “SMAPI
Error Response Body” on page 203.

List Storage Resources
The List Storage Resources operation lists the storage resources in the ensemble.

HTTP method and URI
GET /api/ensembles/{ensemble-id}/storage-resources

In this request, the URI variable {ensemble-id} is the object ID of the ensemble object.

Query parameters:

Chapter 11. Storage Management 299

|

|
|
|
|
|

|
|
|
|

Name Type Rqd/Opt Description

name String Optional Filter pattern (regular expression) to limit returned objects to those
that have a matching name property

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

storage-resources Array of
objects

Array of storage-resource-basic-info objects, described in the next table. If
no storage resources are to be returned, an empty array is provided.

Each storage-resource-basic-info object contains the following fields:

Field name Type Description

object-uri String/
URI

Canonical URI path of the storage resource object

name String The name property of the storage resource object

type String
Enum

The type property of the storage resource object

Description

The List Storage Resources operation lists the storage resources in the ensemble. The object URI and
other basic properties are provided for each storage resource.

If the name query parameter is specified, the returned list is limited to those storage resources that have
a name property matching the specified filter pattern. If the name parameter is omitted, this filtering is
not done.

A set of basic properties is returned for each storage resource. See the storage-resource-basic-info object
definition.

A storage resource is included in the list only if the API user has object-access permission for that object.
If the ensemble contains a storage resource to which the API user does not have permission, that object is
omitted from the list, but no error status code results. Note that this could result in an empty list.

The URI path must designate an existing ensemble object and the API user must have object-access
permission to it. If either of these conditions is not met, status code 404 (Not Found) is returned. In
addition, the API user must have action access permission to the Manage Storage Resources task;
otherwise, status code 403 (Forbidden) is returned.

If there are no storage resources in the ensemble, an empty list is provided and the operation completes
successfully.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the ensemble object specified in the request URI
v Object-access permission to the storage resource objects passed in the response body
v Action/task permission to the Manage Storage Resources task.

300 HMC Web Services API

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 300.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 API user does not have action permission to this operation.

404 (Not Found) 1 The object ID {ensemble-id} does not designate an existing ensemble object, or
the API user does not have object access permission to it.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/ensembles/87d73ffc-75b2-11e0-9ba3-0010184c8026/storage-resources HTTP/1.1
x-api-session: 1rmnds0imna61i3ll0eu7drk7jsec93mvclfbuqdb7xspk2fm5

Figure 142. List Storage Resources: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Thu, 04 Aug 2011 13:30:11 GMT
content-type: application/json;charset=UTF-8
content-length: 524
{

"storage-resources": [
{

"name": "erictest",
"object-uri": "/api/storage-resources/a23a998c-9693-11e0-aace-00215e69e3f5",
"type": "fcp"

},
{

"name": "Test2_ECKD",
"object-uri": "/api/storage-resources/8d7da556-6598-11e0-8946-00215e69e3f5",
"type": "eckd"

},
{

"name": "FCP5618",
"object-uri": "/api/storage-resources/b0be5b6e-5ada-11e0-b462-00215e69e3f5",
"type": "zvm-fcp"

}
]

}

Figure 143. List Storage Resources: Response

Chapter 11. Storage Management 301

Get Storage Resource Properties
The Get Storage Resource Properties operation retrieves the properties of a single storage resource object
that is designated by its object ID.

HTTP method and URI
GET /api/storage-resources/{storage-resource-id}

In this request, the URI variable {storage-resource-id} is the object ID of the storage resource object for
which properties are to be obtained.

Response body contents

On successful completion, the response body is a JSON object that provides the current values of the
properties for the storage resource object as defined in the “Data model” on page 298. Field names and
data types in the JSON object are the same as the property names and data types defined in the data
model.

Description

The Get Storage Resource Properties operation returns the current properties for the storage resource
object specified by {storage-resource-id}.

On successful execution, all of the current properties as defined in “Data model” on page 298 for the
storage resource object are provided in the response body, and HTTP status code 200 (OK) is returned.

The URI path must designate an existing storage resource object and the API user must have
object-access permission to it. If either of these conditions is not met, status code 404 (Not Found) is
returned. In addition, the API user must have action access permission to the Manage Storage Resources
task; otherwise, status code 403 (Forbidden) is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the storage resource object specified in the request URI
v Action/task permission to the Manage Storage Resources task.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 API user does not have action permission to this operation.

404 (Not Found) 1 The object ID {storage-resource-id} does not designate an existing storage
resource object, or the API user does not have object access permission to it.

302 HMC Web Services API

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Create Storage Resource
The Create Storage Resource operation adds a storage resource to the specified ensemble.

HTTP method and URI
POST /api/ensembles/{ensemble-id}/storage-resources

In this request, the URI variable {ensemble-id} is the object ID of the ensemble to which the new storage
resource is to be added.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

name String Required The name property of the new storage resource

description String Optional The description property of the new storage resource

size Long Required The size property of the storage resource

type String
Enum

Required The type property of the storage resource

GET /api/storage-resources/6967f806-2023-11e1-9c1e-0010184c8334 HTTP/1.1
x-api-session: 1tcd8u2o682d6diyfqt8q9aafhfxl25d8m87l50yl6osfcje7k

Figure 144. Get Storage Resource Properties: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Tue, 06 Dec 2011 16:00:26 GMT
content-type: application/json;charset=UTF-8
content-length: 402
{

"allocation-status": "free",
"allocation-units": "bytes",
"class": "storage-resource",
"description": "SS Ensemble volume V001",
"is-locked": false,
"name": "SS-V0001",
"object-id": "6967f806-2023-11e1-9c1e-0010184c8334",
"object-uri": "/api/storage-resources/6967f806-2023-11e1-9c1e-0010184c8334",
"parent": "/api/ensembles/f8fc3a9c-03f2-11e1-ba83-0010184c8334",
"size": 8589934592,
"type": "fcp",
"unique-device-id": null

}

Figure 145. Get Storage Resource Properties: Response

Chapter 11. Storage Management 303

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

object-uri String/URI Canonical URI path of the storage resource object, in the form
/api/storage-resources/{storage-resource-id}

Description

The Create Storage Resource operation identifies a new storage resource to be added to the ensemble
specified by the {ensemble-id} portion of the request URI. Once added to the ensemble, the storage
resource can be managed using the various storage-related zManager functions.

On successful execution, the object-uri field of the response body and the Location response header
identify the new storage resource.

If this operation changes the value of any property for which property-change notifications are due, those
notifications are issued asynchronously to this operation. Upon success, an Inventory Change notification
is issued.

The URI path must designate an existing ensemble object and the API user must have object-access
permission to it. If either of these conditions is not met, status code 404 (Not Found) is returned. In
addition, the API user must also have action access permission to the Add Storage Resource task;
otherwise, status code 403 (Forbidden) is returned.

If the request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating
the validation error encountered.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the ensemble object specified in the request URI
v Action/task permission to the Add Storage Resource task.

HTTP status and reason codes

On success, HTTP status code 201 (Created) is returned and both the response body and the Location
response header contain the URI of the newly created object.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

8 The name specified for the new storage resource is not unique within the
ensemble.

403 (Forbidden) 1 API user does not have action permission to this operation.

404 (Not Found) 1 The object ID {ensemble-id} does not designate an existing ensemble object, or
the API user does not have object access permission to it.

304 HMC Web Services API

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Usage notes

The Create Storage Resource operation performs a portion of the function provided by the Add Storage
Resource subtask of the Manage Storage Resources task. The Add Storage Resource subtask performs
some or all of the functions provided by the following Web Services APIs:
v Create Storage Resource

Creates a storage resource object in zManager, representing storage resources (FCP LUNs, or ECKD™

volumes). Each storage resource object has a unique name. zManager reports additional storage
resource specific information, such as a unique-device-id, after paths have been added and zManager
was able to access the storage resource.

v Create Virtualization Host Storage Resource

Creates an object in zManager, representing the virtualization host's view on the storage resource.
v Add Virtualization Host Storage Resource Path

Adds a path between a virtualization host and a storage resource.

Note: a path to an FCP storage resource is identified by a host-port-wwpn, target-port-wwpn, and lun.
See Table 62 on page 315. A path to an ECKD resource is identified by the device number of the ECKD
volume. See Table 63 on page 316.

Example HTTP interaction

Update Storage Resource Properties
The Update Storage Resource Properties operation updates one or more of the writeable properties of a
storage resource object.

POST /api/ensembles/f8fc3a9c-03f2-11e1-ba83-0010184c8334/storage-resources HTTP/1.1
x-api-session: 1tcd8u2o682d6diyfqt8q9aafhfxl25d8m87l50yl6osfcje7k
content-type: application/json
content-length: 109
{

"description": "New Storage Resource",
"name": "SS-New-Storage-Resource",
"size": 8589934592,
"type": "fcp"

}

Figure 146. Create Storage Resource: Request

201 Created
server: zSeries management console API web server / 1.0
location: /api/storage-resources/6967f806-2023-11e1-9c1e-0010184c8334
cache-control: no-cache
date: Tue, 06 Dec 2011 16:00:26 GMT
content-type: application/json;charset=UTF-8
content-length: 76
{

"object-uri": "/api/storage-resources/6967f806-2023-11e1-9c1e-0010184c8334"
}

Figure 147. Create Storage Resource: Response

Chapter 11. Storage Management 305

|
|
|

HTTP method and URI
POST /api/storage-resources/{storage-resource-id}

In this request, the URI variable {storage-resource-id} is the object ID of the storage resource object for
which properties are to be updated.

Request body contents

The request body is expected to contain a JSON object that provides the new values of any writeable
property that is to be updated by this operation. Field names and data types in this JSON object are
expected to match the corresponding property names and data types defined in the data model for this
object type. The JSON object can and should omit fields for properties whose values are not to be
changed by this operation.

Description

The Update Storage Resource Properties operation updates writeable properties of the storage resource
object specified by {storage-resource-id}.

The request body contains an object with one or more fields with field names that correspond to the
names of properties for this object. On successful execution, the value of each corresponding property of
the object is updated with the value provided by the input field, and status code 204 (No Content) is
returned without supplying any response body. The request body does not need to specify a value for all
writeable properties, but rather can and should contain fields for the properties to be updated. Object
properties for which no input value is provided remain unchanged by this operation.

If the update changes the value of any property for which property-change notifications are due, those
notifications are issued asynchronously to this operation.

The URI path must designate an existing storage resource object and the API user must have
object-access permission to it. If either of these conditions is not met, status code 404 (Not Found) is
returned. In addition, the API user must have action access permission to the Storage Resources Details
task; otherwise, status code 403 (Forbidden) is returned.

The request body is validated against the data model for this object type to ensure that it contains only
writeable properties and the data types of those properties are as required. If the request body is not
valid, status code 400 (Bad Request) is returned with a reason code indicating the validation error
encountered.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the storage resource object specified in the request URI
v Action/task permission to the Storage Resources Details task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

306 HMC Web Services API

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

8 The new name specified for the new storage resource is not unique within
the ensemble.

403 (Forbidden) 1 API user does not have action permission to this operation.

404 (Not Found) 1 The object ID {storage-resource-id} does not designate an existing storage
resource object, or the API user does not have object access permission to it.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Delete Storage Resource
The Delete Storage Resource operation deletes the specified storage resource from the ensemble.

HTTP method and URI
DELETE /api/storage-resources/{storage-resource-id}

In this request, the URI variable {storage-resource-id} is the object ID of the storage resource object to be
deleted.

Description

The Delete Storage Resource operation removes a specified storage resource from the ensemble. The
storage resource is identified by the {storage-resource-id} variable in the URI. There must be no
virtualization host storage resources associated with the storage resource to be deleted.

POST /api/storage-resources/6967f806-2023-11e1-9c1e-0010184c8334 HTTP/1.1
x-api-session: 1tcd8u2o682d6diyfqt8q9aafhfxl25d8m87l50yl6osfcje7k
content-type: application/json
content-length: 62
{

"description": "SS Ensemble volume V001",
"name": "SS-V0001"

}

Figure 148. Update Storage Resource Properties: Request

204 No Content
date: Tue, 06 Dec 2011 16:00:26 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 149. Update Storage Resource Properties: Response

Chapter 11. Storage Management 307

Upon successfully removing the storage resource, HTTP status code 204 (No Content) is returned and no
response body is provided. An inventory change event is issued asynchronously.

The URI path must designate an existing storage resource object and the API user must have
object-access permission to it. If either of these conditions is not met, status code 404 (Not Found) is
returned. In addition, the API user must have action access permission to the Remove Storage Resource
task; otherwise, status code 403 (Forbidden) is returned. If there are any virtualization host storage
resources associated with the storage resource, status code 409 (Conflict) is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the storage resource object specified in the request URI
v Action/task permission to the Remove Storage Resource task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 API user does not have action permission to this operation.

404 (Not Found) 1 The object ID {storage-resource-id} does not designate an existing storage
resource object, or the API user does not have object access permission to it.

409 (Conflict) 143 The object cannot be deleted at this time. There is a virtualization host
storage resource associated with the storage resource.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Usage notes
v Before a storage resource can be deleted from the ensemble, any virtualization host storage resources

associated with it must first be deleted.

Example HTTP interaction

DELETE /api/storage-resources/6967f806-2023-11e1-9c1e-0010184c8334 HTTP/1.1
x-api-session: 1tcd8u2o682d6diyfqt8q9aafhfxl25d8m87l50yl6osfcje7k

Figure 150. Delete Storage Resource: Request

308 HMC Web Services API

Export World Wide Port Names List
The Export World Wide Port Names List operation exports the world wide port names (WWPNs) of the
fibre channel host ports of the specified virtualization hosts.

HTTP method and URI
POST /api/ensembles/{ensemble-id}/operations/export-port-names

In this request, the URI variable {ensemble-id} is the object ID of the ensemble that contains the
virtualization hosts specified in the request body.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

virtualization-
hosts

Array of
String/URI

Required Array of canonical URI paths, one for each virtualization host whose
WWPN list is to be exported

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

wwpn-list String The WWPN list in Comma-Separated Values (CSV) format

Description

The Export World Wide Port Names List operation returns the list of host port WWPNs of the
virtualization hosts specified by the virtualization-hosts field of the request body. These virtualization
hosts must be part of the ensemble specified by {ensemble-id}. The list is provided in a JSON object as a
single string in Comma-Separated Values (CSV) format. It will be of the format described in the Import
Storage Access List operation, with only the statement type, Location, and HostWwpn fields filled in.
This result can be used as the basis for a Storage Access List to be supplied as input to the Import
Storage Access List operation.

On successful execution, the WWPN list for the specified virtualization hosts is provided in the response
body, and HTTP status code 200 (OK) is returned.

The URI path must designate an existing ensemble object and the API user must have object-access
permission to it. If either of these conditions is not met, status code 404 (Not Found) is returned. If the
array of virtualization host URIs is empty, status code 400 (Bad Request) is returned. The URIs in the
request body must designate existing virtualization host objects and the API user must have object-access

204 No Content
date: Tue, 06 Dec 2011 16:00:26 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 151. Delete Storage Resource: Response

Chapter 11. Storage Management 309

permission to them; otherwise, status code 404 (Not Found) is returned. The virtualization hosts must be
part of the specified ensemble; otherwise, status code 400 (Bad Request) is returned. In addition, the API
user must have action access permission to the Export WWPNs task; otherwise, status code 403
(Forbidden) is returned.

The request body is validated against the schema described in “Request body contents” on page 309. If
the request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the ensemble object specified in the request URI
v Object-access permission to the hosting object of the virtualization hosts specified in the request body
v Action/task permission to the Export WWPNs task.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 309.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

146 A virtualization host specified in the request body is not a member of the
ensemble specified in the request URI.

149 The array of virtualization host URIs in the request body is empty.

403 (Forbidden) 1 API user does not have action permission to this operation.

404 (Not Found) 1 The object ID {ensemble-id} does not designate an existing ensemble object, or
the API user does not have object access permission to it.

2 A URI specified in the request body does not identify a virtualization host.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

2 The request could not be processed because the HMC is not currently
communicating with an element of a zBX needed to perform the requested
operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM virtualization host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM virtualization host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Usage notes
v This operation creates the same file as the Export Host Port WWPN task. This file can be used as the

basis for a Storage Access List. The Comma-Separated Value format has been chosen because it allows
customers to use spreadsheet applications to display, sort, add or modify data.

310 HMC Web Services API

v The List Virtualization Host HBA Ports operation provides similar information in JSON format.

Example HTTP interaction

Import Storage Access List
The Import Storage Access List operation imports information about storage resources and the
virtualization hosts that have access to them. The Storage Access List (SAL) contains information, such as
host port WWPNs and properties, such as addressing and device type information for configured storage
resources.

HTTP method and URI
POST /api/ensembles/{ensemble-id}/operations/import-storage-access-list

In this request, the URI variable {ensemble-id} is the object ID of the ensemble object on which the Storage
Access List is to be imported.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

sal String Required Storage Access List in Comma-Separated Values (CSV) format

POST /api/ensembles/f8fc3a9c-03f2-11e1-ba83-0010184c8334/operations/export-port-names HTTP/1.1
x-api-session: 5mkvfjvxt6guptdr5omvc11et4tvazeb684stvvhq4c1aa7w4x
content-type: application/json
content-length: 158
{

"virtualization-hosts": [
"/api/virtualization-hosts/71822c16-0401-11e1-8eda-001f163805d8",
"/api/virtualization-hosts/2f676d90-03f8-11e1-8eda-001f163805d8"

]
}

Figure 152. Export World Wide Port Names List: WWPN list: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Wed, 07 Dec 2011 06:47:31 GMT
content-type: application/json;charset=UTF-8
content-length: 394
{

"wwpn-list":
"#Version: 1
#FCP_DEF:,Name,Size,Description,Location,HostWwpn,TargetWwpn,Lun
#ECKD_DEF:,Name,Size,Description,Location,Devno,Volser
#ZVM_FCP_DEF:,Name,Size,Description,Location,Devno,Volser,HostWwpn,TargetWwpn,Lun
FCP,,,,R32:B.2.12,21000024ff24df01
FCP,,,,R32:B.2.12,21000024ff24df00
FCP,,,,R32:B.2.02,21000024ff2b47cb
FCP,,,,R32:B.2.02,21000024ff2b47ca
"

}

Figure 153. Export World Wide Port Names List: WWPN list: Response

Chapter 11. Storage Management 311

The largest request body accepted by this operation is 1 MB. Requests with bodies that exceed this
maximum are rejected with an HTTP status 413 (Request Entity Too Large) response.

Description

The Import Storage Access List operation imports the provided Storage Access List into the ensemble
specified by {ensemble-id}. The Storage Access List specifies paths between host ports and configured
storage resources. It is a convenient way to specify which virtualization hosts have access to each storage
resource.

The Storage Access List logically consists of lines of text, each one being a statement that identifies a
storage resource, a virtualization host that has access to that storage resource and a path for the
virtualization host to use when accessing the storage resource. For the full definition of the Storage
Access List, see the storage access list worksheet described in the appendix in the zEnterprise System
Ensemble Planning and Configuring Guide.

On successful execution, status code 204 (No Content) is returned without supplying a response body.

The URI path must designate an existing ensemble object and the API user must have object-access
permission to it. If either of these conditions is not met, status code 404 (Not Found) is returned. In
addition, the API user must have action access permission to the Import SAL task; otherwise, status code
403 (Forbidden) is returned. All virtualization hosts designated in the Storage Access List are marked
busy for the duration of this request. If any of those virtualization hosts is already marked busy due to
some other operation, then status code 409 (Conflict) is returned.

The request body is validated against the schema described in “Request body contents” on page 311. If
the request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered. In addition, the CSV-formatted SAL designated by the sal field must be
syntactically and semantically correct; otherwise, status code 400 (Bad Request) is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the ensemble object specified in the request URI
v Action/task permission to the Import SAL task.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and no response body is provided.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

140 The CSV-formatted Storage Access List designated by the sal field is not
syntactically and semantically correct, or an error was encountered while
processing a Storage Access List entry. The response body contains a
message with more details.

403 (Forbidden) 1 API user does not have action permission to this operation.

404 (Not Found) 1 The object ID {ensemble-id} does not designate an existing ensemble object, or
the API user does not have object access permission to it.

312 HMC Web Services API

HTTP error status
code

Reason
code Description

409 (Conflict) 2 The operation cannot be performed because a virtualization host designated
by the Storage Access List is currently busy performing some other
operation.

150 The operation cannot be performed because a virtualization host designated
by the Storage Access List is currently busy due to a zBX Move operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Usage notes
v This operation accepts the same data / file as the Import Storage Access List task. This file contains

information about storage resources, virtualization host storage resources, and path information that is
to be added to zManager.
The Comma-Separated Value format has been chosen because it allows customers to use spreadsheet
applications in order to display, sort, add or modify data.

v The Create Storage Resource, Create Virtualization Host Storage Resource, and Add Virtualization
Host Storage Resource Paths operations can be used to provide the same information to zManager in
JSON format.

Inventory service data
Information about the storage resources managed by the HMC can be optionally included in the
inventory data provided by the Inventory Service.

Inventory entries for Storage Resource objects are included in the response to the Inventory Service's Get
Inventory operation when the request specifies (explicitly by class, implicitly via a containing category, or
by default) that objects of class "storage-resource" are to be included. An entry for a particular storage
resource is included only if the API user has object-access permission to that object.

For each Storage Resource object to be included, the inventory response array includes entry that is a
JSON object with the same contents as is specified in the Response Body Contents section for the Get
Storage Resource Properties operation. That is, the data provided is the same as would be provided if a
Get Storage Resource Properties operation were requested targeting this object.

Sample inventory data

The following fragment is an example of the JSON object that would be included in the Get Inventory
response to describe a single storage resource. This object would appear as one array entry in the
response array:

Chapter 11. Storage Management 313

Virtualization host storage resource object
A virtualization host storage resource represents a storage resource to which the virtualization host has
been granted access. It is the representation of a storage resource from the perspective of a virtualization
host.

Data model
This object includes the following properties:

Table 61. Virtualization host storage resource object properties

Name Qualifier Type Description

element-uri — String/
URI

Canonical URI path of the virtualization host storage resource
object, in the form /api/virtualization-hosts/{virt-host-id}/
virtualization-host-storage-resources/{virt-host-storage-
resource-id} where {virt-host-storage-resource-id} is the value of the
element-id property of this object.

element-id — String (36) The unique identifier for the virtualization host storage resource
instance. This identifier is in the form of a UUID.

parent — String/URI The parent object of a virtualization host storage resource object is a
virtualization host object.

class — String The class of a virtualization host storage resource object is
"virtualization-host-storage-resource".

name (pc) String The name of the storage resource, as defined in the Storage
Resource object's Data Model section.

description (pc) String The description for the storage resource, as defined in the Storage
Resource object's Data Model section.

size (pc) Long The size of the storage resource, as defined in the Storage Resource
object's Data Model section.

allocation-units — String
Enum

The units for the size property, as defined in the Storage Resource
object's “Data model” on page 298.

type — String
Enum

The type of the storage resource, as defined in the Storage Resource
object's Data Model section.

storage-resource — String/
URI

Canonical URI path of the storage resource object associated with
this virtualization host storage resource.

{
"allocation-status": "used",
"allocation-units": "bytes",
"class": "storage-resource",
"description": "2024-0080-e518-4ac0\r\n0000-0000-0000-0000",
"name": "B1010000A",
"object-id": "2d588ee2-25a2-11e0-94a7-0010184c8334",
"object-uri": "/api/storage-resources/2d588ee2-25a2-11e0-94a7-0010184c8334",
"parent": "/api/ensembles/87d73ffc-75b2-11e0-9ba3-0010184c8026",
"size": 10737418240,
"type": "fcp",
"unique-device-id": "3E21360080E5000184AC00000441B4D07449B0F1814 FAStT03IBMfcp"

}

Figure 154. Storage resource object: Sample inventory data

314 HMC Web Services API

Table 61. Virtualization host storage resource object properties (continued)

Name Qualifier Type Description

paths (w) Array of
objects

Information about the paths by which the storage resource is
accessible to this virtualization host. It is an array of
path-information-fcp or path-information-eckd objects. If the
virtualization host has no paths to the storage resource, an empty
array is provided. Note that there can be at most one path for a
virtualization host storage resource whose type property is "eckd".

unique-device-id (pc) String The unique device identifier of the storage resource, as defined in
the Storage Resource object data model. See “Class specific
additional properties” on page 298.

volume-serial-
number

(pc) String (1-6) The volume serial for this virtualization host storage resource. Only
present if the type property is "eckd" or "zvm-fcp".

device-number — String (1-4) The device number that the virtualization host uses to access an
ECKD storage resource, or the EDEV (emulated volume) that is
created for FCP storage resources when they get allocated to a
Virtual Server, or added to a Virtualization Host Storage Group. The
string form of a 1-4 digit hexadecimal number. Only present if the
type property is "eckd" or "zvm-fcp".

virtualization-host-
storage-group

(pc) String/URI Canonical URI path of the virtualization host storage group of
which this virtualization host storage resource is a member or null if
this virtualization host storage resource is not in a virtualization
host storage group. Only present if the type property is "eckd" or
"zvm-fcp".

A path-information-fcp object contains information about a single path by which an FCP storage resource
is accessible to a virtualization host. This object describes a path for a virtualization host storage resource
whose type property is "fcp" or "zvm-fcp".

Table 62. Virtualization host storage resource object: path-information-fcp object properties

Name Type Description

host-port-wwpn String (16) The WWPN of the host port. The string form of a 16-digit hexadecimal number.

controller-port-wwpn String (16) The WWPN of the storage controller port. The string form of a 16-digit
hexadecimal number.

lun String (16) The Logical Unit Number (LUN) of the storage resource. The string form of a
16-digit hexadecimal number.

accessible Boolean Indicates whether the storage resource is currently accessible to the
virtualization host via this path.

Because path accessibility status can be time consuming to determine, by
default such status is omitted when Virtualization Host Storage Resource
properties are returned and instead the value provided for this property is null.
Operations that provide path accessibility status data will specifically indicate
the conditions under which they do so.

A path-information-eckd object contains information about a single path by which an ECKD storage
resource is accessible to a virtualization host. This object describes a path for a virtualization host storage
resource whose type property is "eckd".

Note: the path specified through URM is the device number specified in the system I/O Configuration
for the ECKD volume. It is not to be confused with the path (CHPID) between the system and the
Control Unit.

Chapter 11. Storage Management 315

|
|
|

|
|
|

Table 63. Virtualization host storage resource object: path-information-eckd object properties

Name Type Description

device-number String
(1-4)

The device number of the storage resource. The string form of a 1-4 digit
hexadecimal number.

accessible Boolean Indicates whether the storage resource is currently accessible to the
virtualization host via this path.

Because path accessibility status can be time consuming to determine, by
default such status is omitted when Virtualization Host Storage Resource
properties are returned and instead the value provided for this property is null.
Operations that provide path accessibility status data will specifically indicate
the conditions under which they do so.

Operations
If a virtualization host storage resource operation accesses a z/VM virtualization host and encounters an
error while communicating with the virtualization host via SMAPI, the response body is as described in
“SMAPI Error Response Body” on page 203.

List Virtualization Host HBA Ports
The List Virtualization Host HBA Ports operation lists information about Fibre-Channel HBA (Host Bus
Adapter) ports for a virtualization host.

HTTP method and URI
GET /api/virtualization-hosts/{virt-host-id}/hba-ports

In this request, the URI variable {virt-host-id} is the object ID of the virtualization host.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

hba-ports Array of
objects

Information about the virtualization host's HBA ports. It is an array of
hba-port-information objects, described in the next table. If no
virtualization host HBA ports are to be returned, an empty array is
provided.

Each hba-port-information object contains the following fields:

Field name Type Description

wwpn String World Wide Port Name (WWPN) of the port.

identifier String Identifier for the port. It contains the device number of the subchannel for
a virtualization host whose type property is "zvm". For Power ASB, an
example is fscsi2. For Intel based ASBs, the identifier starts with
“/dev/...”.

Description

The List Virtualization Host HBA Ports operation lists a virtualization host's HBA ports. All properties
are provided for each port.

316 HMC Web Services API

The URI path must designate an existing virtualization host object and the API user must have
object-access permission to it. If either of these conditions is not met, status code 404 (Not Found) is
returned. In addition, the API user must have action access permission to the Manage Storage Resources
task; otherwise, status code 403 (Forbidden) is returned.

If there are no HBA ports for the virtualization host, an empty list is provided and the operation
completes successfully with HTTP status code 200 (OK).

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the hosting object of the virtualization host specified in the request URI
v Action/task permission to the Export WWPNs task.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 316.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 API user does not have action permission to this operation.

404 (Not Found) 1 The object ID {virt-host-id} does not designate an existing virtualization host
object, or the API user does not have object access permission to it.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

2 The request could not be processed because the HMC is not currently
communicating with an element of a zBX needed to perform the requested
operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM virtualization host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM virtualization host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/virtualization-hosts/ba97ff30-2990-11e0-8d5b-001f163803de/hba-ports HTTP/1.1
x-api-session: 1rmnds0imna61i3ll0eu7drk7jsec93mvclfbuqdb7xspk2fm5

Figure 155. List Virtualization Host HBA Ports: Request

Chapter 11. Storage Management 317

List Virtualization Host Storage Resources
The List Virtualization Host Storage Resources operation lists the virtualization host storage resources
for a virtualization host.

HTTP method and URI
GET /api/virtualization-hosts/{virt-host-id}/virtualization-host-storage-resources

In this request, the URI variable {virt-host-id} is the object ID of the virtualization host.

Query parameters

Name Type Rqd/Opt Description

name String Optional Filter pattern (regular expression) to limit returned objects to those
that have a matching name property

properties String Optional Identifies the properties of each virtualization host storage resource
to be returned. The only supported value is "all", which results in all
properties being returned, including path accessibility status
properties. If this query parameter is omitted, a set of basic
properties is returned.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

virtualization-host-
storage-resources

Array of
objects

If the properties=all query parameter is specified, an array is provided
whose elements are the set of virtualization host storage resource
properties that would be returned on a Get Virtualization Host Storage
Resource Properties request with the include-path-accessibility query
parameter specified as true. If the properties query parameter is omitted,
an array of virtualization-host-storage-resource-basic-info objects is
returned, described in the next table. If no virtualization host storage
resources are to be returned, an empty array is provided.

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Thu, 04 Aug 2011 13:30:12 GMT
content-type: application/json;charset=UTF-8
content-length: 210
{

"hba-ports": [
{

"identifier": "fscsi3",
"wwpn": "21000024ff2b47cb"

},
{

"identifier": "fscsi2",
"wwpn": "21000024ff2b47ca"

}
]

}

Figure 156. List Virtualization Host HBA Ports: Response

318 HMC Web Services API

Each virtualization-host-storage-resource-basic-info object contains the following fields:

Field name Type Description

element-URI String/
URI

Canonical URI path of the virtualization host storage resource object

name String The name property of the associated storage resource object

type String
Enum

The type property of the associated storage resource object

Description

The List Virtualization Host Storage Resources operation lists a virtualization host's virtualization host
storage resources. The object URI and other basic properties are provided for each virtualization host
storage resource.

If the name query parameter is specified, the returned list is limited to those virtualization host storage
resources that have a name property matching the specified filter pattern. If the name parameter is
omitted, this filtering is not done.

If the properties query parameter is specified, it controls the set of properties returned. A value of "all"
results in all properties being returned, in exactly the same format as would be provided on a Get
Virtualization Host Storage Resource Properties request with the include-path-accessibility query
parameter specified as true. If the properties query parameter is omitted, a set of basic properties is
returned for each virtualization host storage resource. See the virtualization-host-storage-resource-basic-
info object definition. Any value other than all is not valid and results in an HTTP status code 400 (Bad
Request).

The URI path must designate an existing virtualization host object and the API user must have
object-access permission to it. If either of these conditions is not met, status code 404 (Not Found) is
returned. In addition, the API user must have action access permission to the Manage Storage Resources
task; otherwise, status code 403 (Forbidden) is returned.

The virtualization host designated by the URI path must have a status of "operating", otherwise status
code 409 (Conflict) is returned.

If there are no virtualization host storage resources for the virtualization host, an empty list is provided
and the operation completes successfully.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the hosting object of the virtualization host specified in the request URI
v Action/task permission to the Manage Storage Resources task.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 318.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

Chapter 11. Storage Management 319

|
|

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

145 A value other than "all" was specified for the properties query parameter, or
this query parameter was specified more than once.

403 (Forbidden) 1 API user does not have action permission to this operation.

404 (Not Found) 1 The object ID {virt-host-id} does not designate an existing virtualization host
object, or the API user does not have object access permission to it.

409 (Conflict) 1 Virtualization host has a status that is not valid for this operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

2 The request could not be processed because the HMC is not currently
communicating with an element of a zBX needed to perform the requested
operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM virtualization host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM virtualization host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Usage notes
v The information provided about a virtualization host storage resource can optionally include path

accessibility information, i.e. information on whether a path to the storage resources is currently
operational or not. However, determining path accessibility status can be an expensive action,
especially when a virtualization host has one or more non-functional paths as SAN rediscovery is
implicitly triggered in this case. For this reason, an API application should obtain path accessibility
information only if it is required to satisfy the function of the application. If not required, the
application should obtain virtualization host storage resource information using techniques that omit
path accessibility information in order to avoid unnecessary delays.
If path-accessibility information is required for all or many virtualization host storage resources, it may
be significantly faster to obtain that information by making a single request to this operation with the
properties=all parameter specified rather than by making a series of requests to the Get Virtualization
Host Storage Resource Properties operation (with the include-path-accessibility=true parameter
specified) to obtain hat information one resource at a time. This is because overhead due to SAN
rediscovery would be incurred at most one time by using this operation, but might be incurred on each
and ever iterated Get Virtualization Host Storage Resource Properties request.
On the other hand, if path-accessibility information is not required, using this operation with the
properties=all parameter specified may incur unnecessary application delays. Instead, the application
can bypass the determination of path-accessibility status by using this operation with properties=all
omitted to obtain the URIs of the virtualization host's storage resources, and then iterating over those
URIs and making a requests to the Get Virtualization Host Storage Resource Properties operation
with include-path-accessibility=false specified (or defaulted) for each. If the application requires
virtualization host storage resource information for all or many virtualization hosts in the ensemble,
obtaining this information via the Get Inventory operation of the Inventory Service (for the
virtualization host inventory categories) may provide the best performance. This service cab provide
data across all virtualization hosts in the ensemble in a single request, and bypasses the potentially
costly determination of path-accessibility status when obtaining storage resource information.

320 HMC Web Services API

|

Example HTTP interaction

Get Virtualization Host Storage Resource Properties
The Get Virtualization Host Storage Resource Properties operation retrieves the properties of a single
virtualization host storage resource object.

HTTP method and URI
GET /api/virtualization-hosts/{virt-host-id}/virtualization-host-storage-resources/

{virt-host-storage-resource-id}

URI variables

Variable Description

{virt-host-id} Object ID of the virtualization host

{virt-host-storage-
resource-id}

Element ID of the virtualization host storage resource object for which properties are to be
obtained

Query parameters

Name Type Rqd/Opt Description

include-path-
accessibility

Boolean Optional If specified as true, the accessibility status of the paths for this
resource is determined and reported as values of the accessible
property. If specified as false or omitted, this status is not determined
and instead the value of the accessible property is always null.

GET /api/virtualization-hosts/ba97ff30-2990-11e0-8d5b-001f163803de/virtualization-host-
storage-resources HTTP/1.1

x-api-session: 1rmnds0imna61i3ll0eu7drk7jsec93mvclfbuqdb7xspk2fm5

Figure 157. List Virtualization Host Storage Resources: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Thu, 04 Aug 2011 13:30:12 GMT
content-type: application/json;charset=UTF-8
content-length: 729
{
"virtualization-host-storage-resources": [
{
"element-uri": "/api/virtualization-hosts/ba97ff30-2990-11e0-8d5b-001f163803de/virtualization-

host-storage-resources/dfbf23f0-b7b7-11e0-a46d-f0def152d359",
"name": "B2L0012",
"type": "fcp"
},
{
"element-uri": "/api/virtualization-hosts/ba97ff30-2990-11e0-8d5b-001f163803de/virtualization-

host-storage-resources/ff83dea8-64d1-11e0-b579-f0def10c03f4",
"name": "test1234",
"type": "fcp"
}
]
}

Figure 158. List Virtualization Host Storage Resources: Response

Chapter 11. Storage Management 321

Response body contents

On successful completion, the response body is a JSON object that provides the current values of the
properties for the virtualization host storage resource object as defined in “Data model” on page 314.
Field names and data types in the JSON object are the same as the property names and data types
defined in the data model.

Description

The Get Virtualization Host Storage Resource Properties operation returns the current properties for the
virtualization host storage resource object that is specified by its object ID {virt-host-id} and the object ID
of the owning virtualization host {virt-host-storage-resource-id}.

On successful execution, all of the current properties as defined in “Data model” on page 314 for the
virtualization host storage resource object are provided in the response body and HTTP status code 200
(OK) is returned. If the include-path-accessibility query parameter is specified as true, these properties
include the current path accessibility status of each of the paths for the resource (as the accessible
property). If include-path-accessibility is false (which is the default), this path accessibility status is not
provided and instead the accessible property is always null.

The URI path must designate an existing virtualization host object and the API user must have
object-access permission to it. Furthermore, the URI path must designate an existing virtualization host
storage resource object. If any of these conditions are not met, status code 404 (Not Found) is returned. In
addition, the API user must have action access permission to the Manage Storage Resources task;
otherwise, status code 403 (Forbidden) is returned.

The virtualization host designated by the URI path must have a status of "operating", otherwise status
code 409 (Conflict) is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the hosting object of the virtualization host specified in the request URI
v Action/task permission to the Manage Storage Resources task.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 API user does not have action permission to this operation.

322 HMC Web Services API

|
|

HTTP error status
code

Reason
code Description

404 (Not Found) 1 The object ID {virt-host-id} does not designate an existing virtualization host
object, or the API user does not have object access permission to it.

147 The object ID {virt-host-storage-resource-id} does not designate an existing
virtualization host storage resource object for the specified virtualization
host.

148 There is no storage resource object associated with the virtualization host
storage resource object identified by the object ID {virt-host-storage-resource-
id}. This is most likely a temporary condition due to a delete operation in
progress on the storage resource object.

409 (Conflict) 1 Virtualization host has a status that is not valid for this operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

2 The request could not be processed because the HMC is not currently
communicating with an element of a zBX needed to perform the requested
operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM virtualization host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM virtualization host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Usage notes
v Determining path accessibility status can be an expensive action, especially when a virtualization host

has one or more non-functional paths as SAN rediscovery is implicitly triggered in this case. For this
reason, this operation omits path accessibility status information (the accessible property) by default.
Use the include-path-accessibility query parameter to request that this status be determined and
reported when specifically needed by the application.

v If an application requires path accessibility status information for all or many of the storage resources
of a virtualization host, IBM recommends using the List Virtualization Host Storage Resources
operation with the properties=all query parameter to obtain information for all resources in a single
request as a better performing approach than iteratively using Get Virtualization Host Storage
Resources (with include-path-accessibility=true) one resource at a time. Repeated use of Get
Virtualization Host Storage Resource may incur SAN rediscovery overhead once per request, but such
overhead would be incurred at most once in the single List Virtualization Host of Storage Resources
request.

Example HTTP interaction

GET /api/virtualization-hosts/75ca2d2e-e854-11df-811c-00262df32766/
virtualization-host-storage-resources/c0261be8-ec51-11df-85fe-00262df32766 HTTP/1.1

x-api-session: 3gcd77glemvwq81dlmwxc8i4fwm4udxlby6i2auls4r6g529p1

Figure 159. Get Virtualization Host Storage Resource Properties: Request

Chapter 11. Storage Management 323

|

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Tue, 06 Dec 2011 14:34:00 GMT
content-type: application/json;charset=UTF-8
content-length: 1043
{

"allocation-units": "bytes",
"class": "virtualization-host-storage-resource",
"description": "xiv-41cb",
"element-id": "c0261be8-ec51-11df-85fe-00262df32766",
"element-uri": "/api/virtualization-hosts/75ca2d2e-e854-11df-811c-00262df32766/
virtualization-host-storage-resources/c0261be8-ec51-11df-85fe-00262df32766",
"name": "r93c1_12_hdisk4",
"parent": "/api/virtualization-hosts/75ca2d2e-e854-11df-811c-00262df32766",
"paths": [

{
"accessible": null,
"controller-port-wwpn": "500173800aa50180",
"host-port-wwpn": "2101001b32bf37e3",
"lun": "41cb000000000000"

},
{

"accessible": null,
"controller-port-wwpn": "500173800aa50142",
"host-port-wwpn": "2100001b329f37e3",
"lun": "41cb000000000000"

}
],
"size": 34359738368,
"storage-resource": "/api/storage-resources/c04f6f70-ec51-11df-a5bc-00215e6a0c27",
"type": "fcp",
"unique-device-id": "26112001738000AA5010B072810XIV03IBMfcp"

}

Figure 160. Get Virtualization Host Storage Resource Properties: Response for Virtualization Host of type "power-vm"
or "x-hyp"

324 HMC Web Services API

Create Virtualization Host Storage Resource
The Create Virtualization Host Storage Resource operation creates a new virtualization host storage
resource for the virtualization host.

HTTP method and URI
POST /api/virtualization-hosts/{virt-host-id}/virtualization-host-storage-resources

In this request, the URI variable {virt-host-id} is the object ID of the virtualization host that owns the
new/modified virtualization host storage resource.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

storage-resource String/URI Required Canonical URI path of the storage resource object to be associated
with this virtualization host storage resource.

paths Array of
objects

Optional The path information for the new virtualization host storage resource.
It is either an array of new-path-fcp or new-path-eckd objects, as
described in the Add Virtualization Host Storage Resource Path
operation. Note that there can be at most one path for a
virtualization host storage resource whose type property is "eckd".

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Tue, 06 Dec 2011 14:34:01 GMT
content-type: application/json;charset=UTF-8
content-length: 651
{

"allocation-units": "cylinders",
"class": "virtualization-host-storage-resource",
"description": "B71C",
"device-number": "B71C",
"element-id": "e85e91c2-ee02-11e0-a0eb-00262df332b3",
"element-uri": "/api/virtualization-hosts/0e4a5d94-a8c1-11e0-9492-00262df332b3/
virtualization-host-storage-resources/e85e91c2-ee02-11e0-a0eb-00262df332b3",
"name": "B71C",
"parent": "/api/virtualization-hosts/0e4a5d94-a8c1-11e0-9492-00262df332b3",
"paths": [

{
"accessible": null,
"device-number": "B71C"

}
],
"size": 60000,
"storage-resource": "/api/storage-resources/ec9c3852-ee02-11e0-bc09-00215e6a0c27",
"type": "eckd",
"virtualization-host-storage-group": null,
"volume-serial-number": "NNB7BC"

}

Figure 161. Get Virtualization Host Storage Resource Properties: Response for Virtualization Host of type "zvm"

Chapter 11. Storage Management 325

Field name Type Rqd/Opt Description

volume-serial-
number

String (1-6) Required
when
creating a
VHSR on
z/VM

The volume-serial-number property of the virtualization host storage
resource object. This field is required when this operation is to create
a new virtualization host storage resource on z/VM; otherwise, it is
optional. This field only applies to storage resources whose type
property is "eckd"or "zvm-fcp". The volume serial number is written
to the ECKD storage resource or FCP storage resources when they
get added to a virtualization host storage group. The same volume
serial number is to be used when creating multiple virtualization
host storage resources for a storage resource.

device-number String (1-4) Required
when
creating an
FCP VHSR
on z/VM

The device-number property of the virtualization host storage
resource object. This field is required when this operation is to create
a new virtualization host storage resource; otherwise, it is optional.
This field only applies to storage resources whose type property is
"eckd"or "zvm-fcp". The device number is used to access an ECKD
storage resource, or assigned to the EDEV (emulated volume) that is
created for FCP storage resources when they get allocated to a virtual
server, or added to a virtualization host storage group.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

element-uri String/URI Canonical URI path of the virtualization host storage resource object, in the
form /api/virtualization-hosts/{virt-host-id}/virtualization-host-storage-
resources/{virt-host-storage-resource-id}

Description

The Create Virtualization Host Storage Resource operation creates a new virtualization host storage
resource for the virtualization host specified by the {virt-host-id} portion of the request URI.

Upon successful completion, the element-uri field of the response body and the Location response
header identify the new virtualization host storage resource. An inventory change event is emitted
asynchronously. See “Notifications” on page 338 for more information.

The URI path must designate an existing virtualization host object and the API user must have
object-access permission to it. If either of these conditions is not met, status code 404 (Not Found) is
returned. In addition, the API user must have action access permission to the Add Storage Resource task;
otherwise, status code 403 (Forbidden) is returned. The virtualization host is marked busy for the
duration of this request. If it is already marked busy due to some other operation, then status code 409
(Conflict) is returned.

If the request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating
the validation error encountered.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the hosting object of the virtualization host specified in the request URI
v Action/task permission to the Add Storage Resource task.

326 HMC Web Services API

HTTP status and reason codes

On success, HTTP status code 201 (Created) is returned and both the response body and the Location
response header contain the URI of the newly created object.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

7 The storage resource object URI (storage-resource) in the request body
designates a storage resource that is not compatible with the virtualization
host designated in the request URI ({virt-host-id}).

141 The virtualization host storage resource already has the maximum allowed
number of paths.

403 (Forbidden) 1 API user does not have action permission to this operation.

404 (Not Found) 1 The object ID {virt-host-id} does not designate an existing virtualization host
object, or the API user does not have object access permission to it.

2 The storage resource URI specified in the request body does not identify a
storage resource.

409 (Conflict) 2 The operation cannot be performed because a virtualization host designated
by the request URI is currently busy performing some other operation.

150 The operation cannot be performed because a virtualization host designated
by the request URI is currently busy due to a zBX Move operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Usage notes

The Create Virtualization Host Storage Resource operation performs a portion of the function provided
by the Add Storage Resource subtask of the Manage Storage Resources task. The Add Storage Resource
subtask performs some or all of the functions provided by the following Web Services APIs:
v Create Storage Resource

Creates a storage resource object in zManager, representing storage resources (FCP LUNs, or ECKD
volumes). Each storage resource object has a unique name. zManager reports additional storage
resource specific information, such as a unique-device-id, after paths have been added and zManager
was able to access the storage resource.

v Create Virtualization Host Storage Resource

Creates an object in zManager, representing the hypervisor's view on the storage resource.
v Add Virtualization Host Storage Resource Path

Adds a path between a virtualization host and a storage resource.

Chapter 11. Storage Management 327

Example HTTP interaction

Delete Virtualization Host Storage Resource
The Delete Virtualization Host Storage Resource operation removes a specified virtualization host
storage resource from the specified virtualization host.

HTTP method and URI
DELETE /api/virtualization-hosts/{virt-host-id}/virtualization-host-storage-resources/

{virt-host-storage-resource-id}

URI variables

Variable Description

{virt-host-id} Object ID of the virtualization host

{virt-host-storage-
resource-id}

Element ID of the virtualization host storage resource object to be deleted

Description

The Delete Virtualization Host Storage Resource operation removes a specified virtualization host
storage resource from the specified virtualization host, removing all related path information at the same
time. The virtualization host storage resource is identified by {virt-host-storage-resource-id} in the URI, and

POST /api/virtualization-hosts/2f029af0-03f8-11e1-8eda-001f163805d8/
virtualization-host-storage-resources HTTP/1.1

x-api-session: 68ps5rqvq1177xtcqz9rnrbmls29mglluq7ni0qlgnwjhup01c
content-type: application/json
content-length: 205
{

"paths": [
{

"controller-port-wwpn": "20240080e5184ac0",
"host-port-wwpn": "21000024ff2b4602",
"lun": "1234001000000000"

}
],
"storage-resource": "/api/storage-resources/17556bdc-2034-11e1-83b8-0010184c8334"

}

Figure 162. Create Virtualization Host Storage Resource: Request

201 Created
server: zSeries management console API web server / 1.0
location: /api/virtualization-hosts/2f029af0-03f8-11e1-8eda-001f163805d8/

virtualization-host-storage-resources/19625098-2034-11e1-b4a5-001f163805d8
cache-control: no-cache
date: Tue, 06 Dec 2011 18:00:24 GMT
content-type: application/json;charset=UTF-8
content-length: 155
{

"element-uri": "/api/virtualization-hosts/2f029af0-03f8-11e1-8eda-001f163805d8/
virtualization-host-storage-resources/19625098-2034-11e1-b4a5-001f163805d8"

}

Figure 163. Create Virtualization Host Storage Resource: Response

328 HMC Web Services API

the virtualization host is identified by {virt-host-id} in the URI. The virtualization host storage resource
must not be part of a virtualization host storage group, and there must be no virtual disks backed by the
virtualization host storage resource.

Upon successfully removing the virtualization host storage resource, HTTP status code 204 (No Content)
is returned and no response body is provided. An inventory change event is issued asynchronously. See
“Notifications” on page 338 for more information.

The URI path must designate an existing virtualization host and the API user must have object-access
permission to it. Furthermore, the URI path must designate an existing virtualization host storage
resource object. If any of these conditions is not met, status code 404 (Not Found) is returned. In addition,
the API user must also have action access permission to the Remove Storage Resource task as well;
otherwise, status code 403 (Forbidden) is returned. If the virtualization host storage resource is part of a
virtualization host storage group or there is a virtual disk backed by the virtualization host storage
resource, then status code 409 (Conflict) is returned. The virtualization host is marked busy for the
duration of the request. If it is already marked busy due to some other operation, then status code 409
(Conflict) is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the hosting object of the virtualization host specified in the request URI
v Action/task permission to the Remove Storage Resource task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 API user does not have action permission to this operation.

404 (Not Found) 1 The object ID {virt-host-id} does not designate an existing virtualization host
object, or the API user does not have object access permission to it.

147 The object ID in the URI {virt-host-storage-resource-id} does not designate an
existing virtualization host storage resource object for the specified
virtualization host.

409 (Conflict) 2 The operation cannot be performed because the virtualization host
designated by the request URI is currently busy performing some other
operation.

144 The object cannot be deleted at this time. Either the virtualization host
storage resource is part of a virtualization host storage group or a virtual
disk is backed by the virtualization host storage resource.

150 The operation cannot be performed because the virtualization host
designated by the request URI is currently busy due to a zBX Move
operation.

Chapter 11. Storage Management 329

HTTP error status
code

Reason
code Description

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM virtualization host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM virtualization host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Usage note
v While this operation does delete all path information associated with this virtualization host storage

resource, it does not delete the associated storage resource, even if there is no longer a virtualization
host storage resource associated with the storage resource. If the storage resource is no longer needed,
it can be deleted using the Delete Storage Resource operation.

Example HTTP interaction

Add Virtualization Host Storage Resource Paths
The Add Virtualization Host Storage Resource Paths operation adds a path definition to the
virtualization host storage resource. The path is defined by its two endpoints – the virtualization host is
at one end, and the associated storage resource is at the other end.

HTTP method and URI
POST /api/virtualization-hosts/{virt-host-id}/operations/add-paths

In this request, the URI variable {virt-host-id} is the object ID of the virtualization host object.

DELETE /api/virtualization-hosts/2f029af0-03f8-11e1-8eda-001f163805d8/
virtualization-host-storage-resources/19625098-2034-11e1-b4a5-001f163805d8 HTTP/1.1

x-api-session: 68ps5rqvq1177xtcqz9rnrbmls29mglluq7ni0qlgnwjhup01c

Figure 164. Delete Virtualization Host Storage Resource: Request

204 No Content
date: Tue, 06 Dec 2011 18:00:53 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 165. Delete Virtualization Host Storage Resource: Response

330 HMC Web Services API

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

virtualization-
host-storage-
resource-element-
uri

String/URI Required Canonical URI path of the virtualization host storage resource object.

paths Array of
objects

Required Either an array of new-path-fcp or new-path-eckd objects, described
in the next table. Note that there can be at most one path for a
virtualization host storage resource whose type property is "eckd".

A new-path-fcp object contains information about a single path by which an FCP storage resource is
accessible to a virtualization host. This object describes a path for a virtualization host storage resource
whose type property is either "fcp"or "zvm-fcp".

Name Type Rqd/Opt Description

host-port-wwpn String (16) Required The WWPN of the host port. The string form of a 16-digit
hexadecimal number.

controller-port-
wwpn

String (16) Required The WWPN of the storage controller port. The string form of a
16-digit hexadecimal number.

lun String (16) Required The Logical Unit Number (LUN) of the storage resource. The string
form of a 16-digit hexadecimal number.

A new-path-eckd object contains information about a single path by which an ECKD storage resource is
accessible to a virtualization host. This object describes a path for a virtualization host storage resource
whose type property is "eckd".

Name Type Rqd/Opt Description

device-number String
(1-4)

Required The device number of the storage resource. The string form of a 1-4
digit hexadecimal number.

Description

The Add Virtualization Host Storage Resource Paths operation adds path definitions to the specified
virtualization host storage resource. The controller-port-wwpn, lun, or device-number, as appropriate,
along with the host-port-wwpn, must identify a configured path of the storage resource associated with
this virtualization host storage resource. If that condition is not met, HTTP status code 400 (Bad Request)
is returned.

Only a single path may be configured for an ECKD virtualization host storage resource. An attempt to
define more than one path for such a resource will result in HTTP status code 400 (Bad Request) being
returned.

The URI path must designate an existing virtualization host object, and the API user must have
object-access permission to it. Furthermore, the request body must designate an existing virtualization
host storage resource object. If any of these conditions is not met, status code 404 (Not Found) is
returned. In addition, the API user must have action access permission to the Add Storage Resource task;
otherwise, status code 403 (Forbidden) is returned. The virtualization host is marked busy for the
duration of this request. If it is already marked busy due to some other operation, then status code 409
(Conflict) is returned.

Chapter 11. Storage Management 331

Upon success, HTTP status code 204 (No Content) is returned and no response body is provided. If this
operation changes the value of the path property, a property-change notification is issued asynchronously
to this operation.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the hosting object of the virtualization host specified in the request URI
v Action/task permission to the Add Storage Resource task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

141 The virtualization host storage resource already has the maximum allowed
number of paths.

142 The specified path information does not identify a configured path available
for the virtualization host to use to access the specified storage resource.

403 (Forbidden) 1 API user does not have action permission to this operation.

404 (Not Found) 1 The object ID in the URI ({virt-host-id}) does not designate an existing
virtualization host object, or the API user does not have object access
permission to it.

147 The URI in the request body ({virtualization-host-storage-resource}) does not
designate an existing virtualization host storage resource object for the
specified virtualization host.

409 (Conflict) 2 The operation cannot be performed because the virtualization host
designated by the request URI is currently busy performing some other
operation.

150 The operation cannot be performed because the virtualization host
designated by the request URI is currently busy due to a zBX Move
operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

2 The request could not be processed because the HMC is not currently
communicating with an element of a zBX needed to perform the requested
operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM virtualization host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM virtualization host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

332 HMC Web Services API

Usage notes
v The Add Virtualization Host Storage Resource Paths operation performs a portion of the function

provided by the Add Storage Resource subtask of the Manage Storage Resources task. The Add
Storage Resource subtask performs some or all of the functions provided by the following Web Services
APIs:
– Create Storage Resource

Creates a storage resource object in zManager, representing storage resources (FCP LUNs, or ECKD
volumes). Each storage resource object has a unique name. zManager reports additional storage
resource specific information, such as a unique-device-id, after paths have been added and
zManager was able to access the storage resource.

– Create Virtualization Host Storage Resource

Creates an object in zManager, representing the hypervisor's view on the storage resource.
– Add Virtualization Host Storage Resource Path

Adds a path between a virtualization host and a storage resource.
v There is no request to remove a virtualization host storage resource path. In order to remove a path,

the virtualization host storage resource must be deleted and recreated with only the desired path(s).

Example HTTP interaction

Remove Virtualization Host Storage Resource Paths
The Remove Virtualization Host Storage Resource Paths operation removes a path definition from the
virtualization host storage resource. The path is defined by its two endpoints – the virtualization host is
at one end, and the associated storage resource is at the other end.

POST /api/virtualization-hosts/2f029af0-03f8-11e1-8eda-001f163805d8/operations/add-paths HTTP/1.1
x-api-session: 68ps5rqvq1177xtcqz9rnrbmls29mglluq7ni0qlgnwjhup01c
content-type: application/json
content-length: 315
{

"paths": [
{

"controller-port-wwpn": "20240080e5184ac0",
"host-port-wwpn": "21000024ff2b4603",
"lun": "1234001000000000"

}
],
"virtualization-host-storage-resource-element-uri": "/api/virtualization-hosts/

2f029af0-03f8-11e1-8eda-001f163805d8/virtualization-host-storage-resources/
19625098-2034-11e1-b4a5-001f163805d8"

}

Figure 166. Add Virtualization Host Storage Resource Paths: Request

204 No Content
date: Tue, 06 Dec 2011 18:00:53 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 167. Add Virtualization Host Storage Resource Paths: Response

Chapter 11. Storage Management 333

HTTP method and URI
POST /api/virtualization-hosts/{virt-host-id}/operations/remove-paths

In this request, the URI variable {virt-host-id} is the object ID of the virtualization host object.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

virtualization-
host-storage-
resource-element-
uri

String/URI Required Canonical URI path of the virtualization host storage resource object.

paths Array of
objects

Required Information about the paths to be removed. It is either an array of
path-fcp or path-eckd objects, as described in the next tables. Note
that there can be at most one path for a virtualization host storage
resource whose type property is "eckd".

A path-fcp object contains information about a single path by which an FCP storage resource is accessible
to a virtualization host. This object describes a path for a virtualization host storage resource whose type
property is either "fcp"or "zvm-fcp".

Name Type Rqd/Opt Description

host-port-wwpn String (16) Required The WWPN of the host port. The string form of a 16-digit
hexadecimal number.

controller-port-
wwpn

String (16) Required The WWPN of the storage controller port. The string form of a
16-digit hexadecimal number.

lun String (16) Required The Logical Unit Number (LUN) of the storage resource. The string
form of a 16-digit hexadecimal number.

A path-eckd object contains information about a single path by which an ECKD storage resource is
accessible to a virtualization host. This object describes a path for a virtualization host storage resource
whose type property is "eckd". A path-fcp object contains information about a single path by which an
FCP storage resource is accessible to a virtualization host. This object describes a path for a virtualization
host storage resource whose type property is either "fcp" or "zvm-fcp".

Name Type Rqd/Opt Description

device-number String
(1-4)

Required The device number of the storage resource. The string form of a 1-4
digit hexadecimal number.

Description

The Remove Virtualization Host Storage Resource Paths operation removes path definitions from the
specified virtualization host storage resource. The controller-port-wwpn, lun, or device-number, as
appropriate, along with the host-port-wwpn, must identify a configured path of the storage resource
associated with this virtualization host storage resource. If that condition is not met, HTTP status code
400 (Bad Request) is returned.

The URI path must designate an existing virtualization host object, and the API user must have
object-access permission to it. Furthermore, the request body must designate an existing virtualization
host storage resource object. If any of these conditions is not met, status code 404 (Not Found) is
returned. In addition, the API user must have action access permission to the Remove Storage Resources

334 HMC Web Services API

task; otherwise, status code 403 (Forbidden) is returned. The virtualization host is marked busy for the
duration of this request. If it is already marked busy due to some other operation, then status code 409
(Conflict) is returned.

Upon success, HTTP status code 204 (No Content) is returned and no response body is provided. If this
operation changes the value of the path property, a property-change notification is issued asynchronously
to this operation.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the hosting object of the virtualization host specified in the request URI
v Action/task permission to the Manage Storage Resources task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

142 The specified path information does not identify a configured path available
for the virtualization host to use to access the specified storage resource.

403 (Forbidden) 1 API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({virt-host-id}) does not designate an existing
virtualization host object, or the API user does not have object access
permission to it, or it is not of a type for which this operation is supported.

147 The URI in the request body ({virtualization-host-storage-resource}) does not
designate an existing virtualization host storage resource object for the
specified virtualization host.

409 (Conflict) 2 The operation cannot be performed because the virtualization host
designated by the request URI is currently busy performing some other
operation.

150 The operation cannot be performed because the virtualization host
designated by the request URI is currently busy due to a zBX Move
operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

2 The request could not be processed because the HMC is not currently
communicating with an element of a zBX needed to perform the requested
operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM virtualization host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM virtualization host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Chapter 11. Storage Management 335

Usage notes
v The Remove Virtualization Host Storage Resource Paths operation performs a portion of the function

(remove path) provided by the Details for Storage Resource subtask of the Manage Storage Resources
task. The operation performs some or all of the functions provided by the following Web Services APIs:
– Remove Virtualization Host Storage Resource Path

Removes a path between a virtualization host and a storage resource.
– Gives a warning/error message in case an incorrect path or no path is selected.

Discover Virtualization Host Storage Resources
The Discover Virtualization Host Storage Resources operation discovers the virtualization host storage
resources for a virtualization host.

HTTP method and URI
POST /api/virtualization-hosts/{virt-host-id}/operations/discover-virtualization-host-storage-resources

In this request, the URI variable {virt-host-id} is the object ID of the virtualization host object.

Query parameters

Name Type Rqd/Opt Description

prefix String
(1-50)

Optional Prefix to use when constructing the value of the name property of
each newly discovered virtualization host storage resource. It must
consist only of alphanumeric characters and the following special
characters: “._-”, and it must begin with an alphanumeric character.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

virtualization-host-
storage-resources

Array of
objects

On successful completion, the response body contains a JSON object that
provides an array whose elements are discovered-virtualization-host-storage-
resource objects (described in the next table) including path accessibility
status. Field names and data types in the discovered-virtualization-host-
storage-resource are the same as the property names and data types defined
in the data model.

If no virtualization host storage resources are to be returned, an empty array
is provided.

Each discovered-virtualization-host-storage-resource object contains the following fields:

Field name Type Description

parent String/URI The parent property of the virtualization host storage resource object.

class String The class property of the virtualization host storage resource object.

name String The name property of the virtualization host storage resource object.

size Long The size property of the virtualization host storage resource object.

allocation-units String
Enum

The allocation-units property of the virtualization host storage resource
object.

type String
Enum

The type property of the virtualization host storage resource object.

336 HMC Web Services API

Field name Type Description

storage-resource String/URI The storage-resource property of the virtualization host storage resource
object. This will be null unless this virtualization host storage resource
defines an additional path for the virtualization host to access an existing
storage resource.

paths Array of
objects

The paths property of the virtualization host storage resource object.

unique-device-id String The unique-device-id property of the virtualization host storage resource
object.

volume-serial-number String (1-6) The volume serial for this virtualization host storage resource. Only present
if the type property is "eckd" or "zvm-fcp".

device-number String (1-4) The device number that the virtualization host uses to access an ECKD
storage resource, or the EDEV (emulated volume) that is created for FCP
storage resources when they get allocated to a Virtual Server, or added to a
Virtualization Host Storage Group. The string form of a 1-4 digit
hexadecimal number. Only present if the type property is "eckd" or
"zvm-fcp".

Description

The Discover Virtualization Host Storage Resources operation discovers a virtualization host's
virtualization host storage resources. The current values of the properties for the discovered virtualization
host storage resource objects, including path accessibility status, are returned as defined in the“Data
model” on page 314.

If the prefix parameter is omitted, the ensemble's default prefix will be used. The default prefix consists
of the name of the ensemble concatenated with “_SR”.

If there are no discovered virtualization host storage resources for the specified virtualization host, an
empty array is provided and the operation completes successfully.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the hosting object of the virtualization host specified in the request URI
v Action/task permission to the Discover Storage Resources task.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 336.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 API user does not have action permission to this operation.

404 (Not Found) 1 The object ID {virt-host-id} does not designate an existing virtualization host
object, or the API user does not have object access permission to it.

Chapter 11. Storage Management 337

HTTP error status
code

Reason
code Description

409 (Conflict) 2 The operation cannot be performed because the virtualization host
designated by the request URI is currently busy performing some other
operation.

150 The operation cannot be performed because the virtualization host
designated by the request URI is currently busy due to a zBX Move
operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Notifications
Changes to properties of a virtualization host storage resource are reflected via a property change
notification designating the virtualization host as the managed object and the virtualization host storage
resource as the element object. The standard property change notification fields (old value, new value and
property name) for each changed property are provided in the notification.

The creation or deletion of a virtualization host storage resource is reflected via an inventory change
notification designating the virtualization host as the managed object and the virtualization host storage
resource as the element object.

Inventory service data
Information about the storage resources associated with a virtualization host can be optionally included
in the inventory data provided by the Inventory Service.

Inventory entries for Virtualization Host Storage Resource objects are included in the response to the
Inventory Service's Get Inventory operation when the request specifies (explicitly by class, implicitly via a
containing category, or by default) that objects of class "virtualization-host" are to be included. An entry
for a particular virtualization host storage resource is included only if the API user has object-access
permission to the owning virtualization host.

Virtualization host storage group object
A virtualization host storage group is a representation of a z/VM Storage Group. It consists of
homogeneous storage resources to which a z/VM virtualization host has access, and whose
corresponding virtualization host storage resources have been placed into a storage group.

Data model
This object includes the following properties:

Table 64. Virtualization host storage group object properties

Name Qualifier Type Description

element-uri — String/URI Canonical URI path of the virtualization host storage group object, in
the form /api/virtualization-hosts/{virt-host-id}/
virtualization-host-storage-groups/{virt-host-storage-group-id}
where {virt-host-storage-group-id} is the value of the element-id
property of the virtualization host storage group.

element-id — String (36) The unique identifier for the virtualization host storage group
instance. This identifier is in the form of a UUID.

parent — String/URI The parent object of a virtualization host storage group object is a
virtualization host object.

338 HMC Web Services API

Table 64. Virtualization host storage group object properties (continued)

Name Qualifier Type Description

class — String The class of a virtualization host storage group object is
"virtualization-host-storage-group".

name — String
(1-64)

The name of the virtualization host storage group. It must consist
only of alphanumeric characters, spaces and the following special
characters: “._-$”, and it must begin with an alphanumeric character
or “$”.

description — String
(0-256)

The description for the virtualization host storage group. It must
consist only of alphanumeric characters, spaces and the following
special characters: “._-$”.

free-space — Array of
object

Information about the free space in the virtualization host storage
group. It is an array of free-space-information objects, each of which
describes an area of free storage in the virtualization host storage
group. If there is no free space in the virtualization host storage
group, an empty array is provided.

virtualization-host — String/URI Canonical URI path of the virtualization host that owns this
virtualization host storage group.

A free-space-information object contains information about an area of storage in the virtualization host
storage group that is currently not in use.

Table 65. Virtualization host storage group object: free-space-information object properties

Name Type Description

device-number String
(1-4)

The device number of the virtualization host storage resource which has free
space on it. This is the string form of a 1-4 digit hexadecimal number.

size Long The size of the free storage area. The units for this property are specified by the
allocation-units property.

allocation-units String
Enum

The units for the size property. Values:
v "bytes"
v "cylinders"

Operations
If a virtualization host storage group operation accesses a z/VM virtualization host and encounters an
error while communicating with the virtualization host via SMAPI, the response body is as described in
“SMAPI Error Response Body” on page 203.

List Virtualization Host Storage Groups
The List Virtualization Host Storage Groups operation lists the virtualization host storage groups for a
virtualization host.

HTTP method and URI
GET /api/virtualization-hosts/{virt-host-id}/virtualization-host-storage-groups

In this request, the URI variable {virt-host-id} is the object ID of the virtualization host object.

Query parameters

Name Type Rqd/Opt Description

name String Optional Filter pattern (regular expression) to limit returned objects to those
that have a matching name property.

Chapter 11. Storage Management 339

Name Type Rqd/Opt Description

properties String Optional Identifies the properties of each virtualization host storage group to
be returned. The only supported value is "all", which results in all
properties being returned. If this query parameter is omitted, a set of
basic properties considered to be of general interest is returned.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

virtualization-host-
storage-groups

Array of
objects

If the properties=all query parameter is specified, an array is provided
whose elements are the set of virtualization host storage group properties
that would be returned on a Get Virtualization Host Storage Group
Properties operation. If the properties query parameter is omitted, an array
of virtualization-host-storage-group-basic-info objects is returned, described
in the next table. If no virtualization host storage groups are to be returned,
an empty array is provided.

Each virtualization-host-storage-group-basic-info object contains the following fields:

Field name Type Description

element-uri String/URI Canonical URI path of the virtualization host storage group object

name String The name property of the virtualization host storage group object

Description

The List Virtualization Host Storage Groups operation lists a virtualization host's virtualization host
storage groups. The element URI and name are provided for each virtualization host storage group.

If the name query parameter is specified, the returned list is limited to those virtualization host storage
groups that have a name property matching the specified filter pattern. If the name parameter is omitted,
this filtering is not performed.

If the properties query parameter is specified, it controls the set of properties returned. A value of "all"
results in all properties being returned, in exactly the same format as would be provided on a Get
Virtualization Host Storage Group Properties operation. If the properties query parameter is omitted, a
set of basic properties is returned for each virtualization host storage group. See the virtualization-host-
storage-group-basic-info object definition. Any value other than "all" is not valid and results in an HTTP
status code 400 (Bad Request).

The URI path must designate an existing virtualization host object and the API user must have
object-access permission to it. If either of these conditions is not met, status code 404 (Not Found) is
returned. In addition, the API user must have action access permission to the Manage Storage Resources
task; otherwise, status code 403 (Forbidden) is returned.

If the virtualization host has no virtualization host storage groups, an empty list is provided and the
operation completes successfully.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the hosting object of the virtualization host specified in the request URI

340 HMC Web Services API

v Action/task permission to the Manage Storage Resources task.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 340.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

145 A value other than "all" was specified for the properties query parameter, or
this query parameter was specified more than once.

403 (Forbidden) 1 API user does not have action permission to this operation.

404 (Not Found) 1 The object ID {virt-host-id} does not designate an existing virtualization host
object, or the API user does not have object access permission to it, or it is
not of a type for which this operation is supported.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM virtualization host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM virtualization host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/virtualization-hosts/342d80e0-65ff-11e0-acfd-f0def10c03f4/virtualization-host-storage-groups HTTP/1.1
x-api-session: 1rmnds0imna61i3ll0eu7drk7jsec93mvclfbuqdb7xspk2fm5

Figure 168. List Virtualization Host Storage Groups: Request

Chapter 11. Storage Management 341

Get Virtualization Host Storage Group Properties
The Get Virtualization Host Storage Group Properties operation retrieves the properties of a single
virtualization host storage group object that is designated by its object ID and the object ID of the owning
virtualization host.

HTTP method and URI
GET /api/virtualization-hosts/{virt-host-id}/virtualization-host-storage-groups/

{virt-host-storage-group-id}

URI variables

Variable Description

{virt-host-id} Object ID of the virtualization host

{virt-host-storage-group-
id}

Element ID of the virtualization host storage group object for which properties are to be
obtained

Response body contents

On successful completion, the response body is a JSON object that provides the current values of the
properties for the virtualization host storage group object as defined in “Data model” on page 338. Field
names and data types in the JSON object are the same as the property names and data types defined in
the data model.

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Thu, 04 Aug 2011 13:30:20 GMT
content-type: application/json;charset=UTF-8
content-length: 683
{

"virtualization-host-storage-groups": [
{

"element-uri": "/api/virtualization-hosts/342d80e0-65ff-11e0-acfd-f0def10c03f4/
virtualization-host-storage-groups/92560990-6aa4-11e0-b3b9-f0def10c03f4",
"name": "3390"

},
{

"element-uri": "/api/virtualization-hosts/342d80e0-65ff-11e0-acfd-f0def10c03f4/
virtualization-host-storage-groups/92559f6e-6aa4-11e0-b3b9-f0def10c03f4",
"name": "3380"

},
{

"element-uri": "/api/virtualization-hosts/342d80e0-65ff-11e0-acfd-f0def10c03f4/
virtualization-host-storage-groups/925337e2-6aa4-11e0-b3b9-f0def10c03f4",
"name": "$$FCP$$"

}
]

}

Figure 169. List Virtualization Host Storage Groups: Response

342 HMC Web Services API

Description

The Get Virtualization Host Storage Group Properties operation returns the current properties for the
virtualization host storage group object specified by {virt-host-storage-group-id} for the virtualization host
specified by {virt-host-id}.

On successful execution, all of the current properties as defined by the data model for the virtualization
host storage group object are provided in the response body, and HTTP status code 200 (OK) is returned.

The URI path must designate an existing virtualization host object and the API user must have
object-access permission to it. Furthermore, the URI path must designate an existing virtualization host
storage group object. If any of these conditions are not met, status code 404 (Not Found) is returned. In
addition, the API user must have action access permission to the Manage Storage Resources task;
otherwise, status code 403 (Forbidden) is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the hosting object of the virtualization host specified in the request URI
v Action/task permission to the Manage Storage Resources task.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 342.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 API user does not have action permission to this operation.

404 (Not Found) 1 The object ID in the URI ({virt-host-id}) does not designate an existing
virtualization host object, or the API user does not have object access
permission to it, or it is not of a type for which this operation is supported.
The object ID in the URI ({virt-host-storage-group-id}) does not designate an
existing virtualization host storage group object for the specified
virtualization host.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM virtualization host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM virtualization host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Chapter 11. Storage Management 343

Example HTTP interaction

List Virtualization Host Storage Resources in a Virtualization Host
Storage Group
The List Virtualization Host Storage Resources in a Virtualization Host Storage Group operation lists
the virtualization host storage resources that are members of the specified virtualization host storage
group.

HTTP method and URI
POST /api/virtualization-hosts/{virt-host-id}/operations/list-virtualization-host-storage-

resources-in-group

In this request, the URI variable {virt-host-id} is the object ID of the virtualization host that owns the
virtualization host storage group.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

virtualization-
host-storage-group

String/URI Optional Canonical URI path of the virtualization host storage group whose
members are to be listed.

If none is specified, the operation returns information for all
virtualization host storage groups.

GET /api/virtualization-hosts/0e4a5d94-a8c1-11e0-9492-00262df332b3/
virtualization-host-storage-groups/305cf1fe-a8cf-11e0-9a45-00262df332b3 HTTP/1.1

x-api-session: 3gcd77glemvwq81dlmwxc8i4fwm4udxlby6i2auls4r6g529p1

Figure 170. Get Virtualization Host Storage Group Properties: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Tue, 06 Dec 2011 14:34:05 GMT
content-type: application/json;charset=UTF-8
content-length: 466
{

"class": "virtualization-host-storage-group",
"description": "$$FCP$$",
"element-id": "305cf1fe-a8cf-11e0-9a45-00262df332b3",
"element-uri": "/api/virtualization-hosts/0e4a5d94-a8c1-11e0-9492-00262df332b3/
virtualization-host-storage-groups/305cf1fe-a8cf-11e0-9a45-00262df332b3",
"free-space": [],
"name": "$$FCP$$",
"parent": "/api/virtualization-hosts/0e4a5d94-a8c1-11e0-9492-00262df332b3",
"virtualization-host": "/api/virtualization-hosts/0e4a5d94-a8c1-11e0-9492-00262df332b3"

}

Figure 171. Get Virtualization Host Storage Group Properties: Response

344 HMC Web Services API

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

virtualization-host-
storage-resources

Array of
objects

Array of virtualization-host-storage-resource-basic-info objects is returned,
described in the next table. If no virtualization host storage resources are to
be returned, an empty array is provided.

Each virtualization-host-storage-resource-basic-info object contains the following fields:

Field name Type Description

element-uri String/URI Canonical URI path of the virtualization host storage resource object

name String The name property of the associated storage resource object

type String
Enum

The type property of the associated storage resource object

Description

The List Virtualization Host Storage Resources in a Virtualization Host Storage Group operation
returns basic information about each virtualization host storage resource in the virtualization host storage
group specified by {virtualization-host-storage-group} for the virtualization host specified by {virt-host-id}. If
{virtualization-host-storage-group} is omitted, information from all of the virtualization host's virtualization
host storage group is returned. The object URI and other basic properties are provided for each
virtualization host storage resource.

A set of basic properties is returned for each virtualization host storage resource. See the
virtualization-host-storage-resource-basic-info object definition.

The URI path must designate an existing virtualization host object and the API user must have
object-access permission to it. If any of these conditions is not met, status code 404 (Not Found) is
returned. If a URI is specified in the request body and it does not identify a virtualization host storage
group for the specified virtualization host, status code 404 (Not Found) is returned. In addition, the API
user must have action access permission to the Manage Storage Resources action; otherwise, status code
403 (Forbidden) is returned.

If there are no virtualization host storage resources in the target virtualization host storage group(s), an
empty list is provided and the operation completes successfully.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the hosting object of the virtualization host specified in the request URI
v Action/task permission to the Manage Storage Resources task.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

Chapter 11. Storage Management 345

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission to this operation.

404 (Not Found) 1 The object ID in the URI ({virt-host-id}) does not designate an existing
virtualization host object, or the API user does not have object access
permission to it, or it is not of a type for which this operation is supported.

2 The URI specified in the request body does not identify a virtualization host
storage group for the specified virtualization host.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM virtualization host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM virtualization host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Add Virtualization Host Storage Resource to Virtualization Host
Storage Group
The Add Virtualization Host Storage Resource to Virtualization Host Storage Group operation adds a
specified virtualization host storage resource to the appropriate virtualization host storage group.

HTTP method and URI
POST /api/virtualization-hosts/{virt-host-id}/operations/add-virtualization-host-storage-resource-to-group

In this request, the URI variable {virt-host-id} is the object ID of the virtualization host that owns the
virtualization host storage group.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

virtualization-
host-storage-
resource

String/URI Optional Canonical URI path of the virtualization host storage resource object
to be added

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

element-uri String/URI Canonical URI path of the virtualization host storage group to which the
virtualization host storage resource was added in the form
/api/virtualization-hosts/{virt-host-id}/ virtualization-host-storage-groups/
{virt-host-storage-group-id}.

346 HMC Web Services API

Field name Type Description

element-id String Element ID of the virtualization host storage group object. This is the
{virt-host-storage-group-id} portion of the URI path provided by the
element-uri field.

Description

The Add Virtualization Host Storage Resource to Virtualization Host Storage Group operation adds a
specified virtualization host storage resource to the appropriate virtualization host storage group for the
virtualization host specified by {virt-host-id}.

On successful execution, the virtualization host storage resource identified in “Request body contents” on
page 346 has been added to the appropriate virtualization host storage group, and HTTP status code 200
(OK) is returned. “Response body contents” on page 346 identifies the virtualization host storage group
to which the virtualization host storage resource was added.

On successful execution, a property-change notification is issued asynchronously to this operation. See
“Notifications” on page 349 for more information.

The URI path must designate an existing virtualization host object and the API user must have
object-access permission to it. If either of these conditions is not met, status code 404 (Not Found) is
returned. If the URI in the request body does not identify a virtualization host storage resource for the
specified virtualization host, status code 404 (Not Found) is returned. In addition, the API user must have
action access permission to the Add Storage Resource to Group task; otherwise, status code 403
(Forbidden) is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the hosting object of the virtualization host specified in the request URI
v Action/task permission to the Add Storage Resource to Group task.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 API user does not have action permission to this operation.

404 (Not Found) 1 The object ID {virt-host-id} does not designate an existing virtualization host
object, or the API user does not have object access permission to it, or it is
not of a type for which this operation is supported.

147 The URI in the request body ({virtualization-host-storage-resource}) does not
designate an existing virtualization host storage resource object for the
specified virtualization host.

Chapter 11. Storage Management 347

HTTP error status
code

Reason
code Description

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM virtualization host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM virtualization host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Remove Virtualization Host Storage Resource from Virtualization Host
Storage Group
The Remove Virtualization Host Storage Resource from Virtualization Host Storage Group operation
removes a specified virtualization host storage resource from the appropriate virtualization host storage
group.

HTTP method and URI
POST /api/virtualization-hosts/{virt-host-id}/operations/remove-virtualization-host-

storage-resource-from-group

In this request, the URI variable {virt-host-id} is the object ID of the virtualization host that owns the
virtualization host storage resource.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

virtualization-
host-storage-
resource

String/URI Required Canonical URI path of the virtualization host storage resource object
to be removed

Description

The Remove Virtualization Host Storage Resource from Virtualization Host Storage Group operation
removes a specified virtualization host storage resource from the appropriate virtualization host storage
group for the virtualization host specified by {virt-host-id}.

On successful execution, the virtualization host storage resource identified in “Request body contents”
has been removed from the appropriate virtualization host storage group, and HTTP status code 204 (No
Content) is returned and no response body is provided.

On successful execution, a property-change notification is issued asynchronously to this operation. See
“Notifications” on page 349 for more information.

The URI path must designate an existing virtualization host object, and the API user must have
object-access permission to it. Furthermore, the request body must designate an existing virtualization
host storage resource object for the specified virtualization host. If any of these conditions is not met,
status code 404 (Not Found) is returned. In addition, the API user must have action access permission to
the Remove Storage Resource from Group task; otherwise, status code 403 (Forbidden) is returned.

348 HMC Web Services API

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the hosting object of the virtualization host specified in the request URI
v Action/task permission to the Remove Storage Resource from Group task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 API user does not have action permission to this operation.

404 (Not Found) 1 The object ID in the URI {virt-host-id} does not designate an existing
virtualization host object, or the API user does not have object access
permission to it, or it is not of a type for which this operation is supported.

147 The URI in the request body ({virtualization-host-storage-resource}) does not
designate an existing virtualization host storage resource object for the
specified virtualization host.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not currently
communicating with an SE needed to perform the requested operation.

100 The request could not be processed because the HMC is unable to
communicate with a z/VM virtualization host via SMAPI.

101 The request could not be processed because a command executed on a
z/VM virtualization host via SMAPI failed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Notifications
Changes to properties of a virtualization host storage group are reflected via a property change
notification designating the virtualization host as the managed object and the virtualization host storage
group as the element object. The standard property change notification fields (old value, new value and
property name) for each changed property are provided in the notification.

The addition or removal of a virtualization host storage resource to/from a virtualization host storage
group is reflected via a property change notification designating the virtualization host as the managed
object and the virtualization host storage group as the element object. The changed property identified in
the notification is the virtualization-host-storage-resources property. Note that this is not included as a
property of a virtualization host or a virtualization host storage group in their respective data models;
this property name is only used in the context of these property change notifications. When the
notification is due to the addition of a virtualization host storage resource, the new value in the
notification is the URI path of the added virtualization host storage resource and the old value is null.
When the notification is due to the removal of a virtualization host storage resource, the old value in the
notification is the URI path of the removed virtualization host storage resource and the new value is null.
Thus, unlike other property change notifications, these notifications only identify the delta to the set of

Chapter 11. Storage Management 349

members of the virtualization host storage group rather than the complete new and old membership sets.
In that sense, they are more like inventory change notifications.

Inventory service data
Information about the storage groups associated with a virtualization host can be optionally included in
the inventory data provided by the Inventory Service.

Inventory entries for Virtualization Host Storage Group objects are included in the response to the
Inventory Service's Get Inventory operation when the request specifies (explicitly by class, implicitly via
a containing category, or by default) that objects of class "virtualization-host" are to be included. An
entry for a particular virtualization host storage group is included only if the API user has object-access
permission to the owning virtualization host.

Usage notes
v The group to which a virtualization host storage resource is added is determined by the type of the

resource. Specifically, FCP resources are added to a group named “$$FCP$$”, 3380 resources are added
to the “3380” group, and 3390 resources are added to the “3390” group. The user may not specify
any attributes of these groups (e.g., name or description). Thus, there are no writeable properties of a
group.

v It is not possible for a virtual disk to span multiple physical storage devices. Thus, the largest virtual
disk that may be created in the virtualization host storage group is limited to the largest free space on
any single virtualization host storage resource in the group. The information describing all such areas
of free space may be useful when defining, or planning to define, multiple virtual disks in the group.

350 HMC Web Services API

Chapter 12. Virtual network management

In a zEnterprise ensemble, the Intra-Ensemble Data Network (IEDN) provides the physical, layer 2
network to which all System z CECs and the blades in the zBX are attached. The zManager Manage
Virtual Network tasks are used to provision the IEDN into virtual networks, and to manage those virtual
networks. In an ensemble, a virtual network is defined by a name, VLAN ID, and zero or more
associated network host interfaces of the following types: virtual server, optimizers, and Top-of-Rack
(TOR) switch ports that attach ISAOPT and external routers. The ensemble has a default virtual network.
This virtual network cannot be deleted, although its VLAN ID can be changed.

To communicate on the IEDN, a network host's network interfaces must be associated with a virtual
network that is managed by zManager. Note that the different types of network hosts have different
requirements for defining and configuring network interfaces. For example, part of the process of
defining a virtual server is to create its virtual network interfaces and associate them with at virtual
network. The same is true for most optimizers. In the case of ISAOPT, the association to a virtual
network is a special case. For ISAOPT, the TOR port that attaches to the coordinator blade's access switch
provides the virtual network interface attachment. In cases where the TOR's external ports are attached to
external networking equipment, such as a router, these TOR ports are required to join one or more virtual
networks defined by zManager.

Virtual network management operations summary
The following tables provide an overview of the operations provided.

Table 66. Virtual network management: operations summary

Operation name HTTP method and URI

“List Virtual Networks”
on page 352

GET /api/ensembles/{ensemble-id}/virtual-networks

“Get Virtual Network
Properties” on page 354

GET /api/virtual-networks/{virtual-network-id}

“Update Virtual Network
Properties” on page 355

POST /api/virtual-networks/{virtual-network-id}

“Create Virtual
Network” on page 358

POST /api/ensembles/{ensemble-id}/virtual-networks

“Delete Virtual
Network” on page 360

DELETE /api/virtual-networks/{virtual-network-id}

“List Members of a
Virtual Network” on
page 362

GET /api/virtual-networks/{virtual-network-id}/host-vnics

Table 67. Virtual network management: URI variables

Variable Description

{ensemble-id} Object ID of an Ensemble object

{virtual-network-id} Object ID of a Virtual Network

Virtual network object
A virtual network object represents a single zEnterprise virtual network.

© Copyright IBM Corp. 2012, 2013 351

Data model
This object includes the properties defined in the “Base managed object properties schema” on page 33,
with the following type-specific specialization:

Table 68. Virtual network object: base managed object properties specializations

Name Qualifier Type Description of specialization

object-uri — String/URI The canonical URI path for a virtual network object is of the form
/api/virtual-networks/{virtual-network-id} where
{virtual-network-id} is the value of the object-id property of the virtual
network object.

parent — String/URI The parent of a virtual network object is an ensemble object.

class — String The class of a virtual network object is "virtual-network".

name (w)(pc) String
(1-32)

The name of the virtual network object as known by zManager. This
name must be unique across virtual networks. If the virtual network
is the default virtual network, then the name cannot be changed. The
name provided must be between 1 and 32 characters.

Class specific additional properties
In addition to the properties defined via included schemas, this object includes the following additional
type-specific properties:

Table 69. Virtual network object: class specific additional properties

Name Qualifier Type Description

vlan-id (w)(pc) Integer The VLAN ID assigned to this virtual network. Valid VLAN IDs are
in the range of 10-1030.

is-default — Boolean This value is true when the virtual network is the default virtual
network.

has-members (pc) Boolean This value is true when the virtual network has member network
host interfaces attached to it.

List Virtual Networks
Use the List Virtual Networks operation lists the virtual networks managed by the HMC.

HTTP method and URI
GET /api/ensembles/{ensemble-id}/virtual-networks

In this request, the URI variable {ensemble-id} is the object ID of an Ensemble object.

Query parameters

Name Type Rqd/Opt Description

is-default Boolean Optional Filter pattern to limit returned objects to those that have a matching
is-default property. There is only one default virtual network, and it
is always defined, so when is-default=true is specified, the response
will be an array with one element.

name String Optional Filter pattern (regular expression) to limit returned objects to those
that have a matching name property. If a match is found, the
response will be an array with one element. If no match is found, the
response will be an empty array.

352 HMC Web Services API

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

virtual-networks Array of
obects

Array of nested virtual-network-info objects as described in the next table.

Each nested virtual-network-info object contains the following:

Field name Type Description

object-uri String/
URI

Canonical URI path of the virtual network object, in the form
/api/virtual-networks/{virtual-network-id}.

name String Display name of the virtual network object.

Description

This operation lists the virtual networks that are in the specified ensemble. The response body content is
an array of one or more URI's that represent each virtual network. Each ensemble always has a single
default virtual network with the name of "Default".

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the target Ensemble object
v Action/task permission to the Manage Virtual Networks task.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

1 The request included an unrecognized or unsupported query parameter.

403 (Forbidden) 1 The user under which the API request was authenticated is not authorized to
perform the requested operation. Permission to the Manage Virtual
Networks task is required.

404 (Not Found) 1 The request URI does not designate an existing resource of the correct type,
or designates a resource for which the API user does not have object-access
permission.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Chapter 12. Virtual network management 353

Example HTTP interaction

Get Virtual Network Properties
Use the Get Virtual Network Properties operation retrieves the properties of a single Virtual Network
object that is designated by the {virtual-network-id}.

HTTP method and URI
GET /api/virtual-networks/{virtual-network-id}

In this request, the URI variable {virtual-network-id} is the object ID of the Virtual Network object for
which properties are to be obtained.

Response body contents

On successful completion, the response body contains a JSON object that provides the current values of
the properties for the virtual network object as defined in the Data Model section above. Field names and
data types in the JSON object are the same as the property names and data types defined in the data
model.

Description

TThis operation returns the current properties for the Virtual Network object. In an ensemble, there is at
least one virtual network. This is the default virtual network with the name "Default".

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the target Virtual Network
v Action/task permission to the Manage Virtual Networks task.

GET /api/ensembles/f8fc3a9c-03f2-11e1-ba83-0010184c8334/virtual-networks HTTP/1.1
x-api-session: 5tjfpg1d6i7dfria4i52czubs5ptly4fqig2gm3mkluph6ebga

Figure 172. List Virtual Networks: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 05:11:15 GMT
content-type: application/json;charset=UTF-8
content-length: 316
{

"virtual-networks": [
{

"name": "Default",
"object-uri": "/api/virtual-networks/f920171e-03f2-11e1-8e8e-0010184c8334"

},
{

"name": "SS-Web-Store-Network",
"object-uri": "/api/virtual-networks/e58564e0-1723-11e1-aea4-0010184c8334"

}
]

}

Figure 173. List Virtual Networks: Response

354 HMC Web Services API

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 354.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The user under which the API request was authenticated is not authorized to
perform the requested operation. Permission to the Manage Virtual
Networks task is required.

404 (Not Found) 1 The request URI does not designate an existing resource of the correct type,
or designates a resource for which the API user does not have object-access
permission.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Update Virtual Network Properties
Use the Update Virtual Network Properties operation updates one or more of the writeable properties of
a Virtual Network object.

GET /api/virtual-networks/e58564e0-1723-11e1-aea4-0010184c8334 HTTP/1.1
x-api-session: 5tjfpg1d6i7dfria4i52czubs5ptly4fqig2gm3mkluph6ebga

Figure 174. Get Virtual Network Properties: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 05:11:15 GMT
content-type: application/json;charset=UTF-8
content-length: 368
{

"class": "virtual-network",
"description": "Spacely Sprockets Web Store Network",
"has-members": true,
"is-default": false,
"is-locked": false,
"name": "SS-Web-Store-Network",
"object-id": "e58564e0-1723-11e1-aea4-0010184c8334",
"object-uri": "/api/virtual-networks/e58564e0-1723-11e1-aea4-0010184c8334",
"parent": "/api/ensembles/f8fc3a9c-03f2-11e1-ba83-0010184c8334",
"vlan-id": 1030

}

Figure 175. Get Virtual Network Properties: Response

Chapter 12. Virtual network management 355

|

HTTP method and URI
POST /api/virtual-networks/{virtual-network-id}

In this request, the URI variable {virtual-network-id} is the object ID of the Virtual Network object for
which properties are to be updated.

Request body contents

The request body is expected to contain a JSON object that provides the new values of any writeable
property that is to be updated by this operation. Field names and data types in this JSON object are
expected to match the corresponding property names and data types defined by the data model for this
object type. The JSON object can and should omit fields for properties whose values are not to be
changed by this operation.

Description

This operation updates writeable properties of the virtual network object specified by {virtual-network-id}.

If the vlan-id property is changed, and there are member attached hosts are not in the proper operating
status to accept a virtual network change, then this request will fail with HTTP status code 409, and the
response body will contain the list of URI's of the network hosts that were unable to accept a virtual
network change. Upon failure, the virtual network's vlan-id is not changed, although requests for updates
to other virtual network properties may have successfully occurred. Upon successful complete, the virtual
network of the attached network hosts virtual network interfaces will be changed.

The request body is validated against the schema described in “Request body contents.” If the request
body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the validation
error encountered.

The request body does not need to specify a value for all writeable properties, but rather can and should
contain fields for the properties to be updated. Object properties for which no input value is provided
remain unchanged by this operation.

If the update changes the value of any property for which property-change notifications are due, those
notifications are emitted asynchronously to this operation.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the target Virtual Network object
v Action/task permission to the Virtual Networks Details task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

356 HMC Web Services API

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

129 The default virtual network name of "Default" cannot be changed.

131 The specified name or VLAN ID for a virtual network already exists. This
includes specification of the name "Default".

403 (Forbidden) 1 The user under which the API request was authenticated is not authorized to
perform the requested operation. Permission to the Manage Virtual
Networks task is required.

404 (Not Found) 1 The object-id in the URI {virtual-network-id} does not designate an existing
resource of the correct type, or designates a resource for which the API user
does not have object-access permission.

409 (Conflict) 130 One or more of the network attached hosts that are members of this virtual
network do not have the proper operating status to support changes to the
virtual network at this time. The URIs of network hosts that were unable to
accept the virtual network change are returned in the response body.

Retry the request.

Currently PowerVM and x Hyp servers have operating status restrictions on
changes to a virtual network. See the network-adapter Data Model for
details for virtual server status that allows network-adapter changes.

503 (Service
Unavailable

1 Communication between the HMC and SE is unavailable. Please retry the
request.

2 The request could not be processed because the SE is not currently
communicating with an element of a zBX needed to perform the requested
operation.

On completion where the HTTP status code is 409 (Conflict), the standard error response body contains
an error-details field that provides a list of network hosts that were unable to accept a virtual network
change. The value of the error-details field is a nested object with the following fields:

Field name Type Description

hosts-list Array of
string/URI

Array of URIs that identify the network hosts that were unable to accept a
virtual network change. The URIs for the network hosts are in the following
forms:

Virtual server: /api/virtual-servers/{virtual-server-id}

Optimizer: /api/blades/{blade-id}

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Chapter 12. Virtual network management 357

|
|

|

Example HTTP interaction

Create Virtual Network
Use the Create Virtual Network operation creates a new virtual network in the ensemble.

HTTP method and URI
POST /api/ensembles/{ensemble-id}/virtual-networks

In this request, the URI variable {ensemble-id} is the object ID of the Ensemble object to which the Virtual
Network is to be added.

Request body contents

The request body is expected to contain a JSON object with writeable network properties of the virtual
network object that will be used to create the virtual network:

Field name Type Rqd/Opt Description

name String Required The name of the virtual network object as known by zManager. This
name must be unique across all virtual networks, and cannot be the
value "Default" as this name is reserved as the zManager-defined
name of the default virtual network. The name provided must be
between 1 and 32 characters.

description String Optional Display description of the Virtual Network object.

vlan-id Integer Required The VLAN ID assigned to this virtual network. Valid VLAN IDs are
in the range of 10-1030. This value must be unique across all virtual
networks.

POST /api/virtual-networks/e58564e0-1723-11e1-aea4-0010184c8334 HTTP/1.1
x-api-session: 5tjfpg1d6i7dfria4i52czubs5ptly4fqig2gm3mkluph6ebga
content-type: application/json
content-length: 103
{

"description": "Spacely Sprockets Web Store Network",
"name": "SS-Web-Store-Network",
"vlan-id": 1030

}

Figure 176. Update Virtual Network Properties: Request

204 No Content
date: Fri, 25 Nov 2011 05:11:13 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 177. Update Virtual Network Properties: Response

358 HMC Web Services API

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

object-uri String/URI Canonical URI path of the Virtual Network object, in the form
/api/virtual-networks/{virtual-network-id}.

Description

This operation creates a new virtual network in the ensemble specified by {ensemble-id}. A virtual network
with the same vlan-id or name must not already exist in the ensemble.

On successful execution of this operation the virtual network is created using the inputs as specified by
the input fields of the request body. The URI of the new virtual network is provided in the response body
and in a Location response header as well.

The request body is validated against the schema described in the Request Body Contents section. If the
request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the target Ensemble object
v Action/task permission to the New Virtual Networks task.

HTTP status and reason codes

On success, HTTP status code 201 (Created) is returned and the response body is provided as described
in “Response body contents.”

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

0 This error indicates maximum number of virtual networks exceeded or
unavailable resources.

131 The specified name or VLAN ID for a virtual network already exists. This
includes specification of the name "Default".

403 (Forbidden) 1 The user under which the API request was authenticated does not have the
required authority to perform the requested action.

404 (Not Found) 1 The object-id in the URI {ensemble-id} does not designate an existing resource
of the correct type, or designates a resource for which the API user does not
have object-access permission.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Chapter 12. Virtual network management 359

|
|

|
|

Example HTTP interaction

Delete Virtual Network
Use the Delete Virtual Network operation removes a virtual network from an ensemble.

HTTP method and URI
DELETE /api/virtual-networks/{virtual-network-id}

In this request, the URI variable {virtual-network-id} is the object ID of the Virtual Network object to be
deleted.

Description

On successful completion, this operation removes the virtual network specified by the URI from the
ensemble. Any network attached hosts that are members of this virtual network and have the proper
operating status to accept a virtual network change will be removed from the virtual network. Currently
only PowerVM and x Hyp servers require the proper operating status to accept a virtual network change.
If attached hosts cannot be removed from the virtual network, then this request will fail with an HTTP
status code of 409, and the response body will contain the list of the URIs of the network hosts that were
unable to accept a virtual network change. Upon failure, no network attached hosts are removed from the
virtual network, and the virtual network is not deleted.

Note that the default virtual network, "Default", cannot be deleted from the ensemble.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the target Ensemble object
v Action/task permission to the New Virtual Networks task.

POST /api/ensembles/f8fc3a9c-03f2-11e1-ba83-0010184c8334/virtual-networks HTTP/1.1
x-api-session: 5tjfpg1d6i7dfria4i52czubs5ptly4fqig2gm3mkluph6ebga
content-type: application/json
content-length: 71
{

"description": "New Network",
"name": "SS-New-Network",
"vlan-id": 11

}

Figure 178. Create Virtual Network: Request

201 Created
server: zSeries management console API web server / 1.0
location: /api/virtual-networks/e58564e0-1723-11e1-aea4-0010184c8334
cache-control: no-cache
date: Fri, 25 Nov 2011 05:11:13 GMT
content-type: application/json;charset=UTF-8
content-length: 75
{

"object-uri": "/api/virtual-networks/e58564e0-1723-11e1-aea4-0010184c8334"
}

Figure 179. Create Virtual Network: Response

360 HMC Web Services API

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

132 The default virtual network cannot be deleted.

404 (Not Found) 1 The object-id in the URI does not designate an existing resource of the
correct type, or designates a resource for which the API user does not have
object-access permission.

409 (Conflict) 130 One or more of the network attached hosts that are members of this virtual
network do not have the proper operating status to support a change to the
virtual network at this time. The URIs of network hosts that were unable to
accept the virtual network change are returned in the response body.

Retry the request.

Currently PowerVM and x Hyp type servers have operating status
restrictions on changes to a virtual network. See the network-adapter Data
Model for details for virtual server status that allows network-adapter
changes.

503 (Service
Unavailable)

1 Communication between the HMC and SE is unavailable. Please retry the
request.

2 The request could not be processed because the SE is not currently
communicating with an element of a zBX needed to perform the requested
operation.

On completion where the HTTP status code is 409 (Conflict), the standard error response body contains
an error-details field that provides a list of network hosts that were unable to accept a virtual network
change. The value of the error-details field is a nested object with the following fields:

Field name Type Description

hosts-list Array of
string/URI

Array of URIs that identify the network hosts that were unable to accept a
virtual network change. The URIs for the network hosts are in the following
forms:

Virtual server: /api/virtual-servers/{virtual-server-id}

Optimizer: /api/blades/{blade-id}

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Chapter 12. Virtual network management 361

|
|
|

Example HTTP interaction

List Members of a Virtual Network
Use the List Members of a Virtual Network operation lists the members of a Virtual Network.

HTTP method and URI
GET/api/virtual-networks/{virtual-network-id}/host-vnics

In this request, the URI variable {virtual-network-id} is the object ID of the Virtual Network for which
members are to be listed.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

host-vnics Array of
objects

Array of nested member-info objects, each element of which identifies an
attached network host’s network interface that is a member of this virtual
network. The nested member-info object is described in the next table. If the
virtual network has no network interfaces associated with it then an empty
array is returned.

Each nested member-info object contains the following:

DELETE /api/virtual-networks/e58564e0-1723-11e1-aea4-0010184c8334 HTTP/1.1
x-api-session: 5tjfpg1d6i7dfria4i52czubs5ptly4fqig2gm3mkluph6ebga

Figure 180. Delete Virtual Network: Request

204 No Content
date: Fri, 25 Nov 2011 05:11:15 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 181. Delete Virtual Network: Response

362 HMC Web Services API

|
|
|
|
|

|

Field name Type Description

object-uri String/URI A URI of an object or element that identifies an attached network hosts’
network interface that is a members of this virtual network. A network
interface can be one of the following: A network adapter of a virtual server
or optimizer, or a Top-of-Rack-Switch (TOR) port that is attached to an
ISAOPT optimizer or to an external router. The URI’s for the network
hosts/interfaces are:

Virtual server:

/api/virtual-servers/{virtual-server-id}/network-adapters/{network-
adapter-id}

Optimizer:

/api/blades/{blade-id}/iedn-interfaces/{iedn-interface-id}

TOR:

/api/zbxs/{zbx-id}/top-of-rack-switches/{tor-id}/ports/{port-id}

Description

The List Members of a Virtual Network operation lists the members of a Virtual Network. The members
of a virtual network are network attached hosts' network interfaces which include the following types:
virtual servers' virtual network interfaces, optimizer virtual network interfaces, and Top-of-Rack (TOR)
switch network interfaces (ports).

On successful execution, this operation returns an array of nested objects that identify the members of the
Virtual Network specified by the request URI. This array may be empty if the virtual network has no
associated network hosts. In some cases, a network host may have multiple interfaces associated with this
virtual network.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the target Virtual Network object
v Object access to the specific member attached network host object
v Action/task permission to the Manage Virtual Networks task.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 362.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The user under which the API request was authenticated is not authorized to
perform the requested operation. Permission to the Manage Virtual
Networks task is required.

Chapter 12. Virtual network management 363

||||

|||
|
|
|
|
|

|

|
|

|

|

|

|
|

|

|

HTTP error status
code

Reason
code Description

404 (Not Found) 1 The request URI does not designate an existing resource of the correct type,
or designates a resource for which the API user does not have object-access
permission.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Inventory service data
Information about the Virtual Networks managed by the HMC can be optionally included in the
inventory data provided by the Inventory Service.

Inventory entries for virtual network objects are included in the response to the Inventory Service's Get
Inventory operation when the request specifies (explicitly by class, implicitly via a containing category, or
by default) that objects of class "virtual-network" are to be included. An entry for a particular virtual
network is included only if the API user has object-access permission to that object.

For each virtual network object to be included, the inventory response array includes entry that is a JSON
object with the same contents as is specified in the Response Body Contents section for the Get Virtual
Network Properties operation. That is, the data provided is the same as would be provided if a Get
Virtual Network Properties operation were requested targeting this object.

GET /api/virtual-networks/e58564e0-1723-11e1-aea4-0010184c8334/host-vnics HTTP/1.1
x-api-session: 5tjfpg1d6i7dfria4i52czubs5ptly4fqig2gm3mkluph6ebga

Figure 182. List Members of a Virtual Network: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 05:11:15 GMT
content-type: application/json;charset=UTF-8
content-length: 274
{

"host-vnics": [
{

"object-uri": "/api/virtual-servers/588d8c18-0db7-11e1-b1f1-f0def14b63af/
network-adapters/596dd87c-0db7-11e1-9251-f0def14b63af"
},
{

"object-uri": "/api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af/
network-adapters/582b5d0e-0db7-11e1-b1f1-f0def14b63af"
}

]
}

Figure 183. List Members of a Virtual Network: Response

364 HMC Web Services API

Sample inventory data

The following fragment is an example of the JSON object that would be included in the Get Inventory
response to describe a single virtual network. This object would appear as one array entry in the
response array:

{
"class": "virtual-network",
"description": "Network for servers of the Shimmer order processing application.",
"has-members": false,
"is-default": false,
"name": "Shimmer Order Processing Network",
"object-id": "e3a366f4-95e6-11e0-85c7-000c29bb873c",
"object-uri": "/api/virtual-networks/e3a366f4-95e6-11e0-85c7-000c29bb873c",
"parent": "/api/ensembles/890b6df2-93a4-11e0-887c-000c29bb873c",
"vlan-id": 1008

}

Figure 184. Virtual network object: Sample inventory data

Chapter 12. Virtual network management 365

366 HMC Web Services API

Chapter 13. Workload resource group management

This chapter describes workload resource group management APIs, and provides a data model and
operations for each of the following: workload objects, performance policy objects, and performance
management reports.

Overview
The IBM zEnterprise System (zEnterprise) extends performance management capability to both traditional
System z and BladeCenter hardware environments. For multitier applications that span System z
hardware and BladeCenter hardware, this extended capability enables dynamic adjustments to processor
(CPU) allocations to ensure that those applications are provided with sufficient resources. To manage
hardware resources in the zEnterprise environment, you group these resources into workload resource
groups and define performance policies for them. zManager uses these policy definitions to manage the
resources for each workload resource group in an ensemble.

In computing terminology, the usual definition of the term workload is the amount of application
processing that a computer performs at a given time, and this processing usually includes a specific
number of connected users interacting with the running applications. This amount of work often serves
as a benchmark for computer performance.

In contrast, a zEnterprise workload resource group, which is sometimes referred to more simply as a
“workload”, is a customer-defined collection to be tracked, managed, and reported as a unit that reflects
a business goal or function. This collection consists of virtualized hardware rather than software
resources. Throughout the zEnterprise documentation, the term workload resource group means a collection
of logical constructs called virtual servers that perform a customer-defined collective purpose.

Initially, after zEnterprise hardware is installed and the ensemble is configured, all virtual servers are
associated with the default workload resource group and its default performance policy. Workload
administrators use the HMC to create and name the new workload resource groups, and to define which
virtual servers are associated with this workload resource group.

After a custom workload resource group is defined, an administrator can use ensemble tasks in the HMC
to create performance policies that describe the workload resource group performance objectives and
importance, and to create service classes that set priority for and classify work within a policy. These
values govern performance management. Each workload resource group can have one or more
performance policies that describe the performance objectives and importance. Each performance policy
has service classes that set the priority of and classify resources within the policy. Only one performance
policy within a specific workload resource group can be active at any given time; having multiple policies
with different defined goals gives an administrator the ability to quickly change priorities by merely
activating a different policy. zManager uses the active performance policy and its service classes to
manage how physical resources are applied to the virtual servers associated with the workload resource
group.

The Web Services API provides the same workload resource group management capabilities as those
provided through HMC tasks, including:
v Creating, updating and deleting workload resource groups, performance policies, or service classes.
v Activating a performance policy.

In addition, zManager also continuously collects performance-management data that is available through
a variety of reports that you view through the HMC. By setting a time interval for any report, you can
query historical performance data as it applied over that time period. zManager keeps only the last 36
hours of collected performance data, so that limit defines the maximum duration for reports. Through

© Copyright IBM Corp. 2012, 2013 367

HMC tasks, these various reports present performance data in tables, charts or graphs. In many cases,
you can request one report and select data within that report to request more detailed performance data
that is available in another report type. For example, through the HMC you can select the Workloads
Report task to list all workload resource groups defined in the ensemble. From that list, you can select a
specific workload resource group to view a Virtual Server Report that lists all virtual servers defined to
that specific workload resource group.

The Web Services API provide the same performance reports as those provided through HMC tasks,
returning the same data and including the capability to query time intervals. With the zManager API, the
caller requests a specific report through an operations call to generate and return the specific type of
report. Data returned for items in one report can be used in requests for subsequent drill-down report
generation requests for other report types.

For more information about workload resource group and performance management, including sample
reports as they are returned through the HMC, see the zEnterprise System Ensemble Performance
Management Guide, GC27-2607.

Workload resource group operations summary
The following tables list the workload resource group operations that are provided through the Web
Services API.

Table 70. Workload resource group management: operations summary

Operation name HTTP method and URI path

“List Workload Resource Groups of an
Ensemble” on page 373

GET /api/ensembles/{ensemble-id}/workload-resource-groups

“Get Workload Resource Group
Properties” on page 375

GET /api/workload-resource-groups/{workload-id}

“Create Workload Resource Group” on
page 377

POST /api/ensembles/{ensemble-id}/workload-resource-groups

“Delete Workload Resource Group” on
page 380

DELETE /api/workload-resource-groups/{workload-id}

“Update Workload Resource Group”
on page 381

POST /api/workload-resource-groups/{workload-id}

“List Virtual Servers of a Workload
Resource Group” on page 383

GET /api/workload-resource-groups/{workload-id}/virtual-servers

“Add Virtual Server to a Workload
Resource Group” on page 386

POST /api/workload-resource-groups/{workload-id}/operations/add-
virtual-server

“Remove Virtual Server from a
Workload Resource Group” on page
387

POST /api/workload-resource-groups/{workload-id}/operations/remove-
virtual-server

“List Groups of Virtual Servers of a
Workload Resource Group” on page
389

GET /api/workload-resource-groups/{workload-id}/virtual-server
groups

“Add Group of Virtual Servers to a
Workload Resource Group” on page
391

POST /api/workload-resource-groups/{workload-id}/operations/add-
virtual-server-group

“Remove Group of Virtual Servers
from a Workload Resource Group” on
page 393

POST /api/workload-resource-groups/{workload-id}/operations/remove-
virtual-server-group

“List Performance Policies” on page
400

GET /api/workload-resource-groups/{workload-id}/performance-policies

368 HMC Web Services API

Table 70. Workload resource group management: operations summary (continued)

Operation name HTTP method and URI path

“Get Performance Policy Properties”
on page 402

GET /api/workload-resource-groups/{workload-id}/performance-
policies/{policy-id}

“Create Performance Policy” on page
405

POST /api/workload-resource-groups/{workload-id}/performance-
policies

“Delete Performance Policy” on page
407

DELETE /api/workload-resource-groups/{workload-id}/performance-
policies/{policy-id}

“Update Performance Policy” on page
409

POST /api/workload-resource-groups/{workload-id}/performance-
policies/{policy-id}

“Activate Performance Policy” on page
412

POST /api/workload-resource-groups/{workload-id}/performance-
policies/{policy-id}/operations/activate

“Import Performance Policy” on page
413

POST /api/workload-resource-groups/{workload-id}/operations/import-
performance-policy

“Export Performance Policy” on page
415

POST /api/workload-resource-groups/{workload-id}/performance-
policies/{policy-id}/operations/export

“Generate Workload Resource Groups
Report” on page 419

POST /api/ensembles/{ensemble-id}/performance-management/operations/
generate-workload-resource-groups-report

“Generate Workload Resource Group
Performance Index Report” on page
423

POST /api/ensembles/{ensemble-id}/performance-management/operations/
generate-workload-resource-group-performance-index-report

“Generate Workload Resource Group
Resource Adjustments Report” on page
426

POST /api/ensembles/{ensemble-id}/performance-management/operations/
generate-workload-resource-group-resource-adjustments-report

“Generate Virtual Servers Report” on
page 430

POST /api/ensembles/{ensemble-id}/performance-management/operations/
generate-virtual-servers-report

“Generate Virtual Server CPU
Utilization Report” on page 434

POST /api/ensembles/{ensemble-id}/performance-management/operations/
generate-virtual-server-cpu-utilization-report

“Generate Virtual Server Resource
Adjustments Report” on page 437

POST /api/ensembles/{ensemble-id}/performance-management/operations/
generate-virtual-server-resource-adjustments-report

“Generate Hypervisor Report” on page
442

POST /api/ensembles/{ensemble-id}/performance-management/operations/
generate-hypervisor-report

“Generate Hypervisor Resource
Adjustments Report” on page 449

POST /api/ensembles/{ensemble-id}/performance-management/operations/
generate-hypervisor-resource-adjustments-report

“Generate Service Classes Report” on
page 453

POST /api/ensembles/{ensemble-id}/performance-management/operations/
generate-service-classes-report

“Generate Service Class Resource
Adjustments Report” on page 456

POST /api/ensembles/{ensemble-id}/performance-management/operations/
generate-service-class-resource-adjustments-report

“Generate Service Class Hops Report”
on page 461

POST /api/ensembles/{ensemble-id}/performance-management/operations/
generate-service-class-hops-report

“Generate Service Class Virtual Server
Topology Report” on page 466

POST /api/ensembles/{ensemble-id}/performance-management/operations/
generate-service-class-virtual-server-topology-report

“Generate Load Balancing Report” on
page 474

POST /api/ensembles/{ensemble-id}/performance-management/operations/
generate-load-balancing-report

“Get Performance Management
Velocity Level Range Mappings” on
page 476

GET /api/ensembles/{ensemble-id}/performance-management/velocity-
level-range-mappings

Chapter 13. Workload resource group management 369

Table 71. Workload management: URI variables

Variable Description

{ensemble-id} Object ID (UUID) of an ensemble object

{workload-id} Object ID (UUID) of a workload object

{policy-id} ID (UUID) of a performance policy object within a workload resource
group

Workload resource group object
A workload object is a managed object representing a group of virtual servers in a zEnterprise ensemble.
Virtual servers can be managed in workload resource groups either by adding or removing them directly
to or from the workload resource group, or through user-defined managed object groups. By adding a
group to a workload resource group, all of the virtual servers in that group are implicitly added to the
workload resource group. By adding or removing a virtual server to or from a group, that virtual server
is implicitly added to or removed from the workload resource group. A virtual server can belong to more
than one custom workload resource group. Any virtual server that does not belong to a custom workload
resource group is placed in the default workload resource group.

A workload resource group contains a default performance policy as well as any custom performance
policies created for it. Exactly one performance policy is active for a specific workload resource group at
any given time, and is applied to the virtual servers in that workload resource group. The default
workload resource group also has a default performance policy that is always active.

Data model
This object includes the properties defined in the “Base managed object properties schema” on page 33,
with the type-specific specialization described in the following tables. Note that this object does not
maintain the concept of an operational status, and therefore does not provide the operational-status-
related properties.

For definitions of the qualifier abbreviations in the following tables, see “Property characteristics” on
page 32.

Table 72. Workload object: base managed object properties specializations

Name Qualifier Type Description of specialization

object-uri — String/URI The canonical URI path for a workload object is of the form
/api/workload-resource-groups/{workload-id} where
{workload-id} is the value of the object-id property of the
workload object.

object-id — String (36) The unique identifier for the workload resource group
instance. This identifier is in the form of a UUID.

parent — String/URI The parent of a workload resource group is conceptually its
owning ensemble, so the parent value is the canonical URI
path for the ensemble.

class — String The class of a workload object is "workload-resource-group".

name (w) (pc) String
(1-64)

The display name specified for the workload resource group,
which can be up to 64 characters made up of alphanumeric
characters, blanks, periods, underscores, or dashes. Names
must start with an alphabetic character and end with an
alphabetic character, numeric character, underscore, period, or
dash. Names must be unique to other existing workload
resource groups in the ensemble.

370 HMC Web Services API

Table 72. Workload object: base managed object properties specializations (continued)

Name Qualifier Type Description of specialization

description (w) (pc) String
(0-256)

Arbitrary text describing the workload resource group in up
to 256 characters.

status (sc) String
Enum

The current status of the workload resource group, which
must be one of the following values:

"compliant"
The contributors to workload compliance are all currently
compliant.

"not-compliant"
One or more of the contributors to the workload
compliance are currently not-compliant.

acceptable-status (w)(pc) Array of
String
Enum

The set of status values that the workload resource group can
be in and be considered to be in an acceptable (not alert
causing) state. By default, this is "compliant" for workloads,
and "not-compliant", "compliant" for the default workload.

In addition to the properties defined through included schemas, this object includes the additional
type-specific properties in Table 73.

Table 73. Workload object: type-specific properties

Name Qualifier Type Description of specialization

is-default — Boolean This value identifies the default workload object. It is true for
the default workload resource group and false for all other
(custom) workload resource group in the ensemble.

category (w) (pc) String
(0-32)

Up to 32 characters used to categorize the workload object,
often with other workload resource groups within the
ensemble.

virtual-servers (c) (pc) Array of
String/URI

The complete list of all virtual servers in the workload, each
identified by its URI, including those directly placed as well
as those placed due to membership in a group. (This list
corresponds to the list provided by the List Virtual Servers of
a Workload Resource Group operation.) If the workload
contains no virtual servers, then an empty array is provided.
This virtual severs provided in this list can change as a result
of the Add and Remove Virtual Server or the Add and
Remove Groups operations on the workload.
Note: This property is not returned by the Get Workload
Resource Group Properties operation.

directly-added-virtual-
servers

(c) (pc) Array of
String/URI

The list of virtual servers that have been directly placed in the
workload, each identified by its URI. If the workload contains
no directly placed virtual servers, then an empty array is
provided. This value can be modified through the Add and
Remove Virtual Server operations on the workload.
Note: This property is not returned by the Get Workload
Resource Group Properties operation.

virtual-server-groups (c) (pc) Array of
String/URI

The list of the user-defined managed object groups, each
identified by its URI, in the workload whose child virtual
servers automatically become members of the workload. If the
workload has no groups, an empty array is provided. This
value can be modified through the Add and Remove Group
operations on the workload.
Note: This property is not returned by the Get Workload
Resource Group Properties operation.

Chapter 13. Workload resource group management 371

Table 73. Workload object: type-specific properties (continued)

Name Qualifier Type Description of specialization

active-perf-policy (pc) Object A perf-policy-summary object, as described in Table 74 on
page 373, of the active performance policy in the workload
resource group. This value can be modified through the
operation “Activate Performance Policy” on page 412.

perf-activation-node-
count

(pc) Integer
(0-n)

The number of nodes (ensemble members) that have
successfully activated the active performance policy for the
workload resource group. This value is between 0 and the
total number of ensemble members.

perf-activation-status (pc) String
Enum

The status of the last performance policy activation. The
possible values are:

"initializing"
The workload resource group performance function is
being initialized and status is not yet known.

"in-progress"
Performance policy activation is in progress and any new
activation request is rejected.

"active"
Performance policy activation is complete.

default-perf-policy — Object A perf-policy-summary object, as described in Table 74 on
page 373, of the default performance policy in the workload
resource group.

custom-perf-policies (c) (pc) Array of
objects

A list of perf-policy-summary objects, as described in Table 74
on page 373, of the user-defined performance policies in the
workload resource group. If no custom policies exist, an
empty array is provided. This value can be modified through
the operations “Create Performance Policy” on page 405 and
“Delete Performance Policy” on page 407.

perf-status (pc) String
Enum

The performance status of the workload, determined by the
importance and PI value of the active performance policy's
service classes. Possible values are:

"goals-met"
The PI values of all service classes in the active policy are
less than or equal to one.

"exposed"
The PI value of a service class in the active policy is
greater than one and its importance is "low" or "lowest".

"severe"
The PI value of a service class in the active policy is
greater than one and its importance is "medium".

"critical"
The PI value of a service class in the active policy is
greater than one and its importance is "high" or
"highest".

"no-status"
Performance status of the workload cannot be calculated.

372 HMC Web Services API

Table 73. Workload object: type-specific properties (continued)

Name Qualifier Type Description of specialization

compliant-perf-status (w)(pc) Array of
String
Enum

An array of values that define what perf-status values cause
the workload's status to be compliant. Possible values are:

"goals-met"
The workload's performance status is "goals-met".

"exposed"
The workload's performance status is "exposed".

"severe"
The workload's performance status is "severe".

"critical"
The workload's performance status is "critical".

"no-status"
The workload's performance status is "no-status".

By default, a workload's compliant performance statuses
include "goals-met".

Table 74. perf-policy-summary-object

Field name Type Description

element-uri String/URI Canonical URI path of the performance policy object.

element-id String The element-id of the performance policy object.

name String Display name of the performance policy object.

activation-status String Enum The activation status of the performance policy object. The value
is one of the following:

"not-active"
The performance policy is not currently the active policy in
the workload resource group.

"in-progress"
The performance policy is currently being activated in the
workload resource group.

"active"
The performance policy is currently the active policy in the
workload resource group and its activation has completed.

List Workload Resource Groups of an Ensemble
Use the List Workload Resource Groups of an Ensemble operation to list the workload resource groups
within the target ensemble.

HTTP method and URI
GET /api/ensembles/{ensemble-id}/workload-resource-groups

In this request, the URI variable {ensemble-id} is the object ID of the ensemble object for which you are
requesting a list of workload resource groups.

Query parameters

Chapter 13. Workload resource group management 373

Name Type Rqd/Opt Description

name String Optional A filter pattern (regular expression) that limits returned objects to
those that have a matching name property. If matches are found, the
response is an array with all workload resource groups that match. If
a match is not found, the response is an empty array.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

workloads Array of
objects

Array of nested workload-info objects as described in the next table.

workloads-info object

Field name Type Description

object-uri String/URI The canonical URI path of the workload object, in the form
/api/workload-resource-groups/{workload-id}.

object-id String The object-id of the workload object. This string is the {workload-id} portion
of the URI path provided by the object-uri field.

name String The display name of the workload object.

status String Enum The status property of the Workload Resource Group object.

Description

The List Workload Resource Groups of an Ensemble operation lists the workload resource groups that
belong to the ensemble targeted by the request URI. The object URI, status, object ID, and display name
are provided for each.

If the name query parameter is specified, the returned list is limited to the workload resource group in
the ensemble that has a name property matching the specified filter pattern. If the name parameter is
omitted, this filtering is not done.

A workload resource group is included in the list only if the API user has object-access permission for
that object. An error response is returned if the primary HMC does not manage the target ensemble or if
you do not have the requirements listed in “Authorization requirements.”

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the ensemble object passed in the request URI.
v Object-access permission to all workload objects to be included in the result.

HTTP status and reason codes

On successful completion, HTTP status code 200 (OK) is returned and the response body is provided as
described in “Response body contents.”

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

374 HMC Web Services API

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object-id in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object access permission to it.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Get Workload Resource Group Properties
Use the Get Workload Resource Group Properties operation to retrieve the properties of a single
workload object that is designated by its object-id. This operation returns the properties of a single
workload resource group in the ensemble.

HTTP method and URI
GET /api/workload-resource-groups/{workload-id}

In this request, the URI variable {workload-id} is the object ID of the workload object for which you are
requesting properties.

GET /api/ensembles/b58f0846-8ef7-11df-bb72-00215ef9b504/workload-resource-groups HTTP/1.1
x-api-session: 466ske8jt8waeavxcs5rc26gsfjqjfs6aji8qbj7jgne6yrdbq

Figure 185. List Workload Resource Groups of an Ensemble: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Mon, 28 Nov 2011 03:52:05 GMT
content-type: application/json;charset=UTF-8
content-length: 452
{

"workloads": [
{

"name": "Default",
"object-id": "b65a3066-8ef7-11df-95c2-00215ef9b504",
"object-uri": "/api/workload-resource-groups/b65a3066-8ef7-11df-95c2-00215ef9b504"

},
{

"name": "SS-Web-Store-Workload",
"object-id": "546a3398-1974-11e1-999c-00215e6a0c26",
"object-uri": "/api/workload-resource-groups/546a3398-1974-11e1-999c-00215e6a0c26"

}
]

}

Figure 186. List Workload Resource Groups of an Ensemble: Response

Chapter 13. Workload resource group management 375

Response body contents

On successful completion, the response body is a JSON object provides the current values of the
properties for the workload object as defined in “Data model” on page 370. Field names and data types
in the JSON object are the same as the property names and data types defined in the data model.

Note that the virtual-servers and virtual-server-groups properties are omitted from this response schema.
They are available through their own operations: “List Virtual Servers of a Workload Resource Group” on
page 383 and “List Groups of Virtual Servers of a Workload Resource Group” on page 389.

Description

The Get Workload Resource Group Properties operation returns the current properties for the workload
object specified by {workload-id}, as defined in “Response body contents.”

An error response is returned if the targeted workload resource group does not exist or if you do not
have the requirements listed in “Authorization requirements.”

Authorization requirements

This operation has the following authorization requirement:
v Object-access permission to the workload object passed in the request URI.

HTTP status and reason codes

On successful completion, HTTP status code 200 (OK) is returned and the response body is provided as
described in “Response body contents.”

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID in the URI ({workload-id}) does not designate an existing
workload object, or the API user does not have object access permission to
the object.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/workload-resource-groups/13de1bfe-197f-11e1-8914-00215e6a0c26 HTTP/1.1
x-api-session: 67prscbokwxz6o1bn1q3feysece2q4275agf27uupjnvr98lse

Figure 187. Get Workload Resource Group Properties: Request

376 HMC Web Services API

Create Workload Resource Group
Use the Create Workload Resource Group operation to create a new custom workload resource group in
an ensemble. The new workload resource group must be uniquely named within the ensemble.

HTTP method and URI
POST /api/ensembles/{ensemble-id}/workload-resource-groups

In this request, the URI variable {ensemble-id} is the object ID of the ensemble object for which you want
to create a new workload resource group.

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Mon, 28 Nov 2011 05:09:12 GMT
content-type: application/json;charset=UTF-8
content-length: 1244
{

"active-perf-policy": {
"activation-status": "active",
"element-id": "160c563e-197f-11e1-8914-00215e6a0c26",
"element-uri": "/api/workload-resource-groups/13de1bfe-197f-11e1-8914-00215e6a0c26/
performance-policies/160c563e-197f-11e1-8914-00215e6a0c26",
"name": "Prime Shift"

},
"category": "Production",
"class": "workload-resource-group",
"custom-perf-policies": [

{
"activation-status": "active",
"element-id": "160c563e-197f-11e1-8914-00215e6a0c26",
"element-uri": "/api/workload-resource-groups/13de1bfe-197f-11e1-8914-00215e6a0c26/

performance-policies/160c563e-197f-11e1-8914-00215e6a0c26",
"name": "Prime Shift"

}
],
"default-perf-policy": {

"activation-status": "not-active",
"element-id": "13ec9170-197f-11e1-8914-00215e6a0c26",
"element-uri": "/api/workload-resource-groups/13de1bfe-197f-11e1-8914-00215e6a0c26/
performance-policies/13ec9170-197f-11e1-8914-00215e6a0c26",
"name": "Default"

},
"description": "Spacely Sprockets Web Store Workload",
"is-default": false,
"is-locked": false,
"name": "SS-Web-Store-Workload",
"object-id": "13de1bfe-197f-11e1-8914-00215e6a0c26",
"object-uri": "/api/workload-resource-groups/13de1bfe-197f-11e1-8914-00215e6a0c26",
"parent": "/api/ensembles/b58f0846-8ef7-11df-bb72-00215ef9b504",
"perf-activation-node-count": 2,
"perf-activation-status": "active"

Figure 188. Get Workload Resource Group Properties: Response

Chapter 13. Workload resource group management 377

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

name String
(1-64)

Required The name to give the new workload resource group, as described in
“Data model” on page 370. The passed name must be unique among
all other workload resource groups currently in the ensemble.

description String
(0-256)

Optional The description to give the new workload resource group, as
described in “Data model” on page 370.

category String
(0-32)

Optional The category to give the new workload resource group, as described
in “Data model” on page 370.

Response body contents

On successful completion, the response body is a JSON object with the following field:

Field name Type Description

object-uri String/URI Canonical URI path of the workload object, in the form /api/workload-resource-
groups/{workload-id}.

Description

The Create Workload Resource Group operation creates a new custom workload resource group in the
ensemble identified by {ensemble-id}. On successful execution, the workload resource group is created and
added to the ensemble and status code 201 is returned with a response body containing a reference to the
new workload resource group.

The Create Workload Resource Group operation returns an empty workload resource group that has a
default performance policy but does not contain any virtual servers or user-defined groups. To create a
fully functional workload resource group, you also need to use these additional operations, in sequence,
to minimize the number of policy activations on the virtual servers:
1. “Create Performance Policy” on page 405– Use this operation to create all custom performance

policies desired for the new workload resource group. You can omit this step if you do not want to
use any custom performance policies.

2. “Activate Performance Policy” on page 412– Use this operation to set the active policy for the new
workload resource group. You can omit this step if you want the default performance policy to be the
active policy.

3. “Add Virtual Server to a Workload Resource Group” on page 386 or “Add Group of Virtual Servers to
a Workload Resource Group” on page 391– Use one or both of these operations to add all of the
virtual servers and groups that you want to be members of the new workload resource group. As the
virtual servers or groups are added, the active performance policy of the workload resource group is
applied to them.

An error response is returned:
v If the targeted ensemble does not exist or if you do not have the requirements listed in “Authorization

requirements” on page 379.
v If the request body is not valid. The request body is validated against the schema described in

“Request body contents.”

378 HMC Web Services API

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the ensemble object passed in the request URI.
v Action/task permission to the New Workload Resource Group task.

In addition, the target ensemble must be at the Automate entitlement level.

HTTP status and reason codes

On successful completion, HTTP status code 201 (Created) is returned and the response body is provided
as described in “Response body contents” on page 378.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See“Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

65 The name of the new workload resource group is not unique.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

3 The ensemble is not operating at the management entitlement level required
to perform this operation (Automate).

404 (Not Found) 1 The object ID in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object access permission to
the object.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

POST /api/ensembles/b58f0846-8ef7-11df-bb72-00215ef9b504/workload-resource-groups HTTP/1.1
x-api-session: 466ske8jt8waeavxcs5rc26gsfjqjfs6aji8qbj7jgne6yrdbq
content-type: application/json
content-length: 73
{

"description": "New Workload Resource Group",
"name": "SS-New-Workload"

}

Figure 189. Create Workload Resource Group: Request

Chapter 13. Workload resource group management 379

Delete Workload Resource Group
Use the Delete Workload Resource Group operation to remove a workload resource group from an
ensemble, and deactivate its active policy against its virtual servers. Any virtual server that is not
contained by another custom workload resource group is moved into the default workload resource
group.

HTTP method and URI
DELETE /api/workload-resource-groups/{workload-id}

In this request, the URI variable {workload-id} is the object ID of the workload object that you want to
remove.

Description

The Delete Workload Resource Group operation deletes the workload object specified by {workload-id}
from its ensemble.

On successful completion, all virtual servers in the workload resource group are removed from it, the
workload resource group is removed from the ensemble, and status code 204 (No Content) is returned
without supplying a response body. See the zEnterprise System Ensemble Performance Management Guide,
GC27-2607, for details about managing virtual servers in workload resource groups.

An error response is returned if the targeted workload object does not exist or if you do not have the
requirements listed in “Authorization requirements.” Targeting the default workload resource group also
returns an error response because the default workload resource group cannot be deleted.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the ensemble object that owns the workload.
v Object-access permission to the workload object passed in the request URI.
v Action/task permission to the Delete Workload Resource Group task.

HTTP status and reason codes

On successful completion, HTTP status code 204 (No Content) is returned. Otherwise, the following
HTTP status codes are returned for the indicated errors.

201 Created
server: zSeries management console API web server / 1.0
location: /api/workload-resource-groups/546a3398-1974-11e1-999c-00215e6a0c26
cache-control: no-cache
date: Mon, 28 Nov 2011 03:52:01 GMT
content-type: application/json;charset=UTF-8
content-length: 83
{

"object-uri": "/api/workload-resource-groups/546a3398-1974-11e1-999c-00215e6a0c26"
}

Figure 190. Create Workload Resource Group: Response

380 HMC Web Services API

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

60 The targeted workload resource group is the default workload object.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({workload-id}) does not designate an existing
workload object, or the API user does not have object access permission to
the object.

409 (Conflict) 2 The operation cannot be performed because the object designated by the
request URI is currently busy performing some other operation.

61 The operation cannot be performed because one or more virtual servers in
the workload resource group designated by the request URI are currently
busy performing some other operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Update Workload Resource Group
Use the Update Workload Resource Group operation to modify simple writeable properties of a
workload object.

HTTP method and URI
POST /api/workload-resource-groups/{workload-id}

In this request, the URI variable {workload-id} is the object ID of the workload object that you are
modifying.

Request body contents

The request body is a JSON object with one or more of the following fields. You are required to supply
only those fields that you want to change.

DELETE /api/workload-resource-groups/546a3398-1974-11e1-999c-00215e6a0c26 HTTP/1.1
x-api-session: 466ske8jt8waeavxcs5rc26gsfjqjfs6aji8qbj7jgne6yrdbq

Figure 191. Delete Workload Resource Group: Request

204 No Content
date: Mon, 28 Nov 2011 03:52:06 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 192. Delete Workload Resource Group: Response

Chapter 13. Workload resource group management 381

Field name Type Rqd/Opt Description

name String
(1-64)

Optional The new name to give the workload resource group, as described in
“Data model” on page 370. The passed name must be unique among
all other workload resource groups currently in the ensemble.

description String
(0-256)

Optional The new description to give the workload resource group, as
described in “Data model” on page 370.

category String
(0-32)

Optional The new category to give the workload resource group, as described
in “Data model” on page 370.

acceptable-status Array of
String
Enum

Optional An array of values that define what causes the workload's status to
be compliant as described in “Data model” on page 370.

compliant-perf-
status

Array of
String
Enum

Optional An array of values that define what perf-status values cause the
workload's status to be compliant as described in “Data model” on
page 370.

Description

The Update Workload Resource Group operation updates one or more simple writeable properties of the
workload object identified by {workload-id}. These properties are those that are not modified through other
specific operations, as noted in “Request body contents” on page 381.

The request body is validated against the schema described in “Request body contents” on page 381. On
successful execution, the workload object is updated with the supplied property values and status code
204 (No Content) is returned without supplying a response body. Notifications for these property changes
are sent asynchronously to this operation.

An error response is returned if the targeted workload resource group does not exist or if you do not
have the requirements listed in “Authorization requirements.” Targeting the default workload resource
group also invokes an error response because its name, description, and category cannot be modified.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the workload object passed in the request URI.
v Action/task permission to the Workload Resource Group Details task.

HTTP status and reason codes

On successful completion, HTTP status code 204 (No Content) is returned. Otherwise, the following
HTTP status codes are returned for the indicated errors.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

60 The targeted workload resource group is the default workload object.

65 The new name given to the workload resource group is not unique.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object id in the URI ({workload-id}) does not designate an existing
workload object, or the API user does not have object access permission to
the object.

382 HMC Web Services API

HTTP error status
code

Reason
code Description

409 (Conflict) 2 The operation cannot be performed because the object designated by the
request URI is currently busy performing some other operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

List Virtual Servers of a Workload Resource Group
The List Virtual Servers of a Workload Resource Group operation lists the virtual servers in the passed
workload. This is the way to get the information corresponding to the virtual-servers and
directly-added-virtual-servers properties of a workload, as it is omitted from the standard GET
operation.

HTTP method and URI
GET /api/workload-resource-groups/{workload-id}/virtual-servers

In this request, the URI variable {workload-id} is the object ID of the workload object for which you are
requesting a list of virtual servers.

Query parameters:

Field name Type Rqd/Opt Description

name String Optional Filter pattern (regular expression) to limit returned objects to those
that have a matching name property. If matches are found, the
response will be an array with information for all virtual servers
that match. If no match is found, the response will be an empty
array.

POST /api/workload-resource-groups/546a3398-1974-11e1-999c-00215e6a0c26 HTTP/1.1
x-api-session: 466ske8jt8waeavxcs5rc26gsfjqjfs6aji8qbj7jgne6yrdbq
content-type: application/json
content-length: 114
{

"category": "Production",
"description": "Spacely Sprockets Web Store Workload",
"name": "SS-Web-Store-Workload"

}

Figure 193. Update Workload Resource Group: Request

204 No Content
date: Mon, 28 Nov 2011 03:52:01 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 194. Update Workload Resource Group: Response

Chapter 13. Workload resource group management 383

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

virtual-servers Array of
objects

Array of nested virtualserver-info objects as described in the next table.

Each nested virtualserver-info object contains the following fields:

Field name Type Description

object-uri String/URI Canonical URI path of the virtual server object.

name String The current value of the name property of the virtual server object.

status String Enum The current value of the status property of the virtual server object.

type String Enum The value of the type property of the virtual server object.

inclusion-type Array of
String Enum

The reason(s) this virtual server is included in the workload resource group.
The possible values are as follows:

v "direct": The virtual server was added directly to the workload resource
group.

v "custom-group": The virtual server was added to the workload resource
group due to its membership in one or more user-defined groups which
belong to the workload resource group.

Description

The List Virtual Servers of a Workload Resource Group operation lists the virtual servers that belong to
the workload resource group targeted by the request URI. The object URI, display name, status, type, and
inclusion-type information are provided for each. The inclusion-type information details how the virtual
server was added to the workload resource group, as described in “Response body contents.”

An error response is returned if the ensemble does not contain the targeted workload or if you do not
have the requirements listed in “Authorization requirements.”

Authorization requirements

This operation has the following authorization requirement:
v Object-access permission to the workload object passed in the request URI.

HTTP status and reason codes

On successful completion, HTTP status code 200 (OK) is returned and the response body is provided as
described in “Response body contents.”

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

384 HMC Web Services API

HTTP error status
code

Reason
code Description

404 (Not Found) 1 The object-id in the URI ({workload-id}) does not designate an existing
workload object, or the API user does not have object access permission to it.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/workload-resource-groups/29354e42-20db-11e1-9e8d-00215e6a0c26/virtual-servers HTTP/1.1
x-api-session: 4sz56y4z445abfdwva0qsee8wceszpk34chfjfpcgkfg0i5szv

Figure 195. List Virtual Servers of a Workload Resource Group: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Wed, 07 Dec 2011 13:55:59 GMT
content-type: application/json;charset=UTF-8
content-length: 537
{

"virtual-servers": [
{

"inclusion-type": [
"custom-group"

],
"name": "SS-Web-Svr-3",
"object-uri": "/api/virtual-servers/1cc18bee-20db-11e1-b49e-00262df332b3",
"status": "not-operating",
"type": "x-hyp"

},
{

"inclusion-type": [
"direct"

],
"name": "SS-Web-Svr-2",
"object-uri": "/api/virtual-servers/1a4f490a-20db-11e1-b953-00262df332b3",
"status": "not-operating",
"type": "x-hyp"

},
{

"inclusion-type": [
"direct",
"custom-group"

],
"name": "SS-Web-Svr-1",
"object-uri": "/api/virtual-servers/180b51de-20db-11e1-b357-00262df332b3",
"status": "not-operating",
"type": "x-hyp"

}
]

}

Figure 196. List Virtual Servers of a Workload Resource Group: Response

Chapter 13. Workload resource group management 385

Add Virtual Server to a Workload Resource Group
Use the Add Virtual Server to a Workload Resource Group operation to add a virtual server to the
target workload resource group.

HTTP method and URI
POST /api/workload-resource-groups/{workload-id}/operations/add-virtual-server

In this request, the URI variable {workload-id} is the object ID of the workload object to which you want to
add a virtual server.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Description

virtual-server String/URI The canonical URI identifying the virtual server object to be added to the
target workload resource group.

Description

The Add Virtual Server to a Workload Resource Group operation adds a virtual server directly to the
workload resource group targeted by the request URI. See the zEnterprise System Ensemble Performance
Management Guide, GC27-2607, for details about managing virtual servers in workload resource groups.

A virtual server can become a member of a workload resource group through two ways: by adding the
virtual server individually or by adding a custom group that contains the virtual server. The way in
which the virtual server was added has an effect on the outcome of this operation:
v If the virtual server is not already a member of the workload resource group, the virtual server is

added and a property notification is sent asynchronously to this request. If the virtual server was
previously in the default workload resource group, the virtual server is removed automatically from
the default workload resource group.

v If the virtual server is already directly defined to the workload resource group (that is, the virtual
server was added individually at an earlier time), the request is ignored with a successful return code.

v If the virtual server is already a member of the workload resource group through its membership in a
group that already belongs to the workload resource group, the virtual-servers property does not
change. However, it is now directly defined to the workload resource group such that if the virtual
server is removed from the group later, it would remain in the workload resource group.

An error response is returned if the targeted workload resource group or virtual server does not exist or
if you do not have the requirements listed in “Authorization requirements.” Targeting the default
workload resource group also invokes an error response because you cannot directly modify the default
workload resource group.

The request body is validated against the schema described in “Request body contents.” If the request
body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the validation
error encountered.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the workload object passed in the request URI.
v Object access permission to the virtual server object passed in the request body.
v Action/task permission to the Workload Resource Group Details task.

386 HMC Web Services API

HTTP status and reason codes

On successful completion, HTTP status code 204 (No Content) is returned.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

60 The targeted workload resource group is the default workload object.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object-id in the URI ({workload-id}) does not designate an existing
workload object, or the API user does not have object access permission to it.

2 The object-id in the URI of the virtual server object in the request body does
not designate an existing object, or the API user does not have access
permission to it.

409 (Conflict) 2 The operation cannot be performed because the object designated by the
request URI is currently busy performing some other operation.

61 The operation cannot be performed because the virtual server to be added is
currently busy performing some other operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Remove Virtual Server from a Workload Resource Group
Use the Remove Virtual Server from a Workload Resource Group operation to remove a virtual server
from the target workload resource group.

POST /api/workload-resource-groups/546a3398-1974-11e1-999c-00215e6a0c26/operations/add-virtual-server HTTP/1.1
x-api-session: 466ske8jt8waeavxcs5rc26gsfjqjfs6aji8qbj7jgne6yrdbq
content-type: application/json
content-length: 79
{

"virtual-server": "/api/virtual-servers/ecd06dfc-1972-11e1-8879-00262df332b3"
}

Figure 197. Add Virtual Server to a Workload Resource Group: Request

204 No Content
date: Mon, 28 Nov 2011 03:52:04 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 198. Add Virtual Server to a Workload Resource Group: Response

Chapter 13. Workload resource group management 387

HTTP method and URI
POST /api/workload-resource-groups/{workload-id}/operations/remove-virtual-server

In this request, the URI variable {workload-id} is the object ID of the workload object from which you want
to remove the virtual server.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Description

virtual-server String/URI The canonical URI identifying the virtual server object to be removed from
the targeted workload resource group.

Description

The Remove Virtual Server from a Workload Resource Group operation removes a virtual server from
being directly defined to the workload resource group targeted by the request URI. See the zEnterprise
System Ensemble Performance Management Guide, GC27-2607, for details about managing virtual servers in
workload resource groups.

A virtual server can become a member of a workload resource group through two ways: by adding the
virtual server individually or by adding a custom group that contains the virtual server. In some cases, a
virtual server can be defined twice to the same workload resource group. The way in which the virtual
server was added to the workload resource group has an effect on the outcome of this operation:
v If the virtual server was added individually to the workload resource group and is not also a member

of a custom group that is already defined to this workload resource group, the virtual server is
removed. A property change notification is sent asynchronously to this request.

v If the virtual server was added individually and as a member of a custom group in the workload
resource group, the virtual server remains in the workload resource group only as a member of the
custom group. In this case, a property change notification is not sent.

v If the virtual server is not already a member of the workload resource group (either individually or
through a custom group), the request is ignored with a successful return code.

An error response is returned if the targeted workload resource group or virtual server does not exist or
if you do not have the requirements listed in “Authorization requirements.” Targeting the default
workload resource group also invokes an error response because you cannot directly modify the default
workload resource group.

The request body is validated against the schema described in “Request body contents.” If the request
body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the validation
error encountered.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the workload object passed in the request URI.
v Object access permission to the virtual server object passed in the request body.
v Action/task permission to the Workload Resource Group Details task.

388 HMC Web Services API

HTTP status and reason codes

On successful completion, HTTP status code 204 (No Content) is returned.

Otherwise, the following HTTP status codes are returned for the indicated errors.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

60 The targeted workload resource group is the default workload object.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object-id in the URI ({workload-id}) does not designate an existing
workload object, or the API user does not have object access permission to it.

2 The object-id in the URI of the virtual server object in the request body does
not designate an existing object, or the API user does not have access
permission to it.

409 (Conflict) 2 The operation cannot be performed because the object designated by the
request URI is currently busy performing some other operation.

61 The operation cannot be performed because the virtual server to be removed
is currently busy performing some other operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

List Groups of Virtual Servers of a Workload Resource Group
The List Groups of Virtual Servers of a Workload Resource Group operation lists the user-defined
managed object groups in the passed workload. This is a way to just get the information maintained in
the virtual-server-groups property of a workload.

POST /api/workload-resource-groups/546a3398-1974-11e1-999c-00215e6a0c26/operations/
remove-virtual-server HTTP/1.1

x-api-session: 466ske8jt8waeavxcs5rc26gsfjqjfs6aji8qbj7jgne6yrdbq
content-type: application/json
content-length: 79
{

"virtual-server": "/api/virtual-servers/f1f581f4-196e-11e1-a344-00262df332b3"
}

Figure 199. Remove Virtual Server from a Workload Resource Group: Request

204 No Content
date: Mon, 28 Nov 2011 03:52:06 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 200. Remove Virtual Server from a Workload Resource Group: Response

Chapter 13. Workload resource group management 389

HTTP method and URI
GET /api/workload-resource-groups/{workload-id}/virtual-server-groups

In this request, the URI variable {workload-id} is the object ID of the workload object for which you are
requesting a list of groups.

Query parameters:

Field name Type Rqd/Opt Description

name String Optional Filter pattern to limit returned objects to those that have a matching
name property. If matches are found, the response will be an array
with information for all groups that match. If no match is found, the
response will be an empty array.

Response body contents

On successful completion, the response body is a JSON object containing the following fields:

Field name Type Description

virtual-server-groups Array of
String/URI

An array of user-defined managed object groups in the workload resource
group, each identified by its URI.

Description

The List Groups of Virtual Servers of a Workload Resource Group operation lists the user-defined
managed object groups that belong to the workload resource group targeted by the request URI. The
group object URI is provided for each.

A group is included in the list only if you meet the requirements listed in “Authorization requirements”;
otherwise, an error is returned. An error also is returned if the ensemble does not contain the targeted
workload resource group.

Authorization requirements

This operation has the following authorization requirement:
v Object-access permission to the workload object passed in the request URI.

HTTP status and reason codes

On successful completion, HTTP status code 200 (OK) is returned and the response body is provided as
described in “Response body contents.”

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object-id in the URI ({workload-id}) does not designate an existing
workload object, or the API user does not have object-access permission to it.

390 HMC Web Services API

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Add Group of Virtual Servers to a Workload Resource Group
Use the Add Group of Virtual Servers to a Workload Resource Group operation to add a user-defined
managed object group to the target workload resource group. Any virtual servers that the group contains
are added as virtual servers of the workload resource group.

HTTP method and URI
POST /api/workload-resource-groups/{workload-id}/operations/add-virtual-server-group

In this request, the URI variable {workload-id} is the object ID of the workload object for which you are
requesting a list of groups.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Description

virtual-server-group String/URI The canonical URI identifying the user-defined group object to be added to
the targeted workload resource group.

Description

The Add Group of Virtual Servers to a Workload Resource Group operation adds a user-defined group
to the workload resource group targeted by the request URI. Through this operation, the virtual servers
that belong to the group are added automatically to the workload. See the zEnterprise System Ensemble
Performance Management Guide, GC27-2607, for details about managing virtual servers in workloads.

If the group is already defined to the workload, the request is ignored with a successful return code. If
the group is not already defined to the workload resource group, the group is added and a property
change notification for the virtual-server-groups property is sent asynchronously. All virtual servers in

GET /api/workload-resource-groups/546a3398-1974-11e1-999c-00215e6a0c26/virtual-server-groups HTTP/1.1
x-api-session: 466ske8jt8waeavxcs5rc26gsfjqjfs6aji8qbj7jgne6yrdbq

Figure 201. List Groups of Virtual Servers of a Workload Resource Group: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Mon, 28 Nov 2011 03:52:05 GMT
content-type: application/json;charset=UTF-8
content-length: 78
{

"virtual-server-groups": [
"/api/groups/ee2782af-dd98-3ec0-bc2d-cfe2e9154341"

]
}

Figure 202. List Groups of Virtual Servers of a Workload Resource Group: Response

Chapter 13. Workload resource group management 391

the group are added to the workload resource group, and another property change notification is sent
asynchronously for the virtual-servers property including the virtual servers that are entirely new to the
workload. If any of these virtual servers previously belonged to the default workload resource group,
they are removed automatically from the default workload resource group.

An error response is returned if the targeted workload resource group or custom group does not exist or
if you do not have the requirements listed in “Authorization requirements.” Targeting the default
workload resource group also results in an error because the default workload is not directly mutable.
Pattern match groups are not supported so specifying them in an Add Group of Virtual Servers to a
Workload operation results in an error.

The request body is validated against the schema described in “Request body contents” on page 391. If
the request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the workload object passed in the request URI.
v Object-access permission to the group object passed in the request body.
v Object-access permission to all virtual servers contained by the group.
v Action/task permission to the Workload Resource Group Details task.

HTTP status and reason codes

On successful completion, HTTP status code 204 (No Content) is returned.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

60 The targeted workload resource group is the default workload object.

61 The object-id of the group to be added in the request body is that of a
pattern match group.

62 The group to be added contains virtual servers to which the API user does
not have access.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object-id in the URI ({workload-id}) does not designate an existing
workload object, or the API user does not have object access permission to it.

2 The object-id in the URI of the group object in the request body does not
designate an existing object, or the API user does not have access permission
to it.

409 (Conflict) 2 The operation cannot be performed because the object designated by the
request URI is currently busy performing some other operation.

62 The operation cannot be performed because the group to be added contains
one or more virtual servers that are currently busy performing some other
operation.

392 HMC Web Services API

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Remove Group of Virtual Servers from a Workload Resource Group
Use the Remove Group of Virtual Servers from a Workload Resource Group operation to remove a
user-defined managed object group from the target workload resource group. All virtual servers in the
group are removed from the workload resource group, unless the virtual server belongs to another group
that is associated with the same workload resource group, or is directly added.

HTTP method and URI
POST /api/workload-resource-groups/{workload-id}/operations/remove-virtual-server-group

In this request, the URI variable {workload-id} is the object ID of the workload object from which you are
removing the group.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Description

virtual-server-group String/URI The canonical URI identifying the user-defined group object to be removed
from the targeted workload resource group.

Description

The Remove Group of Virtual Servers from a Workload Resource Group operation removes a
user-defined group from the workload resource group targeted by the request URI. Through this
operation, any virtual servers in the group are removed as well, unless they also belong to another group
that is associated with this workload resource group. See the zEnterprise System Ensemble Performance
Management Guide, GC27-2607, for details about managing virtual servers in workload resource groups.

POST /api/workload-resource-groups/546a3398-1974-11e1-999c-00215e6a0c26/operations/
add-virtual-server-group HTTP/1.1

x-api-session: 466ske8jt8waeavxcs5rc26gsfjqjfs6aji8qbj7jgne6yrdbq
content-type: application/json
content-length: 76
{

"virtual-server-group": "/api/groups/ee2782af-dd98-3ec0-bc2d-cfe2e9154341"
}

Figure 203. Add Group of Virtual Servers to a Workload Resource Group: Request

204 No Content
date: Mon, 28 Nov 2011 03:52:05 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 204. Add Group of Virtual Servers to a Workload Resource Group: Response

Chapter 13. Workload resource group management 393

If the group is not defined to the workload resource group, then the request is ignored with a successful
return code. If the group is in the workload resource group, then it is removed and a property change
notification for the virtual-server-groups property is sent asynchronously. Virtual servers in the group
that are not also members of another group in the workload resource group, or directly added, are
removed from the workload resource group, and another property change notification is sent
asynchronously for the virtual-servers property. If any of those virtual servers do not belong to another
custom workload resource group, they are placed in the default workload resource group.

An error response is returned if the targeted workload resource group or group does not exist or if you
do not have the requirements listed in “Authorization requirements.” Targeting the default workload
resource group also invokes an error response because you cannot directly modify the default workload
resource group.

The request body is validated against the schema described in “Request body contents” on page 393. If
the request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the workload object passed in the request URI.
v Object access permission to the group object passed in the request body.
v Object access permission to all virtual servers contained by the group.
v Action/task permission to the Workload Resource Group Details task.

HTTP status and reason codes

On successful completion, HTTP status code 204 (No Content) is returned.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

60 The targeted workload resource group is the default workload object.

62 The group to be removed contains virtual servers to which the API user does
not have access.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object-id in the URI ({workload-id}) does not designate an existing
workload object, or the API user does not have object access permission to it.

2 The object-id in the URI of the virtual server object in the request body does
not designate an existing object, or the API user does not have access
permission to it.

409 (Conflict) 2 The operation cannot be performed because the object designated by the
request URI is currently busy performing some other operation.

62 The operation cannot be performed because the group to be removed
contains one or more virtual servers that are currently busy performing some
other operation.

394 HMC Web Services API

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Performance policy object
Performance policy objects are elements that define performance goals for virtual servers in a workload
resource group. A performance policy consists mainly of an importance level and an ordered list of
service classes that define the goals. See “Service class nested object” on page 398 for more details on
service classes.

Any number of custom performance policy objects can be defined for a workload resource group.
However, exactly one is active at a time. Every workload resource group contains an immutable default
performance policy that is active if a custom workload policy is not activated. Note that changing any
property of an active performance policy automatically causes its reactivation. Because activating a
performance policy can fail, it follows then that updating properties of an active performance policy can
fail. See “Activate Performance Policy” on page 412 for further details.

Data model
This element includes the following type-specific properties. For definitions of the qualifier abbreviations
in the following table, see “Property characteristics” on page 32.

Table 75. Performance policy object: type-specific properties

Name Qualifier Type Description of specialization

element-uri — String/URI The canonical URI path for a performance policy
is qualified by its workload object and is of the
form /api/workload-resource-groups/{workload-
id}/performance-policies/{policy-id} where
{workload-id} is the value of the object-id property
of the parent workload object and {policy-id} is the
value of the element-id property of the policy

POST /api/workload-resource-groups/546a3398-1974-11e1-999c-00215e6a0c26/operations/
remove-virtual-server-group HTTP/1.1

x-api-session: 466ske8jt8waeavxcs5rc26gsfjqjfs6aji8qbj7jgne6yrdbq
content-type: application/json
content-length: 76
{

"virtual-server-group": "/api/groups/ee2782af-dd98-3ec0-bc2d-cfe2e9154341"
}

Figure 205. Remove Group of Virtual Servers from a Workload Resource Group: Request

204 No Content
date: Mon, 28 Nov 2011 03:52:06 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 206. Remove Group of Virtual Servers from a Workload Resource Group: Response

Chapter 13. Workload resource group management 395

Table 75. Performance policy object: type-specific properties (continued)

Name Qualifier Type Description of specialization

element-id — String (36) The unique identifier for the performance policy
instance. The unique identifier is in the form of a
UUID.

parent — String/URI The parent of a performance policy is its owning
workload resource group, and so the parent value
is the canonical URI path for the workload
resource group.

class — String The class of a performance policy object is
“performance-policy”.

name (w) (pc) String (1-64) The display name specified for the performance
policy, which can be up to 64 characters made up
of alphanumeric characters, blanks, periods,
underscores, or dashes. Names must start with an
alphabetic character and end with an alphabetic
character, numeric character, underscore, period,
or dash. Names must be unique to other existing
performance policies in the workload resource
group.

description (w) (pc) String (0-256) Arbitrary text describing the performance policy
in up to 256 characters.

is-default — Boolean This value is used to identify the default
performance policy object. It is true for the default
policy and false for all other (custom) policies in
the workload resource group.

importance (w) (pc) String Enum The importance value assigned to the performance
policy, which is one of the following:
v "highest"
v "high"
v "medium"
v "low"
v "lowest"

See the zEnterprise System Ensemble Performance
Management Guide, GC27-2607, for detailed
information on the importance property values.

custom-service-classes (w) (pc) Array of
objects (0-99)

The ordered list of custom service classes in the
performance policy. Each service class will be an
object in the form of a service class object, as
described in “Service class nested object” on page
398. This list includes only custom service classes
and not the default service class for the policy.
This array can contain from 0 to 99 entries.

default-service-class — Object The object describing the default service class for
the performance policy, in the form of the service
class object, as described in “Service class nested
object” on page 398.

revision (pc) Integer (1-n) The revision count of the performance policy,
which is the number of times the policy has been
modified. The initial value for a new performance
policy is 1.

396 HMC Web Services API

Table 75. Performance policy object: type-specific properties (continued)

Name Qualifier Type Description of specialization

activation-status (pc) String Enum The activation status of the performance policy,
which is one of the following values:

v "not-active" – the performance policy is not
currently the active policy for the workload
resource group

v "in-progress" – the performance policy is
currently being activated for the workload
resource group

v "active" – the performance policy is currently
the active policy for the workload resource
group, and its activation has completed

last-activation-requested-date (pc) Integer The standard date/time value indicating the time
of the last activation request of the policy. If the
policy has never been active or is the default
policy of the default workload resource group, this
value is negative.

The standard time value is defined as the number
of elapsed milliseconds after midnight on 1
January 1970.

last-activation-completed-date (pc) Integer The standard date/time value indicating the time
the policy last completed activation. If the policy
has never been active or is the default policy of
the default workload resource group, this value is
negative.

The standard time value is defined as the number
of elapsed milliseconds after midnight on 1
January 1970.

last-activated-by (pc) String The user name used for the last activation request.
This value is the empty string if the policy has
never been activated or is the default policy of the
default workload resource group.

last-modified-date (pc) Integer The standard date/time value indicating the time
the policy was last modified. If the policy has
never been modified, this property is equal to the
created-date property. The value is negative for all
default policies.

The standard time value is defined as the number
of elapsed milliseconds after midnight on 1
January 1970.

last-modified-by (pc) String The user name used to last modify the policy. If
the policy has never been modified, this property
is equal to the created-by property. The value is
the empty string for all default policies.

created-date — Integer The standard date/time value indicating the time
the policy was created. The value is negative for
all default policies.

The standard time value is defined as the number
of elapsed milliseconds after midnight on 1
January 1970.

Chapter 13. Workload resource group management 397

Table 75. Performance policy object: type-specific properties (continued)

Name Qualifier Type Description of specialization

created-by — String The user name used to create the policy. The value
is the empty string for all default policies.

Service class nested object
A service class object is a nested object of a performance policy object. A performance policy can contain
zero or more ordered service classes, and contains a default service class. Service classes use classification
rules to classify and apply performance goals to virtual servers in the workload resource group. Service
classes are positional; during classification, zManager searches service classes from low-ordered to
high-ordered service class to find a match for a virtual server. The default service class applies for any
virtual server that does not match a custom service class.

You cannot directly change a service class object. When any property of a service class must be changed,
zManager creates a new service class object to replace the existing one in the policy object. For this
reason, service classes are not supported as objects in the standard sense, but rather as simple nested
objects of a performance policy. Because of this fact, direct operations and notifications are not supported
for service class objects.

The following properties are supported:

Table 76. Performance policy object: Service class nested object properties

Field name Type Rqd/Opt Description

name String
(1-64)

Required The display name specified for the service class, which can be up to 64
characters made up of alphanumeric characters, blanks, periods,
underscores, or dashes. Names must start with an alphabetic character
and end with an alphabetic character, numeric character, underscore,
period, or dash. Names must be unique to other existing service
classes in the performance policy.

description String
(0-256)

Optional Arbitrary text describing the performance policy in up to 256
characters.

type String
Enum

Required This identifies the type of the service class object:

v "server" – the service class type targeting specific virtual servers

goal-type String
Enum

Required This identifies the type of performance goal for the service class, which
must be one of the following:
v "velocity" – the service class goal is based on a velocity value as

given in the velocity property
v "discretionary" – the service class goal is up to the discretion of

zManager

business-
importance

String
Enum

Optional* This field identifies the business importance level assigned to the
service class, which must be one of the following:
v "highest"
v "high"
v "medium"
v "low"
v "lowest"

* - A business importance is required for the velocity goal type, but is
not used for a discretionary goal type.

398 HMC Web Services API

Table 76. Performance policy object: Service class nested object properties (continued)

Field name Type Rqd/Opt Description

velocity String
Enum

Optional* This field identifies the velocity goal value of the service class, which
must be one of the following:
v "fastest"
v "fast"
v "moderate"
v "slow"
v "slowest"

* - A velocity value is only required for the velocity goal type.

classification-rule Object Required The rule used to filter the virtual servers for which the service class
goal applies. The value must be a JSON object, as described in
“Classification rule nested object.”

Classification rule nested object
A classification rule object is a nested object within a service class object. It is a recursive object used to
define logical filter statements to be applied to the virtual servers of the workload resource group. If a
virtual server passes the classification rule, the service class goal is applied.

Table 77. Performance policy object: classification rule nested object properties

Field name Type Rqd/Opt Description

type String
Enum

Required This field identifies the type of classification rule object, which must be
one of the following:
v "and" – for this rule to be true, both of the two rules referenced by

this rule must be true
v "or" – for this rule to be true, only one of the two rules referenced

by this rule must be true
v "rule" – the rule defines a filter that resolves to true or false based

on its filter pattern against a virtual server

If you specify "and" or "or", exactly two classification rule objects must
be nested inside this classification rule object so they can be logically
compared. If you specify "rule", exactly one filter object must be
nested inside this object.

classification-
rule-1

Object Required* The first of two classification rule objects that must be nested inside
this classification rule object if they are to be logically compared as
defined by the type property. If the type is "rule", this property is not
supported.

* - The type property value determines whether this field is required.

classification-
rule-2

Object Required* The second of two classification rule objects that must be nested inside
this classification rule object if they are to be logically compared as
defined by the type property. If the type is "rule", this property is not
supported.

* - The type property value determines whether this field is required.

filter Object Required* A filter object defining the filter statement if the classification rule type
is "rule". If the type is "and" or "or", this property is not supported.

* - The type property value determines whether this field is required.

Filter nested object
A filter object is a nested object within a classification rule object whose type is "rule". The filter object
defines a logical statement used to filter on properties of a virtual server.

Chapter 13. Workload resource group management 399

Table 78. Performance policy object: filter nested object properties

Field name Type Rqd/Opt Description

type String
Enum

Required This field identifies the type of the filter object, which must be one of
the following:
v "hostname" – the filter value is matched against the hostname of the

virtual server
v "virtual-server-name" – the filter value is matched against the name

of the virtual server
v "os-type" – the filter value is matched against the operating system

type of the virtual server
v "os-level" – the filter value is matched against the operating system

level of the virtual server
v "os-name" – the filter value is matched against the operating system

name of the virtual server

operation String
Enum

Required This field identifies the logical filter operation, which must be one of
the following:
v "string-match" – the filter value must match the property defined by

the filter type
v "string-not-match" – the filter value must not match the property

defined by the filter type

value String
(1-255)

Required A string to match the property against. Only patterns "." (to match any
character) and ".*" (to match any character zero or more times) are
currently supported and ".*" may only be used at the end of the filter
value string. The following characters must be escaped to be used
directly: +-()[]$^.*\".

Notifications of property changes to performance policies
Notifications of property changes to performance policy objects are similar to notifications of changes to
workload objects.

Because performance policy objects are sub-objects of workload objects, creating or deleting a
performance policy does not result in an inventory notification. Instead, these operations result in the
appropriate property notification for the target workload object. However, updating performance policy
properties results in property notifications for the policy itself. In these cases, the notification header
contains an element uri and an element id to indicate the performance policy that changed.

List Performance Policies
Use the List Performance Policies operation to list the performance policies within the target workload
resource group.

HTTP method and URI
GET /api/workload-resource-groups/{workload-id}/performance-policies

In this request, the URI variable {workload-id} is the object ID of the workload object for which you are
requesting a list of performance policies.

Query parameters

Name Type Rqd/Opt Description

name String Optional Filter pattern (regular expression) to limit returned objects to those
that have a matching name property. If a match is found, the
response is an array with all policies that match. If no match is
found, the response is an empty array.

400 HMC Web Services API

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

perf-policies Array of
objects

Array of nested perf-policy-info objects as the following table.

Each nested perf-policy-info object contains the following fields:

Field name Type Description

element-uri String/URI Canonical URI path of the performance policy object, in the form
/api/workload-resource-groups/{workload-id}/performance-policies/
{policy-id}.

element-id String The element-id of the performance policy object. This field value is the
{policy-id} portion of the URI path provided by the element-uri field.

name String Display name of the performance policy object.

activation-status String
Enum

The status of the performance policy object, which must be one of the
following values:
v "not-active" – the performance policy is not currently the active policy for

the workload resource group
v "in-progress" – the performance policy is currently being activated for the

workload resource group
v "active" – the performance policy is currently the active policy for the

workload resource group, and its activation has completed

Description

The List Performance Policies operation lists the performance policies that belong to the workload
resource group targeted by the request URI. The element URI, element ID, display name, and status are
provided for each.

If the name query parameter is specified, the returned list is limited to the policies in the workload
resource group that have a name property matching the specified filter pattern. If the name parameter is
omitted, this filtering is not done.

An error response is returned if the HMC does not manage the targeted workload resource group or if
you do not have the requirements listed in “Authorization requirements.”

Authorization requirements

This operation has the following authorization requirement:
v Object-access permission to the workload object passed in the request URI. A policy is included in the

list only if you also have object-access permission for that policy object.

HTTP status and reason codes

On successful completion, HTTP status code 200 (OK) is returned and the response body is provided as
described in “Response body contents.”

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

Chapter 13. Workload resource group management 401

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object-id in the URI ({workload-id}) does not designate an existing
workload object, or the API user does not have object access permission to it.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Get Performance Policy Properties
Use the Get Performance Policy Properties operation to retrieve the properties of a single performance
policy.

HTTP method and URI
GET /api/workload-resource-groups/{workload-id}/performance-policies/{policy-id}

URI variables

GET /api/workload-resource-groups/13de1bfe-197f-11e1-8914-00215e6a0c26/
performance-policies HTTP/1.1

x-api-session: 67prscbokwxz6o1bn1q3feysece2q4275agf27uupjnvr98lse

Figure 207. List Performance Policies: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Mon, 28 Nov 2011 05:09:12 GMT
content-type: application/json;charset=UTF-8
content-length: 509
{

"perf-policies": [
{

"activation-status": "not-active",
"element-id": "13ec9170-197f-11e1-8914-00215e6a0c26",
"element-uri": "/api/workload-resource-groups/13de1bfe-197f-11e1-8914-00215e6a0c26/

performance-policies/13ec9170-197f-11e1-8914-00215e6a0c26",
"name": "Default"

},
{

"activation-status": "active",
"element-id": "160c563e-197f-11e1-8914-00215e6a0c26",
"element-uri": "/api/workload-resource-groups/13de1bfe-197f-11e1-8914-00215e6a0c26/

performance-policies/160c563e-197f-11e1-8914-00215e6a0c26",
"name": "Prime Shift"

}
]

}

Figure 208. List Performance Policies: Response

402 HMC Web Services API

Variable Description

{workload-id} Object ID of the workload object for the workload resource group to which the
performance policy is defined.

{policy-id} Element ID of the performance policy object for which properties are to be
obtained.

Response body contents

On successful completion, the response body is a JSON object that provides the current values of the
properties for the performance policy object as defined in “Data model” on page 395. Field names and
data types in the JSON object are the same as the property names and data types defined in the data
model.

Description

The Get Performance Policy Properties operation returns the current properties for the performance
policy object specified by {policy-id}.

An error response is returned if the targeted workload resource group or policy does not exist or if you
do not have the requirements listed in “Authorization requirements.”

Authorization requirements

This operation has the following authorization requirement:
v Object-access permission to the workload object passed in the request URI.

HTTP status and reason codes

On successful completion, HTTP status code 200 (OK) is returned and the response body is provided as
described in “Response body contents.”

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object id in the URI ({workload-id}) does not designate an existing
workload object, or the API user does not have object access permission to
the object.

62 The element id in the URI ({policy-id}) does not designate an existing
performance policy object in the workload resource group.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Chapter 13. Workload resource group management 403

Example HTTP interaction

GET /api/workload-resource-groups/13de1bfe-197f-11e1-8914-00215e6a0c26/
performance-policies/160c563e-197f-11e1-8914-00215e6a0c26 HTTP/1.1

x-api-session: 67prscbokwxz6o1bn1q3feysece2q4275agf27uupjnvr98lse

Figure 209. Get Performance Policy Properties: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Mon, 28 Nov 2011 05:09:12 GMT
content-type: application/json;charset=UTF-8
content-length: 1586
{

"activation-status": "active",
"class": "performance-policy",
"created-by": "ENSADMIN",
"created-date": 1322456941929,
"custom-service-classes": [

{
"business-importance": "highest",
"classification-rule": {

"filter": {
"operation": "string-match",
"type": "virtual-server-name",
"value": "SS\\-Premium\\-Web\\-Svr\\-.*"

},
"type": "rule"

},
"description": "",
"goal-type": "velocity",
"name": "Premium Class",
"type": "server",
"velocity": "fastest"

},
{

"business-importance": "high",
"classification-rule": {

"filter": {
"operation": "string-match",
"type": "virtual-server-name",
"value": "SS\\-Web\\-Svr\\-.*"

},
"type": "rule"

},
"description": "",
"goal-type": "velocity",
"name": "Regular Class",
"type": "server",
"velocity": "moderate"

}
],

Figure 210. Get Performance Policy Properties: Response (Part 1)

404 HMC Web Services API

Create Performance Policy
Use the Create Performance Policy operation to create a new custom performance policy for a workload
resource group. The new policy must be uniquely named within the workload resource group. The policy
is inactive until the Activate Performance Policy operation is applied to it.

HTTP method and URI
POST /api/workload-resource-groups/{workload-id}/performance-policies

In this request, the URI variable {workload-id} is the object ID of the workload object for which you are
creating a new performance policy.

Request body contents

The request body contains properties used to define the new performance policy, which are the writeable
properties of a performance policy. Some properties are optional.

Field name Type Rqd/Opt Description

name String
(1-64)

Required The name to give the new performance policy, as described in “Data
model” on page 395. The passed name must be unique among all
other policies currently in the workload resource group.

description String
(0-256)

Optional The description to give the new performance policy, as described in
“Data model” on page 395.

"default-service-class": {
"business-importance": "medium",
"classification-rule": {

"filter": {
"operation": "string-match",
"type": "(*)",
"value": "(*)"

},
"type": "rule"

},
"description": "The default workload performance policy service class.",
"goal-type": "velocity",
"name": "Default",
"type": "server",
"velocity": "moderate"

},
"description": "Performance policy for prime shift",
"element-id": "160c563e-197f-11e1-8914-00215e6a0c26",
"element-uri": "/api/workload-resource-groups/13de1bfe-197f-11e1-8914-00215e6a0c26/
performance-policies/160c563e-197f-11e1-8914-00215e6a0c26",
"importance": "highest",
"is-default": false,
"last-activated-by": "ENSADMIN",
"last-activation-completed-date": 1322456944022,
"last-activation-requested-date": 1322456942144,
"last-modified-by": "ENSADMIN",
"last-modified-date": 1322456942090,
"name": "Prime Shift",
"parent": "/api/workload-resource-groups/13de1bfe-197f-11e1-8914-00215e6a0c26",
"revision": 2

}

Figure 211. Get Performance Policy Properties: Response (Part 2)

Chapter 13. Workload resource group management 405

Field name Type Rqd/Opt Description

importance String
Enum

Required The importance value to give the new performance policy, as
described in “Data model” on page 395.

custom-service-
classes

Array of
objects
(0-99)

Optional The ordered list of custom service classes in the new performance
policy. Each service class is an object in the form of a service class
object, as described in “Service class nested object” on page 398.
This array can contain from 0 to 99 entries.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

element-uri String/URI Canonical URI path of the performance policy object, in the form
/api/workload-resource-groups/{workload-id}/performance-policies/
{policy-id}

Description

The Create Performance Policy operation creates a new custom performance policy in a workload
resource group, identified by {workload-id}.

On successful execution, the performance policy is created and added to the workload resource group
and status code 201 is returned with a response body containing a reference to the new performance
policy object. Note that the new policy is not active until the Activate Performance Policy operation is
applied to it.

An error response is returned if the targeted workload resource group does not exist or if you do not
have the requirements listed in “Authorization requirements.” Targeting the default workload object also
results in an error because the default workload resource group cannot contain any performance policy
other than the default performance policy.

The request body is validated against the data model for this object type to ensure that it contains only
writeable properties and that the data types of those properties are specified as required. If the request
body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the validation
error encountered.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the workload object passed in the request URI.
v Action/task permission to the New Performance Policy task.

HTTP status and reason codes

On successful completion, HTTP status code 201 (Created) is returned and the response body is provided
as described in “Response body contents.”

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

406 HMC Web Services API

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

60 The targeted workload resource group is the default workload object.

65 The name of the performance policy is not unique within its workload
resource group, or one or more of the defined service class names is reserved
or not unique.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object id in the URI ({workload-id}) does not designate an existing
workload object, or the API user does not have object access permission to
the object.

409 (Conflict) 2 The operation cannot be performed because the object designated by the
request URI is currently busy performing some other operation.

415 (Unsupported
Media Type)

0 The request does not include a Content-Type header that specifies the
request body is of media type application/xml.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Delete Performance Policy
Use the Delete Performance Policy operation to remove a performance policy from a workload resource
group. This operation cannot be performed on an active or default performance policy.

POST /api/workload-resource-groups/13de1bfe-197f-11e1-8914-00215e6a0c26/performance-policies HTTP/1.1
x-api-session: 67prscbokwxz6o1bn1q3feysece2q4275agf27uupjnvr98lse
content-type: application/json
content-length: 101
{

"description": "Performance policy for prime shift",
"importance": "highest",
"name": "Prime Shift"

}

Figure 212. Create Performance Policy: Request

201 Created
server: zSeries management console API web server / 1.0
location: /api/workload-resource-groups/13de1bfe-197f-11e1-8914-00215e6a0c26/

performance-policies/160c563e-197f-11e1-8914-00215e6a0c26
cache-control: no-cache
date: Mon, 28 Nov 2011 05:09:01 GMT
content-type: application/json;charset=UTF-8
content-length: 142
{

"element-uri": "/api/workload-resource-groups/13de1bfe-197f-11e1-8914-00215e6a0c26/
performance-policies/160c563e-197f-11e1-8914-00215e6a0c26"

}

Figure 213. Create Performance Policy: Response

Chapter 13. Workload resource group management 407

HTTP method and URI
DELETE /api/workload-resource-groups/{workload-id}/performance-policies/{policy-id}

URI variables

Variable Description

{workload-id} Object ID of the workload object whose performance policy object is to be
deleted.

{policy-id} Element ID of the performance policy object that is to be deleted.

Description

The Delete Performance Policy operation deletes the performance policy object specified by {policy-id}
from its workload resource group specified by {workload-id}.

On successful execution, the performance policy object is removed from the workload resource group and
status code 204 (No Content) is returned without a response body.

An error response is returned if the targeted policy object does not exist or if you do not have the
requirements listed in “Authorization requirements.” Targeting a default performance policy also results
in an error because the default performance policy cannot be deleted. You also cannot delete an active
performance policy without first activating another performance policy through the Activate Performance
Policy operation.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the workload object passed in the request URI.
v Action/task permission to the Delete Performance Policy task.

HTTP status and reason codes

On successful completion, HTTP status code 204 (No Content) is returned without a response body.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

63 The targeted performance policy is a default performance policy object.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object id in the URI ({workload-id}) does not designate an existing
workload object, or the API user does not have object access permission to
the object.

62 The element id in the URI ({policy-id}) does not designate an existing
performance policy object in the workload resource group.

408 HMC Web Services API

HTTP error status
code

Reason
code Description

409 (Conflict) 2 The operation cannot be performed because the object designated by the
request URI is currently busy performing some other operation.

60 The performance policy to be deleted is currently active or in the progress of
being activated. The operation can be retried after a different policy has been
activated, which causes the activation-status of this policy to be "not-active".

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Update Performance Policy
Use the Update Performance Policy operation to modify one or more writeable properties of a
performance policy object. Note that updating an active performance policy causes its reactivation.

HTTP method and URI
POST /api/workload-resource-groups/{workload-id}/performance-policies/{policy-id}

URI variables

Variable Description

{workload-id} Object ID of the workload object to which the target performance policy is
defined.

{policy-id} Element ID of the performance policy object that is to be modified.

Request body contents

The request body is a JSON object containing one or more of the writeable fields for a performance
policy, as described in “Data model” on page 395. You need to supply only those fields that you want to
modify.

DELETE /api/workload-resource-groups/13de1bfe-197f-11e1-8914-00215e6a0c26/
performance-policies/160c563e-197f-11e1-8914-00215e6a0c26 HTTP/1.1

x-api-session: 67prscbokwxz6o1bn1q3feysece2q4275agf27uupjnvr98lse

Figure 214. Delete Performance Policy: Request

204 No Content
date: Mon, 28 Nov 2011 05:09:22 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 215. Delete Performance Policy: Response

Chapter 13. Workload resource group management 409

Description

The Update Performance Policy operation updates one or more writeable properties of the performance
policy object identified by {policy-id}.

On successful execution, the performance policy object is updated with the supplied property values and
status code 204 (No Content) is returned without a response body. Notifications for these property
changes are sent asynchronously to this operation.

If the performance policy is active at the time of this request, a reactivation of the policy is submitted
asynchronously to this operation. Because activation of a performance policy is rejected if another
activation request is in progress for the target workload resource group, an update to an active
performance policy also can be rejected. In this case, a 409 (Conflict) status code is returned and you can
retry the update operation after the first activation completes.

An error response is returned if the targeted workload resource group or performance policy does not
exist or if you do not have the requirements listed in “Authorization requirements.” Targeting the default
performance policy also results in an error because the default performance policy cannot be directly
modified.

The request body is validated against the schema described in “Request body contents” on page 409. If
the request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the workload object passed in the request URI.
v Action/task permission to the Performance Policy Details task.

HTTP status and reason codes

On successful completion, HTTP status code 204 (No Content) is returned without a response body.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

63 The targeted performance policy is a default performance policy object.

65 The new name given to the performance policy is not unique within its
workload resource group, or one or more of the defined service class names
are reserved or not unique.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object id in the URI ({workload-id}) does not designate an existing
workload object, or the API user does not have object access permission to
the object.

62 The element id in the URI ({policy-id}) does not designate an existing
performance policy object in the workload resource group.

410 HMC Web Services API

HTTP error status
code

Reason
code Description

409 (Conflict) 2 The operation cannot be performed because the object designated by the
request URI is currently busy performing some other operation.

60 The performance policy to be updated is currently in the progress of being
activated. The operation can be retried after activation has completed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

POST /api/workload-resource-groups/13de1bfe-197f-11e1-8914-00215e6a0c26/performance-policies/
160c563e-197f-11e1-8914-00215e6a0c26 HTTP/1.1

x-api-session: 67prscbokwxz6o1bn1q3feysece2q4275agf27uupjnvr98lse
content-type: application/json
content-length: 580
{

"custom-service-classes": [
{

"business-importance": "highest",
"classification-rule": {

"filter": {
"operation": "string-match",
"type": "virtual-server-name",
"value": "SS\\-Premium\\-Web\\-Svr\\-.*"

},
"type": "rule"

},
"goal-type": "velocity",
"name": "Premium Class",
"type": "server",
"velocity": "fastest"

},
{

"business-importance": "high",
"classification-rule": {

"filter": {
"operation": "string-match",
"type": "virtual-server-name",
"value": "SS\\-Web\\-Svr\\-.*"

},
"type": "rule"

},
"goal-type": "velocity",
"name": "Regular Class",
"type": "server",
"velocity": "moderate"

}
]

}

Figure 216. Update Performance Policy: Request

Chapter 13. Workload resource group management 411

Activate Performance Policy
Use the Activate Performance Policy operation to activate a performance policy for a workload resource
group. You can activate any performance policy defined to the workload resource group, including the
default and currently active policy.

HTTP method and URI
POST /api/workload-resource-groups/{workload-id}/performance-policies/{policy-id}/operations/activate

URI variables

Variable Description

{workload-id} Object ID of the workload object to which the target performance policy is
defined.

{policy-id} Element ID of the performance policy object that is to be activated.

Description

The Activate Performance Policy operation activates or reactivates a performance policy for a specific
workload resource group.

On successful execution, the target policy is active and status code 204 (No Content) is returned without
a response body. Notifications for ensuing property changes are sent asynchronously to this operation.

An activation request is not accepted if another activation request is in progress for this workload
resource group. In this case, status code 409 (Conflict) is returned and you can retry this operation after
the first activation completes.

An error response is returned if the targeted workload resource group or performance policy does not
exist or if you do not have the requirements listed in “Authorization requirements.” Targeting the default
workload resource group also results in an error because its default performance policy is permanently
active.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the workload object passed in the request URI.
v Action/task permission to the Activate Performance Policy task.

HTTP status and reason codes

On successful completion, HTTP status code 204 (No Content) is returned without a response body.

204 No Content
date: Mon, 28 Nov 2011 05:09:01 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 217. Update Performance Policy: Response

412 HMC Web Services API

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

60 The targeted workload resource group is the default workload object.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object id in the URI ({workload-id}) does not designate an existing
workload object, or the API user does not have object access permission to
the object.

62 The element id in the URI ({policy-id}) does not designate an existing
performance policy object in the workload resource group.

409 (Conflict) 2 The operation cannot be performed because the object designated by the
request URI is currently busy performing some other operation.

60 Performance policy activation is currently in progress on the workload
resource group. The operation can be retried after activation has completed.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Import Performance Policy
Use the Import Performance Policy operation to create a new custom performance policy for a workload
resource group. This operation is equivalent to the Create Performance Policy operation, except the
request body is an XML document defining the configuration of the performance policy to be created.
The new policy must be uniquely named within the workload resource group. The policy is inactive until
the Activate Performance Policy operation is applied to it.

HTTP method and URI
POST /api/workload-resource-groups/{workload-id}/operations/import-performance-policy

POST /api/workload-resource-groups/13de1bfe-197f-11e1-8914-00215e6a0c26/performance-policies/
160c563e-197f-11e1-8914-00215e6a0c26/operations/activate HTTP/1.1

x-api-session: 67prscbokwxz6o1bn1q3feysece2q4275agf27uupjnvr98lse

Figure 218. Activate Performance Policy: Request

204 No Content
date: Mon, 28 Nov 2011 05:09:01 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 219. Activate Performance Policy: Response

Chapter 13. Workload resource group management 413

In this request, the URI variable {workload-id} is the object ID of the workload object for which you are
importing a performance policy.

Request body contents

The request body must contain an XML document that describes the performance policy to be created.
The XML must conform to the schema described in Appendix A, “XML document structure of a
performance policy,” on page 677. Note that the same rules apply as for the Create Performance Policy
operation, that the name must be unique within the workload.

Because the request body is expected to be in XML format, the request should specify MIME type
application/xml as the value of the HTTP Content-Type header for the request.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

element-uri String/URI Canonical URI path of the performance policy object, in the form
/api/workload-resource-groups/{workload-id}/performance-policies/
{policy-id}

Description

The Import Performance Policy operation imports a performance policy from an XML document and
creates a performance policy object, adding it to the workload resource group identified by {workload-id}.

On successful execution, the performance policy object is created with the supplied property values,
added to the collection of custom performance policies for the workload resource group. Status code 201
(Created) is returned with a response body describing the location of the new performance policy object.
Note that the new policy is not active until the Activate Performance Policy operation is applied to it.

An error response is returned if the targeted workload does not exist or if you do not have the
requirements listed in “Authorization requirements.” Targeting the default workload object also results in
an error because the default workload resource group cannot contain any performance policy other than
the default performance policy.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the workload object passed in the request URI.
v Action/task permission to the Import Performance Policy task.

HTTP status and reason codes

On successful completion, HTTP status code 201 (Created) is returned and the response body is provided
as described in “Response body contents.”

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

414 HMC Web Services API

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

60 The targeted workload resource group is the default workload object.

65 The name of the performance policy is not unique within its workload
resource group, or one or more of the defined service class names is reserved
or not unique.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object id in the URI ({workload-id}) does not designate an existing
workload object, or the API user does not have object access permission to
the object.

409 (Conflict) 2 The operation cannot be performed because the object designated by the
request URI is currently busy performing some other operation.

415 (Unsupported
Media Type)

0 The request does not include a Content-Type header that specifies the
request body is of media type application/xml.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Export Performance Policy
Use the Export Performance Policy operation to return the configuration of an existing performance
policy in the form of an XML document.

HTTP method and URI
POST /api/workload-resource-groups/{workload-id}/performance-policies/{policy-id}/operations/export

URI variables

Variable Description

{workload-id} Object ID of the workload object for the workload resource group to which the
performance policy is defined.

{policy-id} Element ID of the performance policy object to be exported.

Response body contents

On successful completion, the performance policy is returned in the response body as an XML document
that conforms to the schema described in Appendix A, “XML document structure of a performance
policy,” on page 677.

Description

The Export Performance Policy operation returns the configurable properties of an existing performance
policy identified by {policy-id} in a workload resource group identified by {workload-id}. The policy
configuration is returned in the form of an XML document. You can save this XML as a backup copy of
the policy configuration or modify and import it through the Import Performance Policy operation to
create a new custom policy.

On successful execution, the performance policy object returned as a XML document with status code 200
(OK).

Chapter 13. Workload resource group management 415

An error response is returned if the targeted workload resource group or policy does not exist or if you
do not have the requirements listed in “Authorization requirements.”

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the workload object passed in the request URI.
v Action/task permission to the Export Performance Policy task.

HTTP status and reason codes

On successful completion, HTTP status code 200 (OK) is returned and the response body is provided as
described in “Response body contents” on page 415.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object id in the URI ({workload-id}) does not designate an existing
workload object, or the API user does not have object access permission to
the object.

62 The element id in the URI ({policy-id}) does not designate an existing
performance policy object in the workload resource group.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

POST /api/workload-resource-groups/e39812b2-209d-11e1-8bbc-0010184c8334/performance-policies/
e44af260-209d-11e1-8bbc-0010184c8334/operations/export HTTP/1.1

x-api-session: 2ggnk3nbcxsqi8w8qbjpnl4pqhwgkvdrdu5hw8pjw1o171qu2r

Figure 220. Export Performance Policy: Request

416 HMC Web Services API

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache, no-cache
date: Wed, 07 Dec 2011 06:37:21 GMT
content-type: application/xml;charset=utf-8
content-length: 1515
<?xml version="1.0" encoding="UTF-8"?>

<PerformancePolicy xmlns="http://www.ibm.com/PPM/WorkloadPerformancePolicy-1.0">
<Name>Prime Shift</Name>
<Description>Performance policy for prime shift</Description>
<Version>3.00.00</Version>
<UI>PPM Editor</UI>
<WorkloadImportance>Highest</WorkloadImportance>

<ServiceClasses>

<ServiceClass>
<Name>Premium Class</Name>
<Type>Server</Type>
<RuleBuilderElement>

<RuleBuilderElementType>Rule</RuleBuilderElementType>
<Filter>

<FilterType>Virtual Server Name</FilterType>
<FilterOperation>stringMatch</FilterOperation>
<FilterValue>SS\\-Premium\\-Web\\-Svr\\-\.*</FilterValue>

</Filter>
</RuleBuilderElement>
<Goal>

<Velocity>
<Importance>Highest</Importance>
<Level>Fastest</Level>

</Velocity>
</Goal>

</ServiceClass>

<ServiceClass>
<Name>Regular Class</Name>
<Type>Server</Type>
<RuleBuilderElement>

<RuleBuilderElementType>Rule</RuleBuilderElementType>
<Filter>

<FilterType>Virtual Server Name</FilterType>
<FilterOperation>stringMatch</FilterOperation>
<FilterValue>SS\\-Web\\-Svr\\-\.*</FilterValue>

</Filter>
</RuleBuilderElement>
<Goal>

<Velocity>
<Importance>High</Importance>
<Level>Moderate</Level>

</Velocity>
</Goal>

</ServiceClass>

</ServiceClasses>

</PerformancePolicy>

Figure 221. Export Performance Policy: Response

Chapter 13. Workload resource group management 417

Performance management reports
Through specific APIs described in this topic, you can request zManager to generate historical reports
that contain performance data related to specific performance management objects. You can request data
for a specific time interval, up to 36 hours before the current time. Because the actual performance
management objects might have changed since the time interval you request, or actually might not exist
now, the performance management report APIs are not object-based.

Instead, all of the report APIs are implemented as performance-management specific operations that
request an on-demand report to be generated and returned to the caller. They accept query parameters in
a request block, and query the historical reporting database to generate a custom report for the caller.

The performance management report APIs are interrelated because you can use certain properties
retrieved from one report as input to generate other reports, just as you can drill down for more
information through the report tasks in the HMC UI.

Figure 222 on page 419 shows how the performance management reports are related, along with an
indication of which properties you can use from one report to generate the next one through the APIs.
Once you receive these properties in the response to an API request for one report, you can repeatedly
reuse them as input properties for subsequent reports for the same performance management object,
regardless of the time interval for the report.

For example, suppose that you use the API to request a Virtual Servers Report for the ensemble and the
response body includes a hypervisor-report-id property. At any time in the future, you can use the
hypervisor-report-id property directly to request a Hypervisor Report, rather than having to drill down
to it again through the Virtual Servers Report. The *-report-id property values do not change across
invocations of the reporting APIs; instead, the values remain constant over time.

418 HMC Web Services API

Generate Workload Resource Groups Report
Use the Generate Workload Resource Groups Report operation to create a custom on-demand report
that shows all workload resource groups in a specific ensemble over a requested time period. The report
is based on historical performance management data that was retained over that time period.

HTTP method and URI
POST /api/ensembles/{ensemble-id}/performance-management/operations/generate-workload-resource

-groups-report

Workload Resource Groups
Report

workload-report-id

Workload Resource

Group Performance

Index Report

Workload Resource

Adjustments Report

Group Resource

Virtual Servers Report
workload-report-id,

virtual-server-report-id,
hypervisor-report-id

Service Classes Report
workload-report-id,

service-class-report-id

Service Class Hops

Report

Service Class Virtual

Server Topology Report

Service Class Resource

Adjustments Report

Virtual Server Resource

Adjustments Report

Hypervisor

Resource

Adjustments Report

Load Balancing

Report

Virtual Server CPU

Utilization Report

Hypervisor Report
hypervisor-report-id

Figure 222. Relationship between reports and the properties used

Chapter 13. Workload resource group management 419

In this request, the URI variable {ensemble-id} is the object ID of the ensemble object for which you are
requesting a workload resource groups report.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

report-interval-
start-time

Integer Required Standard date/time value indicating the requested starting date and
time of the report to be generated. The standard time value is
defined as the number of elapsed milliseconds after midnight on 1
January 1970.

report-interval-
duration

Integer Required The length, in minutes, of the interval this report covers, starting
from the value specified for the report-interval-start-time field. This
value must be greater than 0.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

report-interval-
start-time

Integer Standard date/time value indicating the requested starting date and time of
the report to be generated. The standard time value is defined as the number
of elapsed milliseconds after midnight on 1 January 1970.
Note: The returned value might differ from the requested time if no report
data was available at the requested time, but data was available starting
later within the requested interval.

report-interval-
duration

Integer The length, in minutes, of the interval this report covers, starting from the
value specified for the report-interval-start-time field. This value must be
greater than 0.
Note: The returned value might differ from the requested duration if report
data was not available for the entire requested interval, but data was
available for a shorter duration within that same requested interval.

report-workloads Array of
objects

Array of nested workload-report-entry objects described in Table 79.

Each nested workload-report-entry object contains the following fields:

Table 79. Format of a workload-report-entry object

Field name Type Description

workload-name String The displayable name of the workload resource group.

workload-report-id String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific workload resource group named
in the workload-name field.
Note: This value is the same as one of the workload-report-id values that
are returned in the Workload Resource Groups Report for this same interval.

performance-policy-
name

String The displayable name of the performance policy that was active during this
reporting interval.

420 HMC Web Services API

Table 79. Format of a workload-report-entry object (continued)

Field name Type Description

performance-policy-
report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific performance policy named in the
performance-policy-name field.
Note: If more than one performance policy was activated over the span of
this reporting interval, only the name of the last one activated is returned in
this field. The multi-policy-activations field indicates whether more than
one policy was activated during this interval.

largest-pi-service-
class-name

String The displayable name of the performance management service class that had
the largest PI (performance index) value over this reporting interval.
Optional: This field is not returned if the performance index (PI) value
could not be calculated.

largest-pi-service-
class-report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific service class named in
largest-pi-service-class-name field.
Optional: This field is not returned if the performance index (PI) value
could not be calculated.

largest-pi Number The largest PI (performance index) value over this reporting interval.
Optional: This field is not returned if the performance index (PI) value
could not be calculated.

multi-policy-
activations

Boolean Indicates whether more than one performance policy was activated over the
span of this reporting interval. The value is "true" if more than one policy or
"false" if only one policy was activated during this time interval.

cpu-utilization-
distribution

Array of
objects

Array of nested cpu-utilization-range objects described in Table 80.

most-severe-perf-
status

String
Enum

The most severe perf-status value recorded for the workload over this
reporting interval. See “Data model” on page 370 for more details about the
valid values of this property.

perf-status-data-
points

Array of
objects

Array of nested perf-status-data-point objects described in Table 81.

Each nested cpu-utilization-range object contains the following fields:

Table 80. Format of a cpu-utilization-range object

Field name Type Description

low-boundary Number This value defines the low boundary of the CPU utilization range that this
object is covering.

high-boundary Number This value defines the high boundary of the CPU utilization range that this
object is covering.

virtual-server-count Integer This value is the number of virtual servers whose average CPU utilization
was within the CPU utilization range during the reporting interval.

Each nested perf-status-data-point object contains the following fields:

Table 81. Format of a perf-status-data-point object

Field name Type Description

time Integer Standard date/time value indicating the date and time that this performance
status value was recorded.

The standard time value is defined as the number of elapsed milliseconds
after midnight January 1, 1970.

Chapter 13. Workload resource group management 421

Table 81. Format of a perf-status-data-point object (continued)

Field name Type Description

perf-status Number The perf-status value of the workload at the recorded time. See the “Data
model” on page 370 for more details about the valid values of this property.

Description

The Generate Workload Resource Groups Report operation generates a report that contains the
following information for the requested time interval:
v A list of all workload resource groups for which historical reporting information is available
v For each workload resource group:

– The active performance policy at that time
– A performance health indication (the performance index or PI) over that interval.

“Response body contents” on page 420 describes the full list of data that is returned in this report for
each workload resource group. To request more detailed performance reporting data, you can use the
returned workload-report-id property for a specific workload resource group as input for additional
report operations.

If reporting data is not available for the requested time interval, an empty response object is provided
and the operation completes successfully. An error response is returned if the targeted ensemble does not
exist or if you do not have the requirements listed in “Authorization requirements.”

The request body is validated against the schema described in “Request body contents” on page 420. If
the request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the ensemble object passed in the request URI.
v Action/task permission to the Workloads Report task.

HTTP status and reason codes

On successful completion, HTTP status code 200 (OK) is returned and the response body is provided as
described in “Response body contents” on page 420.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object access permission to
the object.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

422 HMC Web Services API

Example HTTP interaction

Generate Workload Resource Group Performance Index Report
Use the Generate Workload Resource Group Performance Index Report operation to create a custom
on-demand performance index report for a specific workload resource group over a requested time
period. The report is based on historical performance management data that was retained over that time
period.

HTTP method and URI
POST /api/ensembles/{ensemble-id}/performance-management/operations/generate-workload-resource-group-
performance-index-report

In this request, the URI variable {ensemble-id} is the object ID of the ensemble containing the workload
resource group for which you want to receive a performance index report.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

report-interval-
start-time

Integer Required Standard date/time value indicating the requested starting date and
time of the report to be generated. The standard time value is
defined as the number of elapsed milliseconds after midnight on 1
January 1970.

report-interval-
duration

Integer Required The length, in minutes, of the interval this report covers, starting
from the value specified for the report-interval-start-time field. This
value must be greater than 0.

workload-report-id String Required The identifier used by the performance management reporting to
keep track of reporting data for the specific workload resource
group for which the report is being requested.
Note: This value is the same as one of the workload-report-id
values that are returned in the Workload Resource Groups Report
for this same interval.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

report-interval-
start-time

Integer Standard date/time value indicating the requested starting date and time of
the report to be generated. The standard time value is defined as the number
of elapsed milliseconds after midnight on 1 January 1970.
Note: The returned value might differ from the requested time if no report
data was available at the requested time, but data was available starting
later within the requested interval.

POST /api/ensembles/12345678-1234-1234-1234-123456789000/performance-management/operations/
generate-workload-resource-groups-report
{
"report-interval-start-time": 1296149252662,
"report-interval-duration": 30
}

Figure 223. Generate Workload Resource Groups Report: Request

Chapter 13. Workload resource group management 423

Field name Type Description

report-interval-
duration

Integer The length, in minutes, of the interval this report covers, starting from the
value specified for the report-interval-start-time field. This value must be
greater than 0.
Note: The returned value might differ from the requested duration if report
data was not available for the entire requested interval, but data was
available for a shorter duration within that same requested interval.

workload-name String The displayable name of the workload resource group.

workload-report-id String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific workload resource group named
in the workload-name field.

pi-data-by-service-
class

Array of
objects

Array of nested service-class-pi-data objects described in Table 82.

Each nested service-class-pi-data object contains the following fields:

Table 82. Format of a service-class-pi-data object

Field name Type Description

service-class-name String The displayable name of the service class.

service-class-report-
id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific service class named in the
service-class-name field.

pi-data-points Array of
objects

Array of nested pi-data-point objects described in Table 83.

Each nested pi-data-point object contains the following fields:

Table 83. Format of a pi-data-point object

Field name Type Description

pi-time Integer Standard date/time value indicating the requested starting date and time
that this data point was taken. The standard time value is defined as the
number of elapsed milliseconds after midnight on 1 January 1970.

pi-value Number The specific performance index (PI) value recorded at the date/time in the
pi-time field.

Description

The Generate Workload Resource Group Performance Index Report operation generates a report that
contains the following information for a specific workload resource group over the requested time
interval:
v A list of the services classes within the requested workload resource group for which performance

index data is available
v For each services class, a list of all of the individual PI data points that were recorded over that

interval. Each PI data point contains both the actual PI value and the date/time that it was recorded.

“Response body contents” on page 423 describes the full list of data that is returned in this report for
each workload resource group. To request more detailed performance reporting data, you can use the
returned service-class-report-id property for a specific service class as input for additional report
operations.

424 HMC Web Services API

Note that when you request performance index information for a workload resource group through the
HMC UI, the resulting report is a line graph display that plots these PI values with plot points and a line
over time for each service class.

If reporting data is not available for the requested time interval, an empty response object is provided
and the operation completes successfully. An error response is returned if the targeted ensemble does not
exist or if you do not have the requirements listed in “Authorization requirements.”

The request body is validated against the schema described in “Request body contents” on page 423. If
the request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the ensemble object passed in the request URI.
v Action/task permission to the Workloads Report task.

HTTP status and reason codes

On successful completion, HTTP status code 200 (OK) is returned and the response body is provided as
described in “Response body contents” on page 423.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object access permission to
the object.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

POST /api/ensembles/12345678-1234-1234-1234-123456789000/performance-management/operations/
generate-workload-resource-group-performance-index-report
{
"report-interval-start-time": 1296149252662,
"report-interval-duration": 60,
"workload-report-id": "Payroll Workload Resource Group"
}

Figure 224. Generate Workload Resource Group Performance Index Report: Request

Chapter 13. Workload resource group management 425

Generate Workload Resource Group Resource Adjustments Report
Use the Generate Workload Resource Group Resource Adjustments Report operation to create a custom
on-demand resource adjustments report for a specific workload resource group over a requested time
period. The report is based on historical performance management data that was retained over that time
period.

HTTP method and URI
POST /api/ensembles/{ensemble-id}/performance-management/operations/generate-workload-resource-group-
resource-adjustments-report

In this request, the URI variable {ensemble-id} is the object ID of the ensemble containing the workload
resource group for which you want to receive a resource adjustments report.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Req/Opt Description

report-interval-
start-time

Integer Required Standard date/time value indicating the requested starting date and
time of the report to be generated. The standard time value is
defined as the number of elapsed milliseconds after midnight on 1
January 1970.

report-interval-
duration

Integer Required The length, in minutes, of the interval this report covers, starting
from the value specified for the report-interval-start-time field. This
value must be greater than 0.

workload-report-id String Required The identifier used by the performance management reporting to
keep track of reporting data for the specific workload resource
group for which the report is being requested.
Note: This value is the same as one of the workload-report-id
values that are returned in the Workload Resource Groups Report
for this same interval.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

report-interval-
start-time

Integer Standard date/time value indicating the requested starting date and time of
the report to be generated. The standard time value is defined as the number
of elapsed milliseconds after midnight on 1 January 1970.
Note: The returned value might differ from the requested time if no report
data was available at the requested time, but data was available starting
later within the requested interval.

report-interval-
duration

Integer The length, in minutes, of the interval this report covers, starting from the
value specified for the report-interval-start-time field. This value must be
greater than 0.
Note: The returned value might differ from the requested duration if report
data was not available for the entire requested interval, but data was
available for a shorter duration within that same requested interval.

workload-name String The displayable name of the workload resource group.

workload-report-id String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific workload resource group named
in the workload-name field.

426 HMC Web Services API

Field name Type Description

successful-resource-
adjustments

Array of
objects

Array of nested successful-resource-adjustment objects. If no successful
adjustments occurred during the requested time interval, an empty array is
returned.

failed-resource-
adjustments

Array of
objects

Array of nested failed-resource-adjustment objects. If no failed
adjustments occurred during the requested time interval, an empty array is
returned.

Each nested successful-resource-adjustment object contains the following fields:

Field name Type Description

hypervisor-type String
Enum

The value of the type property of the virtualization host. See the
virtualization host “Data model” on page 163 for more details about the
valid values of this property.

adjustment-time Integer Standard date/time value indicating the requested starting date and time of
the report to be generated. The standard time value is defined as the number
of elapsed milliseconds after midnight on 1 January 1970.

receiver-virtual-
server-name

String The name of the virtual server that was given additional resources.

receiver-workload-
name

String The displayable name of the workload resource group that was given
additional resources.

receiver-workload-
report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific workload resource group named
in the receiver-workload-name field.

receiver-service-
class-name

String The displayable name of the service class within the workload resource
group that was given additional resources.

receiver-service-
class-report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific service class named in the
receiver-service-class-name field.

receiver-processing-
units-after

Number The total number of processing units the receiver had after the additional
resources were given to it.

Processing units are returned in the units that are normal for the specific
hypervisor type of the virtual server. The units are entitled capacity for
PowerVM, and CPU shares for all other hypervisor types.

receiver-processing-
units-before

Number The total number of processing units the receiver had before the additional
resources were given to it.

Processing units are returned in the units that are normal for the specific
hypervisor type of the virtual server. The units are entitled capacity for
PowerVM, and CPU shares for all other hypervisor types.

adjustment-donors Array of
objects

Array of nested adjustment-donors objects.

Each nested adjustment-donors object contains the following fields:

Field name Type Description

donor-virtual-server-
name

String The name of a virtual server that gave up resources as part of this
adjustment.

Chapter 13. Workload resource group management 427

Field name Type Description

donor-processing-
units-after

Number The total number of processing units this donor had after it gave up
resources.

Processing units are returned in the units that are normal for the specific
hypervisor type of the virtual server. The units are entitled capacity for
PowerVM, and CPU shares for all other hypervisor types.

donor-processing-
units-before

Number The total number of processing units this donor had before it gave up
resources.

Processing units are returned in the units that are normal for the specific
hypervisor type of the virtual server. The units are entitled capacity for
PowerVM, and CPU shares for all other hypervisor types.

donor-workload-names Array of
strings

The displayable names of all workload resource groups that donated
resources when this donor virtual server gave up resources.

Each nested failed-resource-adjustment object contains the following fields:

Field name Type Description

hypervisor-type String
Enum

The value of the type property of the virtualization host. See the
virtualization host “Data model” on page 163 for more details about the
valid values of this property.

adjustment-time Integer Standard date/time value indicating the requested starting date and time of
the report to be generated. The standard time value is defined as the number
of elapsed milliseconds after midnight on 1 January 1970.

receiver-virtual-
server-name

String The name of the virtual server that needed but did not receive additional
resources.

receiver-workload-
name

String The displayable name of the workload resource group that needed but did
not receive additional resources.

receiver-workload-
report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific workload resource group named
in the receiver-workload-name field.

receiver-service-
class-name

String The displayable name of the service class within the workload resource
group that needed but did not receive additional resources.

receiver-service-
class-report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific service class named in the
receiver-service-class-name field.

adjustment-fail-
reason

String
Enum

The reason why the adjustment failed. Values are:
v "not-enough-capacity" — The sum of the capacity that could be given up

by all the available donors in the group was not enough to meet the
capacity increase request of the intended receiver.

v "no-potential-donors" — The group did not contain any potential donors
so no assessments for increased capacity could be sent.

v "entitled-capacity-not-achievable" — The extra capacity required to be
added to the entitled capacity would have pushed the total beyond the
maximum entitled capacity.

v "processor-not-fully-utilized" — The virtual server is not fully using the
processors it already has, so adding more will not have any effect.

v "requested-more-shares-than-max" — More shares than the maximum
allowed for this virtual server were requested.

v "not-enough-virtual-cpus" — Not enough virtual CPUs were available for
the projected required total consumed capacity to be achieved.

v "unknown" — Unknown uncategorized failure reason.

428 HMC Web Services API

Description

The Generate Workload Resource Group Resource Adjustments Report operation generates a report
that contains the following information for a specific workload resource group over the requested time
interval:
v A list of resource adjustments that zManager successfully made to maintain specified performance

goals. For successful adjustments, the report includes:
– A list of workload resource groups and the virtual servers that received additional resources

(receivers)
– A list of workload resource groups and the virtual servers that donated the additional resources

(donors)
v A list of resource adjustments that zManager attempted but failed to make, along with a reason for the

failure.

“Response body contents” on page 426 describes the full list of data that is returned in the report for this
workload resource group.

Additional types of resource adjustment reports are available. This particular generate-workload-resource-
group-resource-adjustments-report operation generates a resource adjustments report for a specific
workload over the requested time period. What this means is that it will contain entries for all
adjustments that affected the particular workload submitted; meaning all of the entries returned will
involve that specific workload either having received additional resources, or having been forced to give
up (donate) some of its resources.

If reporting data is not available for the requested time interval, an empty response object is provided
and the operation completes successfully. An error response is returned if the targeted ensemble does not
exist or if you do not have the requirements listed in “Authorization requirements.”

The request body is validated against the schema described in “Request body contents” on page 426. If
the request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the ensemble object passed in the request URI.
v Action/task permission to the Workloads Report task.

HTTP status and reason codes

On successful completion, HTTP status code 200 (OK) is returned and the response body is provided as
described in “Response body contents” on page 426.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object access permission to
the object.

Chapter 13. Workload resource group management 429

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Generate Virtual Servers Report
Use the Generate Virtual Servers Report operation to create a custom on-demand report that shows all
virtual servers that were members of a particular workload resource group over a requested time period.
The report is based on historical performance management data that was retained over that time period.

HTTP method and URI
POST /api/ensembles/{ensemble-id}/performance-management/operations/generate-virtual-servers-report

In this request, the URI variable {ensemble-id} is the object ID of the ensemble object for which you are
requesting a virtual server report.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Req/Opt Description

report-interval-
start-time

Integer Required Standard date/time value indicating the requested starting date and
time of the report to be generated. The standard time value is
defined as the number of elapsed milliseconds after midnight on 1
January 1970.

report-interval-
duration

Integer Required The length, in minutes, of the interval this report covers, starting
from the value specified for the report-interval-start-time field. This
value must be greater than 0.

workload-report-id String Required The identifier used by the performance management reporting to
keep track of reporting data for the specific workload resource
group for which the report is being requested.
Note: This value is the same as one of the workload-report-id
values that are returned in the Workload Resource Groups Report
for this same interval.

POST /api/ensembles/12345678-1234-1234-1234-123456789000/performance-management/operations/
generate-workload-resource-group-resource-adjustments-report
{
"report-interval-start-time": 1296149252662,
"report-interval-duration": 60,
"workload-report-id": "Payroll Workload Resource Group"

}

Figure 225. Generate Workload Resource Group Resource Adjustments Report: Request

430 HMC Web Services API

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

report-interval-
start-time

Integer Standard date/time value indicating the requested starting date and time of
the report to be generated. The standard time value is defined as the number
of elapsed milliseconds after midnight on 1 January 1970.
Note: The returned value might differ from the requested time if no report
data was available at the requested time, but data was available starting
later within the requested interval.

report-interval-
duration

Integer The length, in minutes, of the interval this report covers, starting from the
value specified for the report-interval-start-time field. This value must be
greater than 0.
Note: The returned value might differ from the requested duration if report
data was not available for the entire requested interval, but data was
available for a shorter duration within that same requested interval.

workload-name String The displayable name of the workload resource group.

workload-report-id String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific workload resource group named
in the workload-name field.

report-virtual-
servers

Array of
objects

Array of nested virtual-server-report-entry objects.

Each nested virtual-server-report-entry object contains the following fields:

Field name Type Description

virtual-server-name String The displayable name of the virtual server.

virtual-server-
report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific virtual server named in the
virtual-server-name field.

hypervisor-type String The value of the type property of the virtualization host. See the
virtualization host “Data model” on page 163 for more details about the
valid values of this property.

hypervisor-name String The displayable name of the hypervisor under which this virtual server was
running.

hypervisor-report-id String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific hypervisor under which this
virtual server was running. (Hypervisor names returned in the
hypervisor-name field are not unique).

defined-cpc-name String The name of the central processor complex (CPC) with which this virtual
server was associated.

was-active Boolean Indicates whether this virtual server was actually active during this reporting
interval. It will be true if it was active and false if it was not active. If this
field is false, none of the fields in this next table this one can have data; so in
that case none of the fields below here will be returned.

os-name String The name of the operating system image that is running on the virtual server
as known to its operating system. Optional: This field is returned only if the
virtual server was active and a guest platform management provider was
running on the virtual server during this interval.

Chapter 13. Workload resource group management 431

Field name Type Description

os-type String The type of operating system that is running on the virtual server. Optional:
This field is returned only if the virtual server was active and a guest
platform management provider was running on the virtual server during this
interval.

os-level String The release level of the operating system that is running on the virtual
server. Optional: This field is returned only if the virtual server was active
and a guest platform management provider was running on the virtual
server during this interval.

hostname-ipaddr String The host name (or IP address) of the virtual server. Optional: This field is
returned only if the virtual server was active and a guest platform
management provider was running on the virtual server during this interval.

virtual-processors String The number of virtual processors associated with this virtual server.
Optional: This field is returned only if the virtual server was active during
this interval.

allocated-memory String For the x Hyp, PowerVM, and PR/SM hypervisor types, this field contains
the allocated memory (in MB) configured for the virtual server. For z/VM,
this field contains the amount of virtual memory currently resident in real
memory for the guest. Optional: This field is returned only if the virtual
server was active during this interval.

physical-cpu-
utilization-percent

Number The physical processor utilization percentage (%) of the virtual server. This
percentage is in fractional form (between 0 and 1 inclusive). Optional: This
field is returned only if the virtual server was active during this interval.

hypervisor-cpu-delay-
percent

Number The hypervisor processing unit delay in fractional form (between 0 and 1
inclusive). This field is returned for the following hypervisors only: z/VM
and PowerVM. In the case of z/VM, a value is available for this field only if
sampling is turned on for the guest. Optional: This field is returned only if
the virtual server was active during this interval and if the hypervisor type
supports this information.

idle-time-percent Number The idle time percentage (%) of the virtual server. It is the percentage of total
time that the virtual server had no work (that is, no application processes or
internal hypervisor specific process states). This percentage is in fractional
form (between 0 and 1 inclusive). Optional: This field is returned only if the
virtual server was active during this interval and if the hypervisor type
supports this information. For z/VM, this data is available only when
sampling is enabled and started. For PowerVM and PR/SM, idle time data is
not available.

other-time-percent Number The percentage (%) of total time that miscellaneous hypervisor specific
internal process states had control for this virtual server. In other words, the
percentage of time that the virtual server was not idle but also was not in a
state of active CPU utilization or hypervisor CPU delay. This percentage is in
fractional form (between 0 and 1 inclusive). Optional: This field is returned
only if the virtual server was active during this interval and if the hypervisor
type supports this information. For z/VM, this data is available only when
sampling is enabled and started. For PowerVM and PR/SM, other time data
is not available.

service-class-name String The displayable name of the service class. Optional: This field is returned
only if the virtual server was active and if the virtual server was associated
with a specific service class within the requested workload resource group
during this interval.

service-class-report-
id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific service class named in the
service-class-name field. Optional: This field is returned only if the
service-class-name field is returned.

432 HMC Web Services API

Field name Type Description

pi-value Number The average performance index (PI) value calculated over this reporting
interval for the service class returned in the service-class-name field. This
field is not returned if the virtual server was not active or if a PI value could
not be calculated.

os-cpu-using-samples-
percent

Number The percentage of CPU using samples from among the total samples. For
example, if there are 10 CPU using samples out of a total of 10 samples, then
CPU using samples is 100% (because out of the total samples, all are CPU
using samples). This percentage is in fractional form (between 0 and 1
inclusive). Optional: This field is returned only if the virtual server was
active and a guest platform management provider was running on the
virtual server during this interval.

os-cpu-delay-samples-
percent

Number The percentage of CPU delay samples from among the total samples. For
example, if there are 10 CPU delay samples and 10 samples that are not CPU
delay samples, then CPU delay samples is 50% (because out of the total
samples half are CPU delay samples). This percentage is in fractional form
(between 0 and 1 inclusive). Optional: This field is returned only if the
virtual server was active and a guest platform management provider was
running on the virtual server during this interval.

os-io-delay-samples-
percent

Number The percentage of I/O delay samples from among the total samples. The
percent I/O delay is the percent of samples taken when work was delayed
for non-paging DASD I/O. The I/O delay includes IOS queue, subchannel
pending, and control unit queue delays. For example, if there are 10 I/O
delay samples and 10 samples that are not I/O delay samples, then I/O
delay samples is 50% (because out of the total samples half are I/O delay
samples). This percentage is in fractional form (between 0 and 1 inclusive).
Optional: This field is returned only if the virtual server was active and a
guest platform management provider was running on the virtual server
during this interval.

os-page-delay-
samples-percent

Number The percentage of page delay samples from among the total samples. The
percent page delay is the percent of samples when the address space
experienced page faults in cross-memory access, and the page faults were
resolved from auxiliary storage. For example, if there are 10 page delay
samples and 10 samples that are not page delay samples, then page delay
samples is 50% (because out of the total samples half are page delay
samples). This percentage is in fractional form (between 0 and 1 inclusive).
Optional: This field is returned only if the virtual server was active and a
guest platform management provider was running on the virtual server
during this interval.

Description

The Generate Virtual Servers Report operation generates a report that contains the following information
for a specific workload resource group over the requested time interval:
v A list of all virtual servers that were members in that specific workload resource group for which

historical reporting information is available
v For each virtual server:

– The unique performance reporting identifier for the virtual server
– The name and unique performance reporting identifier of the hypervisor under which the virtual

server was running
– An indication of whether the virtual server was active over the reporting interval.

“Response body contents” on page 431 describes the full list of data that is returned in this report for
each virtual server. To request more detailed performance reporting data, you can use the returned
virtual-server-report-id, hypervisor-report-id, and service-class-report-id properties as input for
additional report operations.

Chapter 13. Workload resource group management 433

If reporting data is not available for the requested time interval, an empty response object is provided
and the operation completes successfully. An error response is returned if the targeted ensemble does not
exist or if you do not have the requirements listed in “Authorization requirements.”

The request body is validated against the schema described in “Request body contents” on page 430. If
the request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the ensemble object passed in the request URI.
v Action/task permission to the Virtual Servers Report task.

HTTP status and reason codes

On successful completion, HTTP status code 200 (OK) is returned and the response body is provided as
described in “Response body contents” on page 431.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object access permission to
the object.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Generate Virtual Server CPU Utilization Report
Use the Generate Virtual Server CPU Utilization Report operation to create a custom on-demand report
that shows the processor (CPU) utilization for a specific virtual server over a requested time period. The
report is based on historical performance management data that was retained over that time period.

POST /api/ensembles/12345678-1234-1234-1234-123456789000/performance-management/operations/
generate-virtual-servers-report
{
"report-interval-start-time": 1296149252662,
"report-interval-duration": 60,
"workload-report-id": "Payroll Workload Resource Group"

}

Figure 226. Generate Virtual Servers Report: Request

434 HMC Web Services API

HTTP method and URI
POST /api/ensembles/{ensemble-id}/performance-management/operations/generate-virtual-server-
cpu-utilization-report

In this request, the URI variable {ensemble-id} is the object ID of the ensemble object for which you are
requesting a virtual server CPU utilization report.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

report-interval-
start-time

Integer Required Standard date/time value indicating the requested starting date and
time of the report to be generated. The standard time value is
defined as the number of elapsed milliseconds after midnight on 1
January 1970.

report-interval-
duration

Integer Required The length, in minutes, of the interval this report covers, starting
from the value specified for the report-interval-start-time field. This
value must be greater than 0.

virtual-server-
report-id

String Required An identifier used by the performance management reporting
structure to keep track of reporting data for the specific virtual
server named in the virtual-server-name field. This value is the
same as one of the virtual-server-report-id values that are returned
in the Virtual Servers Report. Alternatively, you can supply the
object-id property value of an existing virtual server object.

hypervisor-report-
id

String Required An identifier used by the performance management reporting
structure to keep track of reporting data for the specific hypervisor
under which this virtual server was running. (Hypervisor names
returned in the hypervisor-name field are not unique). This value is
the same as the hypervisor-report-id value that is returned for this
virtual server in the Virtual Servers Report. Alternatively, you can
supply the object-id property value of an existing virtualization
host object.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

report-interval-
start-time

Integer Standard date/time value indicating the requested starting date and time of
the report to be generated. The standard time value is defined as the number
of elapsed milliseconds after midnight on 1 January 1970.
Note: The returned value might differ from the requested time if no report
data was available at the requested time, but data was available starting
later within the requested interval.

report-interval-
duration

Integer The length, in minutes, of the interval this report covers, starting from the
value specified for the report-interval-start-time field. This value must be
greater than 0.
Note: The returned value might differ from the requested duration if report
data was not available for the entire requested interval, but data was
available for a shorter duration within that same requested interval.

virtual-server-
report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific virtual server named in the
virtual-server-name field.

virtual-server-name String The displayable name of the virtual server.

Chapter 13. Workload resource group management 435

Field name Type Description

hypervisor-report-id String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific hypervisor under which this
virtual server was running. (Hypervisor names returned in the
hypervisor-name field are not unique).

hypervisor-name String The displayable name of the hypervisor under which this virtual server was
running.

cpu-utilization-data-
points

Array of
objects

Array of nested cpu-utilization-data-points objects.

Each nested cpu-utilization-data-points object contains the following fields:

Field name Type Description

cpu-utilization-time Integer Standard date/time value indicating the requested starting date and time
that this data point was taken. The standard time value is defined as the
number of elapsed milliseconds after midnight on 1 January 1970.

cpu-utilization-value Number The specific CPU utilization value recorded at the date/time in the
cpu-utilization-time field. This value is in fractional form representing a
percentage (between 0 and 1 inclusive).

Description

The Generate Virtual Server CPU Utilization Report operation generates a report that contains the
following information for a specific virtual server over the requested time interval:
v All of the individual CPU utilization data points for that virtual server that were recorded over the

requested reporting interval. Each CPU utilization data point contains both the actual CPU utilization
value and the date/time that it was recorded.

“Response body contents” on page 435 describes the full list of data that is returned in this report for
each virtual server.

If reporting data is not available for the requested time interval, an empty response object is provided
and the operation completes successfully. An error response is returned if the targeted ensemble does not
exist or if you do not have the requirements listed in “Authorization requirements.”

The request body is validated against the schema described in “Request body contents” on page 435. If
the request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the ensemble object passed in the request URI.
v Action/task permission to the Virtual Servers Report task.

HTTP status and reason codes

On successful completion, HTTP status code 200 (OK) is returned and the response body is provided as
described in “Response body contents” on page 435.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

436 HMC Web Services API

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object access permission to
the object.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Generate Virtual Server Resource Adjustments Report
Use the Generate Virtual Server Resource Adjustments Report operation to create a custom on-demand
resource adjustments report for a specific virtual server over a requested time period. The report is based
on historical performance management data that was retained over that time period.

HTTP method and URI
POST /api/ensembles/{ensemble-id}/performance-management/operations/generate-virtual-server-
resource-adjustments-report

In this request, the URI variable {ensemble-id} is the object ID of the ensemble containing the workload
resource group for which you want to receive a virtual server resource adjustments report.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

report-interval-
start-time

Integer Required Standard date/time value indicating the requested starting date and
time of the report to be generated. The standard time value is
defined as the number of elapsed milliseconds after midnight on 1
January 1970.

report-interval-
duration

Integer Required The length, in minutes, of the interval this report covers, starting
from the value specified for the report-interval-start-time field. This
value must be greater than 0.

POST /api/ensembles/12345678-1234-1234-1234-123456789000/performance-management/operations/
generate-virtual-server-cpu-utilization-report
{
"report-interval-start-time": 1296149252662,
"report-interval-duration": 60,
"virtual-server-report-id": "vs241510-5678900000-xxxxx",
"hypervisor-report-id": "phyp241510-5678900000-xxxxx"
}

Figure 227. Generate Virtual Server CPU Utilization Report: Request

Chapter 13. Workload resource group management 437

Field name Type Rqd/Opt Description

workload-report-id String Required An identifier used by the performance management reporting
structure to keep track of reporting data for the specific workload
resource group named in the workload-name field.
Note: This value is the same as one of the workload-report-id
values that are returned in the Workload Resource Groups Report
for this same interval.

virtual-server-
report-id

String Required An identifier used by the performance management reporting
structure to keep track of reporting data for the specific virtual
server named in the virtual-server-name field. This value is the
same as one of the virtual-server-report-id values that are returned
in the Virtual Servers Report. Alternatively, you can supply the
object-id property value of an existing virtual server object.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

report-interval-
start-time

Integer Standard date/time value indicating the requested starting date and time of
the report to be generated. The standard time value is defined as the number
of elapsed milliseconds after midnight on 1 January 1970.
Note: The returned value might differ from the requested time if no report
data was available at the requested time, but data was available starting
later within the requested interval.

report-interval-
duration

Integer The length, in minutes, of the interval this report covers, starting from the
value specified for the report-interval-start-time field. This value must be
greater than 0.
Note: The returned value might differ from the requested duration if report
data was not available for the entire requested interval, but data was
available for a shorter duration within that same requested interval.

workload-report-id String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific workload resource group named
in the workload-name field.

virtual-server-
report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific virtual server named in the
virtual-server-name field.

successful-resource-
adjustments

Array of
objects

Array of nested successful-resource-adjustment objects. If no successful
adjustments occurred during the requested time interval, an empty array is
returned.

failed-resource-
adjustments

Array of
objects

Array of nested failed-resource-adjustment objects. If no failed
adjustments occurred during the requested time interval, an empty array is
returned.

Each nested successful-resource-adjustment object contains the following fields:

Field name Type Description

hypervisor-type String
Enum

The value of the type property of the virtualization host. See the
virtualization host “Data model” on page 163 for more details about the
valid values of this property.

adjustment-time Integer Standard date/time value indicating the requested starting date and time of
the report to be generated. The standard time value is defined as the number
of elapsed milliseconds after midnight on 1 January 1970.

438 HMC Web Services API

Field name Type Description

receiver-virtual-
server-name

String The name of the virtual server that was given additional resources.

receiver-workload-
name

String The displayable name of the workload resource group that was given
additional resources.

receiver-workload-
report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific workload resource group named
in the receiver-workload-name field.

receiver-service-
class-name

String The displayable name of the service class within the workload resource
group that was given additional resources.

receiver-service-
class-report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific service class named in the
receiver-service-class-name field.

receiver-processing-
units-after

Number The total number of processing units the receiver had after the additional
resources were given to it.

Processing units are returned in the units that are normal for the specific
hypervisor type of the virtual server. The units are entitled capacity for
PowerVM, and CPU shares for all other hypervisor types.

receiver-processing-
units-before

Number The total number of processing units the receiver had before the additional
resources were given to it.

Processing units are returned in the units that are normal for the specific
hypervisor type of the virtual server. The units are entitled capacity for
PowerVM, and CPU shares for all other hypervisor types.

adjustment-donors Array of
objects

Array of nested adjustment-donors objects.

Each nested adjustment-donors object contains the following fields:

Field name Type Description

donor-virtual-server-
name

String The name of a virtual server that gave up resources as part of this
adjustment.

donor-processing-
units-after

Number The total number of processing units this donor had after it gave up
resources.

Processing units are returned in the units that are normal for the specific
hypervisor type of the virtual server. The units are entitled capacity for
PowerVM, and CPU shares for all other hypervisor types.

donor-processing-
units-before

Number The total number of processing units this donor had before it gave up
resources.

Processing units are returned in the units that are normal for the specific
hypervisor type of the virtual server. The units are entitled capacity for
PowerVM, and CPU shares for all other hypervisor types.

donor-workload-names Array of
strings

The displayable names of all workload resource groups that donated
resources when this donor virtual server gave up resources.

Each nested failed-resource-adjustment object contains the following fields:

Chapter 13. Workload resource group management 439

Field name Type Description

hypervisor-type String
Enum

The value of the type property of the virtualization host. See the
virtualization host “Data model” on page 163 for more details about the
valid values of this property.

adjustment-time Integer Standard date/time value indicating the requested starting date and time of
the report to be generated. The standard time value is defined as the number
of elapsed milliseconds after midnight on 1 January 1970.

receiver-virtual-
server-name

String The name of the virtual server that needed but did not receive additional
resources.

receiver-workload-
name

String The displayable name of the workload resource group that needed but did
not receive additional resources.

receiver-workload-
report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific workload resource group named
in the receiver-workload-name field.

receiver-service-
class-name

String The displayable name of the service class within the workload resource
group that needed but did not receive additional resources.

receiver-service-
class-report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific service class named in the
receiver-service-class-name field.

adjustment-fail-
reason

String
Enum

The reason why the adjustment failed. Values are:
v "not-enough-capacity" — The sum of the capacity that could be given up

by all the available donors in the group was not enough to meet the
capacity increase request of the intended receiver.

v "no-potential-donors" — The group did not contain any potential donors
so no assessments for increased capacity could be sent.

v "entitled-capacity-not-achievable" — The extra capacity required to be
added to the entitled capacity would have pushed the total beyond the
maximum entitled capacity.

v "processor-not-fully-utilized" — The virtual server is not fully using the
processors it already has, so adding more will not have any effect.

v "requested-more-shares-than-max" — More shares than the maximum
allowed for this virtual server were requested.

v "not-enough-virtual-cpus" — Not enough virtual CPUs were available for
the projected required total consumed capacity to be achieved.

v "unknown" — Unknown uncategorized failure reason.

Description

The Generate Virtual Server Resource Adjustments Report operation generates a report that contains
the following information for a specific virtual server over the requested time interval:
v A list of resource adjustments that zManager successfully made to maintain specified performance

goals. For successful adjustments, the report includes:
– A list of workload resource groups and the virtual servers that received additional resources

(receivers)
– A list of workload resource groups and the virtual servers that donated the additional resources

(donors)
v A list of resource adjustments that zManager attempted but failed to make, along with a reason for the

failure.

“Response body contents” on page 438 describes the full list of data that is returned in the report for this
workload resource group.

Additional types of resource adjustment reports are available. This particular generate-virtual-server-
resource-adjustments-report operation generates a resource adjustments report for a specific virtual server
within a specific workload over the requested time period. What this means is that it will contain entries

440 HMC Web Services API

for all adjustments that affected the particular virtual server submitted; meaning all of the entries
returned will involve that specific virtual server either having received additional resources, or having
been forced to give up (donate) some of its resources.

If reporting data is not available for the requested time interval, an empty response object is provided
and the operation completes successfully. An error response is returned if the targeted ensemble does not
exist or if you do not have the requirements listed in “Authorization requirements.”

The request body is validated against the schema described in “Request body contents” on page 437. If
the request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the ensemble object passed in the request URI.
v Action/task permission to the Virtual Server Resource Adjustments Report task.

HTTP status and reason codes

On successful completion, HTTP status code 200 (OK) is returned and the response body is provided as
described in “Response body contents” on page 438.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object access permission to
the object.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

POST /api/ensembles/12345678-1234-1234-1234-123456789000/performance-management/operations/
generate-virtual-server-resource-adjustments-report
{
"report-interval-start-time": 1296149252662,
"report-interval-duration": 60,
"workload-report-id": "Payroll Workload Resource Group",
"virtual-server-report-id": "vs241510-5678900000-xxxxx"
}

Figure 228. Generate Virtual Server Resource Adjustments Report: Request

Chapter 13. Workload resource group management 441

Generate Hypervisor Report
Use the Generate Hypervisor Report operation to create a custom on-demand report that shows
information about a specific hypervisor and all virtual servers that were running under that hypervisor
over a requested time period. The report is based on historical performance management data that was
retained over that time period.

HTTP method and URI
POST /api/ensembles/{ensemble-id}/performance-management/operations/generate-hypervisor-report

In this request, the URI variable {ensemble-id} is the object ID of the ensemble object for which you are
requesting a hypervisor report.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

report-interval-
start-time

Integer Required Standard date/time value indicating the requested starting date and
time of the report to be generated. The standard time value is
defined as the number of elapsed milliseconds after midnight on 1
January 1970.

report-interval-
duration

Integer Required The length, in minutes, of the interval this report covers, starting
from the value specified for the report-interval-start-time field. This
value must be greater than 0.

hypervisor-report-
id

String Required An identifier used by the performance management reporting
structure to keep track of reporting data for the specific hypervisor
under which this virtual server was running. (Hypervisor names
returned in the hypervisor-name field are not unique).

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

report-interval-
start-time

Integer Standard date/time value indicating the requested starting date and time of
the report to be generated. The standard time value is defined as the number
of elapsed milliseconds after midnight on 1 January 1970.
Note: The returned value might differ from the requested time if no report
data was available at the requested time, but data was available starting
later within the requested interval.

report-interval-
duration

Integer The length, in minutes, of the interval this report covers, starting from the
value specified for the report-interval-start-time field. This value must be
greater than 0.
Note: The returned value might differ from the requested duration if report
data was not available for the entire requested interval, but data was
available for a shorter duration within that same requested interval.

hypervisor-report-id String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific hypervisor under which this
virtual server was running. (Hypervisor names returned in the
hypervisor-name field are not unique).

hypervisor-name String The displayable name of the hypervisor under which this virtual server was
running.

442 HMC Web Services API

Field name Type Description

hypervisor-type String
Enum

The value of the type property of the virtualization host. See the
virtualization host “Data model” on page 163 for more details about the
valid values of this property.

report-hypervisor-
details

Object An object that contains report details for the hypervisor itself. The format of
the returned object is described in Table 84.

report-hypervisor-
virtual-servers

Array of
objects

An array of nested objects, each representing a virtual server that was under
the control of this hypervisor during this reporting interval. The format of
the returned object depends on the value returned in the hypervisor-type
field:
v For "power-vm", see Table 85 on page 444
v For "x-hyp", see Table 86 on page 445
v For "zvm", see Table 87 on page 446
v For "prsm", see Table 88 on page 447

resource-adjustment-
report

Object If a hypervisor-level resource adjustment report is available for this same
reporting interval, this object is returned. The format of the
resource-adjustment-report object is the same as that described in “Response
body contents” on page 450 for the Generate Hypervisor Resource
Adjustments Report operation.

The report-hypervisor-details object for a hypervisor contains the fields in Table 84.

Table 84. Format of a report-hypervisor-details object

Field name Type Description

allocated-processing-
units

Number The total number of processing units that were allocated. This field is
included in the object only for the PowerVM hypervisor type.

processor-count Integer The total number of physical processors.

cpu-consumption-
percent

Number The total consumption (utilization) percentage (%) of hypervisor CPUs. This
percentage is in fractional form (between 0 and 1 inclusive). This field is
returned for the following hypervisors only: z/VM, x Hyp, and PowerVM.

shared-cp-
consumption-percent

Number The total consumption (utilization) percentage (%) of shared processors. This
percentage is in fractional form (between 0 and 1 inclusive). This field is
returned for the following hypervisor only: PR/SM.

memory-used Integer The total amount of the hypervisor memory that was in use (in MB).

total-memory Integer The total amount of memory (in MB) that was that was available to the
hypervisor.

cp-cpu-consumption-
percent

Number The total consumption (utilization) percentage (%) of the hypervisor's
general purpose CPUs. It is in fractional form (between 0 and 1 inclusive).
This field is returned for the following hypervisor only: z/VM.

ifl-cpu-consumption-
percent

Number The total consumption (utilization) percentage (%) of the hypervisor's IFL
CPUs. It is in fractional form (between 0 and 1 inclusive). This field is
returned for the following hypervisor only: z/VM.

other-cpu-
consumption-percent

Number The total consumption (utilization) percentage (%) of the hypervisor's CPU
types other than CPs and IFLs. It is in fractional form (between 0 and 1
inclusive). This field is returned for the following hypervisor only: z/VM.

Each nested report-hypervisor-virtual-servers object for a PowerVM hypervisor contains the fields in
Table 85 on page 444.

Chapter 13. Workload resource group management 443

Table 85. Format of a PowerVM report-hypervisor-virtual-servers object

Field name Type Description

virtual-server-name String The displayable name of the virtual server.

workload-processor-
mgmt-status

String
Enum

The processor management status, which is one of the following values:
v "active"
v "not-active"

workload-processor-
mgmt-status-reason

String
Enum

A further explanation of the reason for processor management status
returned in the workload-processor-mgmt-status field. Values are:
v "none"– the value of workload-processor-mgmt-status is "active"
v "mgmt-disabled-global"– the option to enable processor performance

management at the hypervisor type level was not set for this hypervisor
type

v "mgmt-disabled-vs"– the option to enable processor performance
management at the virtual server level was not set for this virtual server

v "dedicated-proc-mode"– the virtual server is running in dedicated
processor mode, and only shared mode is supported for processor
management

v "internal-error"– An internal error has occurred.
v "network-connection-failure"– the virtual server has no connectivity to its

hypervisor.
v "virtual-server-not-active"– the virtual server itself was not up and active

during this reporting interval

was-active Boolean Indicates whether this virtual server was active during this reporting
interval. The value is "true" if the virtual server was active or "false" if it
was not active.

If the value for this field is false, none of the remaining fields in this object
can have data so they are not returned.

virtual-processor-
count

Integer This value is the number of virtual processors that were associated with this
virtual server during the reporting interval. Optional: This field is returned
only if the virtual server was active during this interval.

min-virtual-
processors

Integer The minimum number of virtual processors allowed for this virtual server.
Optional: This field is returned only if the virtual server was active during
this interval.

max-virtual-
processors

Integer The maximum number of virtual processors allowed for this virtual server.
Optional: This field is returned only if the virtual server was active during
this interval.

consumed-processors Number The consumed processors metric for this virtual server. Optional: This field
is returned only if the virtual server was active during this interval.

was-dedicated Boolean Indicates whether this virtual server was running in dedicated mode (as
opposed to shared mode) during this reporting interval. The value is "true"
if the virtual server was in dedicated mode or "false" if it was in shared
mode. Optional: This field is returned only if the virtual server was active
during this interval.

was-capped Boolean Indicates whether this virtual server was capped during this reporting
interval. The value is "true" if the virtual server was capped or "false" if it
was not capped. Optional: This field is returned only if the virtual server
was active during this interval.

hypervisor-cpu-delay-
percent

Number The hypervisor processing unit delay in fractional form (between 0 and 1
inclusive). This field is returned for the following hypervisors only: z/VM
and PowerVM. In the case of z/VM, a value is available for this field only if
sampling is turned on for the guest. This field is returned only if the virtual
server was active and running in shared mode (as opposed to dedicated
mode) during this interval.

444 HMC Web Services API

Table 85. Format of a PowerVM report-hypervisor-virtual-servers object (continued)

Field name Type Description

processing-units Number The number of processing units that were assigned to this virtual server
during the reporting interval. Optional: This field is returned only if the
virtual server was active during this interval.

initial-processing-
units

Number The number of processing units that were initially assigned to this virtual
server. Optional: This field is returned only if the virtual server was active
during this interval.

min-processing-units Number The minimum number of processing units that this virtual server could use.
Optional: This field is returned only if the virtual server was active during
this interval.

max-processing-units Number The maximum number of processing units that this virtual server could use.
Optional: This field is returned only if the virtual server was active during
this interval.

min-memory Integer The minimum amount of memory (in MB) that this virtual server could use.
Optional: This field is returned only if the virtual server was active during
this interval.

max-memory Integer The maximum amount of memory (in MB) that this virtual server could use.
Optional: This field is returned only if the virtual server was active during
this interval.

Each nested report-hypervisor-virtual-servers object for an x Hyp hypervisor contains the fields in
Table 86.

Table 86. Format of an x Hyp report-hypervisor-virtual-servers object

Field name Type Description

virtual-server-name String The displayable name of the virtual server.

was-active Boolean Indicates whether this virtual server was active during this reporting
interval. The value is "true" if the virtual server was active or "false" if it
was not active.

If the value for this field is false, none of the remaining fields in this object
can have data so they are not returned.

virtual-processor-
count

Integer This value is the number of virtual processors that were associated with this
virtual server during the reporting interval. Optional: This field is returned
only if the virtual server was active during this interval.

consumed-processors Number The consumed processors metric for this virtual server. Optional: This field
is returned only if the virtual server was active during this interval.

hypervisor-cpu-delay-
percent

Number The hypervisor processing unit delay in fractional form (between 0 and 1
inclusive). This field is returned for the following hypervisors only: z/VM
and PowerVM. In the case of z/VM, a value is available for this field only if
sampling is turned on for the guest. Optional: This field is returned only if
the virtual server was active and a guest platform management provider
was running on the virtual server during this interval.

memory-in-use Integer The amount of memory (in MB) that was actually in use by this virtual
server. Optional: This field is returned only if the virtual server was active
during this interval.

allocated-memory Integer For the x Hyp, PowerVM, and PR/SM hypervisor types, this field contains
the allocated memory (in MB) configured for the virtual server. Optional:
This field is returned only if the virtual server was active during this
interval.

Chapter 13. Workload resource group management 445

Each nested report-hypervisor-virtual-servers object for a z/VM hypervisor contains the fields in Table 87.

Table 87. Format of a z/VM report-hypervisor-virtual-servers object

Field name Type Description

virtual-server-name String The displayable name of the virtual server.

workload-processor-
mgmt-status

String
Enum

The processor management status, which is one of the following values:
v "active"
v "not-active"

workload-processor-
mgmt-status-reason

String
Enum

A further explanation of the reason for processor management status
returned in the workload-processor-mgmt-status field. Values are:
v "none"– the value of workload-processor-mgmt-status is "active"
v "mgmt-disabled-global"– the option to enable processor performance

management at the hypervisor type level was not set for this hypervisor
type

v "mgmt-disabled-vs"– the option to enable processor performance
management at the virtual server level was not set for this virtual server

v "absolute-share-mode"– the virtual server is running in absolute share
mode, and only relative share mode is supported for processor
management

v "sampling-disabled"– z/VM sampling was not enabled. Sampling must be
enabled for processor management under z/VM.

v "internal-error"– An internal error has occurred.
v "network-connection-failure"– the virtual server has no connectivity to its

hypervisor.
v "virtual-server-not-active"– the virtual server itself was not up and active

during this reporting interval

was-active Boolean Indicates whether this virtual server was active during this reporting
interval. The value is "true" if the virtual server was active or "false" if it
was not active.

If the value for this field is false, none of the remaining fields in this object
can have data so they are not returned.

virtual-processor-
count

Integer This value is the number of virtual processors that were associated with this
virtual server during the reporting interval. Optional: This field is returned
only if the virtual server was active during this interval.

consumed-processors Number The consumed processors metric for this virtual server. Optional: This field
is returned only if the virtual server was active during this interval.

hypervisor-cpu-delay-
percent

Number The hypervisor processing unit delay in fractional form (between 0 and 1
inclusive). This field is returned for the following hypervisors only: z/VM
and PowerVM. In the case of z/VM, a value is available for this field only if
sampling is turned on for the guest. This field is returned only if the virtual
server was active and sampling is enabled during this interval.

share-mode String
Enum

The processor share mode configured for this virtual server during this
reporting interval. Valid values are "absolute" and "relative". Optional: This
field is returned only if the virtual server was active during this interval.

share-limit String
Enum

The processor share limit configured for this virtual server during this
reporting interval. Valid values are "soft", "hard" and "none". Optional: This
field is returned only if the virtual server was active during this interval.

shares Integer The number of processor shares that were associated with this virtual server
during this reporting interval. Optional: This field is returned only if the
virtual server was active and running in relative share mode (as opposed to
absolute share mode) during this interval.

446 HMC Web Services API

Table 87. Format of a z/VM report-hypervisor-virtual-servers object (continued)

Field name Type Description

min-shares Integer The minimum number of processor shares that could be dynamically
assigned to the virtual server during this reporting interval. Optional: This
field is returned only if the virtual server was active and running in relative
share mode (as opposed to absolute share mode) during this interval.

max-shares Integer The maximum number of processor shares that could be dynamically
assigned to the virtual server during this reporting interval. Optional: This
field is returned only if the virtual server was active and running in relative
share mode (as opposed to absolute share mode) during this interval.

memory-used Integer The total amount of the hypervisor memory that was in use (in MB).
Optional: This field is returned only if the virtual server was active during
this interval.

Each nested report-hypervisor-virtual-servers object for a PR/SM hypervisor contains the fields in
Table 88.

Table 88. Format of a PR/SM report-hypervisor-virtual-servers object

Field name Type Description

virtual-server-name String The displayable name of the virtual server.

was-active Boolean Indicates whether this virtual server was active during this reporting
interval. The value is "true" if the virtual server was active or "false" if it
was not active.

If the value for this field is false, none of the remaining fields in this object
can have data so they are not returned.

logical-processor-
count

Integer The number of logical processors that were associated with this virtual
server during this reporting interval. Optional: This field is returned only if
the virtual server was active during this interval.

consumed-processors Number The consumed processors metric for this virtual server. Optional: This field
is returned only if the virtual server was active during this interval.

allocated-memory Integer For the x Hyp, PowerVM, and PR/SM hypervisor types, this field contains
the allocated memory (in MB) configured for the virtual server. Optional:
This field is returned only if the virtual server was active during this
interval.

was-dedicated Boolean Indicates whether this virtual server was running in dedicated mode (as
opposed to shared mode) during this reporting interval. The value is "true"
if the virtual server was in dedicated mode or "false" if it was in shared
mode. Optional: This field is returned only if the virtual server was active
during this interval.

cpu-weight Integer The CPU weight that was associated to this virtual server during this
reporting interval. This field is returned only if the virtual server was active
and running in shared mode (as opposed to dedicated mode) during this
interval.

min-cpu-weight Integer The minimum CPU weight that this virtual server could use. This field is
returned only if the virtual server was active and running in shared mode
(as opposed to dedicated mode) during this interval.

max-cpu-weight Integer The maximum CPU weight that this virtual server could use. This field is
returned only if the virtual server was active and running in shared mode
(as opposed to dedicated mode) during this interval.

Chapter 13. Workload resource group management 447

Description

The Generate Hypervisor Report operation generates a report that contains the following information for
a specific hypervisor over the requested time interval:
v Information about the hypervisor itself, including the total number of physical processors and total

consumption percentage of those processors
v A list of all virtual servers that were running under this specific hypervisor for which historical

reporting information is available
v For each virtual server:

– An indication of whether the virtual server was active over the reporting interval
– Additional information such as processor counts and memory statistics.

“Response body contents” on page 442 describes the full list of data that is returned in this report for
each virtual server. The information available for virtual servers varies depending on the hypervisor type.

If reporting data is not available for the requested time interval, an empty response object is provided
and the operation completes successfully. An error response is returned if the targeted ensemble does not
exist or if you do not have the requirements listed in “Authorization requirements.”

The request body is validated against the schema described in “Request body contents” on page 442. If
the request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the ensemble object passed in the request URI.
v Action/task permission to the Hypervisor Report task.

HTTP status and reason codes

On successful completion, HTTP status code 200 (OK) is returned and the response body is provided as
described in “Response body contents” on page 442.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object access permission to
the object.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

448 HMC Web Services API

Example HTTP interaction

Generate Hypervisor Resource Adjustments Report
Use the Generate Hypervisor Resource Adjustments Report operation to create a custom on-demand
resource adjustments report for a specific hypervisor over a requested time period. The report is based on
historical performance management data that was retained over that time period.

HTTP method and URI
POST /api/ensembles/{ensemble-id}/performance-management/operations/generate-hypervisor-
resource-adjustments-report

In this request, the URI variable {ensemble-id} is the object ID of the ensemble containing the workload
resource group for which you want to receive a hypervisor resource adjustments report.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

report-interval-
start-time

Integer Required Standard date/time value indicating the requested starting date and
time of the report to be generated. The standard time value is
defined as the number of elapsed milliseconds after midnight on 1
January 1970.

report-interval-
duration

Integer Required The length, in minutes, of the interval this report covers, starting
from the value specified for the report-interval-start-time field. This
value must be greater than 0.

hypervisor-report-
id

String Required An identifier used by the performance management reporting
structure to keep track of reporting data for the specific hypervisor
under which this virtual server was running. (Hypervisor names
returned in the hypervisor-name field are not unique). This value is
the same as the hypervisor-report-id value that is returned for this
virtual server in the Virtual Servers Report. Alternatively, you can
supply the object-id property value of an existing virtualization
host object.

POST /api/ensembles/12345678-1234-1234-1234-123456789000/performance-management/operations/
generate-hypervisor-report
{
"report-interval-start-time": 1296149252662,
"report-interval-duration": 60,
"hypervisor-report-id": "phyp241510-5678900000-xxxxx"
}

Figure 229. Generate Hypervisor Report: Request

Chapter 13. Workload resource group management 449

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

report-interval-
start-time

Integer Standard date/time value indicating the requested starting date and time of
the report to be generated. The standard time value is defined as the number
of elapsed milliseconds after midnight on 1 January 1970.
Note: The returned value might differ from the requested time if no report
data was available at the requested time, but data was available starting
later within the requested interval.

report-interval-
duration

Integer The length, in minutes, of the interval this report covers, starting from the
value specified for the report-interval-start-time field. This value must be
greater than 0.
Note: The returned value might differ from the requested duration if report
data was not available for the entire requested interval, but data was
available for a shorter duration within that same requested interval.

hypervisor-report-id String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific hypervisor under which this
virtual server was running. (Hypervisor names returned in the
hypervisor-name field are not unique).

successful-resource-
adjustments

Array of
objects

Array of nested successful-resource-adjustment objects. If no successful
adjustments occurred during the requested time interval, an empty array is
returned.

failed-resource-
adjustments

Array of
objects

Array of nested failed-resource-adjustment objects. If no failed
adjustments occurred during the requested time interval, an empty array is
returned.

Each nested successful-resource-adjustment object contains the following fields:

Field name Type Description

hypervisor-type String
Enum

The value of the type property of the virtualization host. See the
virtualization host “Data model” on page 163 for more details about the
valid values of this property.

adjustment-time Integer Standard date/time value indicating the requested starting date and time of
the report to be generated. The standard time value is defined as the number
of elapsed milliseconds after midnight on 1 January 1970.

receiver-virtual-
server-name

String The name of the virtual server that was given additional resources.

receiver-workload-
name

String The displayable name of the workload resource group that was given
additional resources.

receiver-workload-
report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific workload resource group named
in the receiver-workload-name field.

receiver-service-
class-name

String The displayable name of the service class within the workload resource
group that was given additional resources.

receiver-service-
class-report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific service class named in the
receiver-service-class-name field.

450 HMC Web Services API

Field name Type Description

receiver-processing-
units-after

Number The total number of processing units the receiver had after the additional
resources were given to it.

Processing units are returned in the units that are normal for the specific
hypervisor type of the virtual server. The units are entitled capacity for
PowerVM, and CPU shares for all other hypervisor types.

receiver-processing-
units-before

Number The total number of processing units the receiver had before the additional
resources were given to it.

Processing units are returned in the units that are normal for the specific
hypervisor type of the virtual server. The units are entitled capacity for
PowerVM, and CPU shares for all other hypervisor types.

adjustment-donors Array of
objects

Array of nested adjustment-donors objects.

Each nested adjustment-donors object contains the following fields:

Field name Type Description

donor-virtual-server-
name

String The name of a virtual server that gave up resources as part of this
adjustment.

donor-processing-
units-after

Number The total number of processing units this donor had after it gave up
resources.

Processing units are returned in the units that are normal for the specific
hypervisor type of the virtual server. The units are entitled capacity for
PowerVM, and CPU shares for all other hypervisor types.

donor-processing-
units-before

Number The total number of processing units this donor had before it gave up
resources.

Processing units are returned in the units that are normal for the specific
hypervisor type of the virtual server. The units are entitled capacity for
PowerVM, and CPU shares for all other hypervisor types.

donor-workload-names Array of
strings

The displayable names of all workload resource groups that donated
resources when this donor virtual server gave up resources.

Each nested failed-resource-adjustment object contains the following fields:

Field name Type Description

hypervisor-type String
Enum

The value of the type property of the virtualization host. See the
virtualization host “Data model” on page 163 for more details about the
valid values of this property.

adjustment-time Integer Standard date/time value indicating the requested starting date and time of
the report to be generated. The standard time value is defined as the number
of elapsed milliseconds after midnight on 1 January 1970.

receiver-virtual-
server-name

String The name of the virtual server that needed but did not receive additional
resources.

receiver-workload-
name

String The displayable name of the workload resource group that needed but did
not receive additional resources.

receiver-workload-
report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific workload resource group named
in the receiver-workload-name field.

Chapter 13. Workload resource group management 451

Field name Type Description

receiver-service-
class-name

String The displayable name of the service class within the workload resource
group that needed but did not receive additional resources.

receiver-service-
class-report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific service class named in the
receiver-service-class-name field.

adjustment-fail-
reason

String
Enum

The reason why the adjustment failed. Values are:
v "not-enough-capacity" — The sum of the capacity that could be given up

by all the available donors in the group was not enough to meet the
capacity increase request of the intended receiver.

v "no-potential-donors" — The group did not contain any potential donors
so no assessments for increased capacity could be sent.

v "entitled-capacity-not-achievable" — The extra capacity required to be
added to the entitled capacity would have pushed the total beyond the
maximum entitled capacity.

v "processor-not-fully-utilized" — The virtual server is not fully using the
processors it already has, so adding more will not have any effect.

v "requested-more-shares-than-max" — More shares than the maximum
allowed for this virtual server were requested.

v "not-enough-virtual-cpus" — Not enough virtual CPUs were available for
the projected required total consumed capacity to be achieved.

v "unknown" — Unknown uncategorized failure reason.

Description

The Generate Hypervisor Resource Adjustments Report operation generates a report that contains the
following information for a specific hypervisor over the requested time interval:
v A list of resource adjustments that zManager successfully made to maintain specified performance

goals. For successful adjustments, the report includes:
– A list of workload resource groups and the virtual servers that received additional resources

(receivers)
– A list of workload resource groups and the virtual servers that donated the additional resources

(donors)
v A list of resource adjustments that zManager attempted but failed to make, along with a reason for the

failure.

“Response body contents” on page 450 describes the full list of data that is returned in the report for this
workload resource group.

Additional types of resource adjustment reports are available. This particular generate-hypervisor-
resource-adjustments-report operation generates a resource adjustments report for a specific hypervisor
over the requested time period. What this means is that it will contain entries for all adjustments that
affected virtual servers within the particular hypervisor submitted; meaning all of the entries returned
will involve a virtual server under the control of that specific hypervisor either having received
additional resources, or having been forced to give up (donate) some of its resources.

If reporting data is not available for the requested time interval, an empty response object is provided
and the operation completes successfully. An error response is returned if the targeted ensemble does not
exist or if you do not have the requirements listed in “Authorization requirements” on page 453.

The request body is validated against the schema described in “Request body contents” on page 449. If
the request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered.

452 HMC Web Services API

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the ensemble object passed in the request URI.
v Action/task permission to the Hypervisor Report task.

HTTP status and reason codes

On successful completion, HTTP status code 200 (OK) is returned and the response body is provided as
described in “Response body contents” on page 450.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object access permission to
the object.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Generate Service Classes Report
Use the Generate Service Classes Report operation to create a custom on-demand report that shows all
service classes within a particular workload resource group over a requested time period. The report is
based on historical performance management data that was retained over that time period.

HTTP method and URI
POST /api/ensembles/{ensemble-id}/performance-management/operations/generate-service-classes-report

In this request, the URI variable {ensemble-id} is the object ID of the ensemble object for which you are
requesting a service classes report.

POST /api/ensembles/12345678-1234-1234-1234-123456789000/performance-management/operations/
generate-hypervisor-resource-adjustments-report
{
"report-interval-start-time": 1296149252662,
"report-interval-duration": 60,
"hypervisor-report-id": "phyp241510-5678900000-xxxxx"
}

Figure 230. Generate Hypervisor Resource Adjustments Report: Request

Chapter 13. Workload resource group management 453

Request body contents

The request body is a JSON object with the following fields:

Field name Type Req/Opt Description

report-interval-
start-time

Integer Required Standard date/time value indicating the requested starting date and
time of the report to be generated. The standard time value is
defined as the number of elapsed milliseconds after midnight on 1
January 1970.

report-interval-
duration

Integer Required The length, in minutes, of the interval this report covers, starting
from the value specified for the report-interval-start-time field. This
value must be greater than 0.

workload-report-id String Required The identifier used by the performance management reporting to
keep track of reporting data for the specific workload resource
group for which the report is being requested.
Note: This value is the same as one of the workload-report-id
values that are returned in the Workload Resource Groups Report
for this same interval.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

report-interval-
start-time

Integer Standard date/time value indicating the requested starting date and time of
the report to be generated. The standard time value is defined as the number
of elapsed milliseconds after midnight on 1 January 1970.
Note: The returned value might differ from the requested time if no report
data was available at the requested time, but data was available starting
later within the requested interval.

report-interval-
duration

Integer The length, in minutes, of the interval this report covers, starting from the
value specified for the report-interval-start-time field. This value must be
greater than 0.
Note: The returned value might differ from the requested duration if report
data was not available for the entire requested interval, but data was
available for a shorter duration within that same requested interval.

workload-name String The displayable name of the workload resource group.

workload-report-id String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific workload resource group named
in the workload-name field.

performance-policy-
name

String The displayable name of the performance policy that contains this service
class.

performance-policy-
report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific performance policy named in the
performance-policy-name field.

report-service-
classes

Array of
objects

Array of nested service-class-report-entry objects.

Each nested service-class-report-entry object contains the following fields:

454 HMC Web Services API

Field name Type Description

service-class-name String The displayable name of the service class. Optional: This field is returned
only if the virtual server was active and if the virtual server was associated
with a specific service class within the requested workload resource group
during this interval.

service-class-report-
id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific service class named in the
service-class-name field. Optional: This field is returned only if the
service-class-name field is returned.

has-hop-data Boolean Indicates whether this service class has hop level data available for this
reporting interval. The value is "true" if hop data is available or "false" if it
is not available.

goal-type String
Enum

The type of performance goal that was defined for this service class. Values
are "velocity" or "discretionary".

goal-performance-
level

String
Enum

The performance goal of the service class as defined in performance policy.
Possible values are: "fastest", "fast", "moderate", "slow", and "slowest". This
field is returned only if a velocity performance goal was defined for this
service class.

business-importance String
Enum

The business importance level that was defined for this service class. Possible
values are: "highest", "high", "medium", "low", and "lowest". This field is
returned only if a velocity performance goal was defined for this service
class.

pi-value Number The average performance index (PI) value calculated over this reporting
interval for the service class returned in the service-class-name field. This
field is not returned if the virtual server was not active or if a PI value could
not be calculated.

actual-performance-
level

String
Enum

The average level of performance that was actually measured over this
reporting interval. Possible values are: "fastest", "fast", "moderate", "slow",
and "slowest". This field is returned only if a velocity performance goal was
defined for this service class and if the performance index value could be
measured.

Description

The Generate Service Classes Report operation generates a report that contains the following
information for a specific workload resource group over the requested time interval:
v A list of all service classes within that specific workload resource group for which historical reporting

information is available
v For each service class:

– The name and unique reporting ID of the performance policy that contains the service class
– An indication of whether the service class has available hop data for this reporting interval
– Details about the service class definition, such as the type of performance goal
– The actual performance level achieved during this reporting interval.

“Response body contents” on page 454 describes the full list of data that is returned in this report for
each service class. If hop data is available for this service class (check the has-hop-data field), you can use
the service-class-report-id property as input for additional report operations related to service classes:
v “Generate Service Class Hops Report” on page 461
v “Generate Service Class Virtual Server Topology Report” on page 466

If reporting data is not available for the requested time interval, an empty response object is provided
and the operation completes successfully. An error response is returned if the targeted ensemble does not
exist or if you do not have the requirements listed in “Authorization requirements” on page 456.

Chapter 13. Workload resource group management 455

The request body is validated against the schema described in “Request body contents” on page 454. If
the request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the ensemble object passed in the request URI.
v Action/task permission to the Service Classes Report task.

HTTP status and reason codes

On successful completion, HTTP status code 200 (OK) is returned and the response body is provided as
described in “Response body contents” on page 454.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object access permission to
the object.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Generate Service Class Resource Adjustments Report
Use the Generate Service Class Resource Adjustments Report operation to create a custom on-demand
resource adjustments report for a specific service class within a workload resource group over a requested
time period. The report is based on historical performance management data that was retained over that
time period.

HTTP method and URI
POST /api/ensembles/{ensemble-id}/performance-management/operations/
generate-service-class-resource-adjustments-report

POST /api/ensembles/12345678-1234-1234-1234-123456789000/performance-management/operations/
generate-service-classes-report
{
"report-interval-start-time": 1296149252662,
"report-interval-duration": 60,
"workload-report-id": "Payroll Workload Resource Group"

}

Figure 231. Generate Service Classes Report: Request

456 HMC Web Services API

In this request, the URI variable {ensemble-id} is the object ID of the ensemble containing the workload
resource group for which you want to receive a service class resource adjustments report.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

report-interval-
start-time

Integer Required Standard date/time value indicating the requested starting date and
time of the report to be generated. The standard time value is
defined as the number of elapsed milliseconds after midnight on 1
January 1970.

report-interval-
duration

Integer Required The length, in minutes, of the interval this report covers, starting
from the value specified for the report-interval-start-time field. This
value must be greater than 0.

workload-report-id String Required An identifier used by the performance management reporting
structure to keep track of reporting data for the specific workload
resource group named in the workload-name field.
Note: This value is the same as one of the workload-report-id
values that are returned in the Workload Resource Groups Report
for this same interval.

service-class-
report-id

String Required An identifier used by the performance management reporting
structure to keep track of reporting data for the specific service class
named in the service-class-name field.
Note: This value is the same as the service-class-report-id value
that is returned in one of the service class entries in the Service
Classes Report for this same interval.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

report-interval-
start-time

Integer Standard date/time value indicating the requested starting date and time of
the report to be generated. The standard time value is defined as the number
of elapsed milliseconds after midnight on 1 January 1970.
Note: The returned value might differ from the requested time if no report
data was available at the requested time, but data was available starting
later within the requested interval.

report-interval-
duration

Integer The length, in minutes, of the interval this report covers, starting from the
value specified for the report-interval-start-time field. This value must be
greater than 0.
Note: The returned value might differ from the requested duration if report
data was not available for the entire requested interval, but data was
available for a shorter duration within that same requested interval.

workload-name String The displayable name of the workload resource group.

workload-report-id String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific workload resource group named
in the workload-name field.

service-class-name String The displayable name of the service class.

service-class-report-
id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific service class named in the
service-class-name field.

Chapter 13. Workload resource group management 457

Field name Type Description

successful-resource-
adjustments

Array of
objects

Array of nested successful-resource-adjustment objects. If no successful
adjustments occurred during the requested time interval, an empty array is
returned.

failed-resource-
adjustments

Array of
objects

Array of nested failed-resource-adjustment objects. If no failed
adjustments occurred during the requested time interval, an empty array is
returned.

Each nested successful-resource-adjustment object contains the following fields:

Field name Type Description

hypervisor-type String
Enum

The value of the type property of the virtualization host. See the
virtualization host “Data model” on page 163 for more details about the
valid values of this property.

adjustment-time Integer Standard date/time value indicating the requested starting date and time of
the report to be generated. The standard time value is defined as the number
of elapsed milliseconds after midnight on 1 January 1970.

receiver-virtual-
server-name

String The name of the virtual server that was given additional resources.

receiver-workload-
name

String The displayable name of the workload resource group that was given
additional resources.

receiver-workload-
report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific workload resource group named
in the receiver-workload-name field.

receiver-service-
class-name

String The displayable name of the service class within the workload resource
group that was given additional resources.

receiver-service-
class-report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific service class named in the
receiver-service-class-name field.

receiver-processing-
units-after

Number The total number of processing units the receiver had after the additional
resources were given to it.

Processing units are returned in the units that are normal for the specific
hypervisor type of the virtual server. The units are entitled capacity for
PowerVM, and CPU shares for all other hypervisor types.

receiver-processing-
units-before

Number The total number of processing units the receiver had before the additional
resources were given to it.

Processing units are returned in the units that are normal for the specific
hypervisor type of the virtual server. The units are entitled capacity for
PowerVM, and CPU shares for all other hypervisor types.

adjustment-donors Array of
objects

Array of nested adjustment-donors objects.

Each nested adjustment-donors object contains the following fields:

Field name Type Description

donor-virtual-server-
name

String The name of a virtual server that gave up resources as part of this
adjustment.

458 HMC Web Services API

Field name Type Description

donor-processing-
units-after

Number The total number of processing units this donor had after it gave up
resources.

Processing units are returned in the units that are normal for the specific
hypervisor type of the virtual server. The units are entitled capacity for
PowerVM, and CPU shares for all other hypervisor types.

donor-processing-
units-before

Number The total number of processing units this donor had before it gave up
resources.

Processing units are returned in the units that are normal for the specific
hypervisor type of the virtual server. The units are entitled capacity for
PowerVM, and CPU shares for all other hypervisor types.

donor-workload-names Array of
strings

The displayable names of all workload resource groups that donated
resources when this donor virtual server gave up resources.

Each nested failed-resource-adjustment object contains the following fields:

Field name Type Description

hypervisor-type String
Enum

The value of the type property of the virtualization host. See the
virtualization host “Data model” on page 163 for more details about the
valid values of this property.

adjustment-time Integer Standard date/time value indicating the requested starting date and time of
the report to be generated. The standard time value is defined as the number
of elapsed milliseconds after midnight on 1 January 1970.

receiver-virtual-
server-name

String The name of the virtual server that needed but did not receive additional
resources.

receiver-workload-
name

String The displayable name of the workload resource group that needed but did
not receive additional resources.

receiver-workload-
report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific workload resource group named
in the receiver-workload-name field.

receiver-service-
class-name

String The displayable name of the service class within the workload resource
group that needed but did not receive additional resources.

receiver-service-
class-report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific service class named in the
receiver-service-class-name field.

adjustment-fail-
reason

String
Enum

The reason why the adjustment failed. Values are:
v "not-enough-capacity" — The sum of the capacity that could be given up

by all the available donors in the group was not enough to meet the
capacity increase request of the intended receiver.

v "no-potential-donors" — The group did not contain any potential donors
so no assessments for increased capacity could be sent.

v "entitled-capacity-not-achievable" — The extra capacity required to be
added to the entitled capacity would have pushed the total beyond the
maximum entitled capacity.

v "processor-not-fully-utilized" — The virtual server is not fully using the
processors it already has, so adding more will not have any effect.

v "requested-more-shares-than-max" — More shares than the maximum
allowed for this virtual server were requested.

v "not-enough-virtual-cpus" — Not enough virtual CPUs were available for
the projected required total consumed capacity to be achieved.

v "unknown" — Unknown uncategorized failure reason.

Chapter 13. Workload resource group management 459

Description

The Generate Service Class Resource Adjustments Report operation generates a report that contains the
following information for a specific service class within a workload resource group over the requested
time interval:
v A list of resource adjustments that zManager successfully made to maintain specified performance

goals. For successful adjustments, the report includes:
– A list of workload resource groups and the virtual servers that received additional resources

(receivers)
– A list of workload resource groups and the virtual servers that donated the additional resources

(donors)
v A list of resource adjustments that zManager attempted but failed to make, along with a reason for the

failure.

“Response body contents” on page 457 describes the full list of data that is returned in the report for this
workload resource group.

There are multiple types of resource adjustments reports that can be requested, and each has its own API
listed in this Performance Management Reports section. This particular generate-service-class-resource-
adjustments-report operation generates a resource adjustments report for a specific service class within a
specific workload over the requested time period. What this means is that it will contain entries for all
adjustments that affected the particular service class submitted; meaning all of the entries returned will
involve that specific service class either having received additional resources, or having been forced to
give up (donate) some of its resources.

If reporting data is not available for the requested time interval, an empty response object is provided
and the operation completes successfully. An error response is returned if the targeted ensemble does not
exist or if you do not have the requirements listed in “Authorization requirements.”

The request body is validated against the schema described in “Request body contents” on page 457. If
the request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the ensemble object passed in the request URI.
v Action/task permission to the Service Class Resource Adjustments Report task.

HTTP status and reason codes

On successful completion, HTTP status code 200 (OK) is returned and the response body is provided as
described in “Response body contents” on page 457.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object access permission to
the object.

460 HMC Web Services API

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Generate Service Class Hops Report
Use the Generate Service Class Hops Report operation to create a custom on-demand hops report for a
service class within a particular workload resource group over a requested time period. The report is
based on historical performance management data that was retained over that time period.

HTTP method and URI

Typically, a transactional service class has multiple hops, each hop corresponding to a tier in the
transactional flow. Each hop can have one or more application environments associated with it; an
application environment includes software and the server or network infrastructure that supports it. An
application environment, in turn, might have multiple application environment servers.
POST /api/ensembles/{ensemble-id}/performance-management/operations/generate-service-class-hops-report

In this request, the URI variable {ensemble-id} is the object ID of the ensemble object for which you are
requesting a hops report.

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

report-interval-
start-time

Integer Required Standard date/time value indicating the requested starting date and
time of the report to be generated. The standard time value is
defined as the number of elapsed milliseconds after midnight on 1
January 1970.

report-interval-
duration

Integer Required The length, in minutes, of the interval this report covers, starting
from the value specified for the report-interval-start-time field. This
value must be greater than 0.

workload-report-id String Required An identifier used by the performance management reporting
structure to keep track of reporting data for the specific workload
resource group named in the workload-name field.
Note: This value is the same as one of the workload-report-id
values that are returned in the Workload Resource Groups Report
for this same interval.

POST /api/ensembles/12345678-1234-1234-1234-123456789000/performance-management/operations/
generate-service-class-resource-adjustments-report
{
"report-interval-start-time": 1296149252662,
"report-interval-duration": 60,
"workload-report-id": "Payroll Workload Resource Group",
"service-class-report-id": "Batch Service"
}

Figure 232. Generate Service Class Resource Adjustments Report: Request

Chapter 13. Workload resource group management 461

Field name Type Rqd/Opt Description

service-class-
report-id

String Required An identifier used by the performance management reporting
structure to keep track of reporting data for the specific service class
named in the service-class-name field.
Note: This value is the same as the service-class-report-id value
that is returned in one of the service class entries in the Service
Classes Report for this same interval.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

report-interval-
start-time

Integer Standard date/time value indicating the requested starting date and time of
the report to be generated. The standard time value is defined as the number
of elapsed milliseconds after midnight on 1 January 1970.
Note: The returned value might differ from the requested time if no report
data was available at the requested time, but data was available starting
later within the requested interval.

report-interval-
duration

Integer The length, in minutes, of the interval this report covers, starting from the
value specified for the report-interval-start-time field. This value must be
greater than 0.
Note: The returned value might differ from the requested duration if report
data was not available for the entire requested interval, but data was
available for a shorter duration within that same requested interval.

workload-name String The displayable name of the workload resource group.

workload-report-id String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific workload resource group named
in the workload-name field.

service-class-name String The displayable name of the service class.

service-class-report-
id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific service class named in the
service-class-name field.

performance-policy-
name

String The displayable name of the performance policy that contains this service
class.

performance-policy-
report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific performance policy named in the
performance-policy-name field.

goal-type String
Enum

The type of performance goal that was defined for this service class. Values
are "velocity" or "discretionary".

goal-performance-
level

String
Enum

The performance goal of the service class as defined in performance policy.
Possible values are: "fastest", "fast", "moderate", "slow", and "slowest". This
field is returned only if a velocity performance goal was defined for this
service class.

business-importance String
Enum

The business importance level that was defined for this service class.
Possible values are: "highest", "high", "medium", "low", and "lowest". This
field is returned only if a velocity performance goal was defined for this
service class.

pi-value Number The average performance index (PI) value calculated over this reporting
interval for the service class returned in the service-class-name field. This
field is not returned if the virtual server was not active or if a PI value could
not be calculated.

462 HMC Web Services API

Field name Type Description

actual-performance-
level

String
Enum

The average level of performance that was actually measured over this
reporting interval. Possible values are: "fastest", "fast", "moderate", "slow",
and "slowest". This field is returned only if a velocity performance goal was
defined for this service class and if the performance index value could be
measured.

equivalent-workload-
service-classes

Array of
objects

Because a specific virtual server can belong to more than one workload, the
hops report might contain reflect combined values for multiple workload
resource groups rather than those for the requested workload resource group
and service class. In this case, this field contains an array of nested
equivalent-workload-service-class objects, each of which identifies another
workload resource group or service class, if any, that have virtual servers
also contained within the reported hops. The format of the returned object is
described in Table 89. Otherwise, this field contains an empty array.

hops Array of
objects

An array of nested hop-entry objects. The format of the returned object is
described in Table 90.

Each nested equivalent-workload-service-class object contains the following fields:

Table 89. Format of an equivalent-workload-service-class object

Field name Type Description

equiv-workload-name String The displayable name of a workload resource group that is part of an
equivalent service class that was included in this report.

equiv-workload-
report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific workload resource group named
in the equiv-workload-name field.

equiv-service-class-
name

String The displayable name of the equivalent service class (within the workload
resource group defined by the equiv-workload-name) that was included in
this report.

equiv-service-class-
report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific service class named in the
equiv-service-class-name field.

Each nested hop-entry object contains the following fields:

Table 90. Format of a hop-entry object

Field name Type Description

hop-number Integer The number of this hop. The hop numbers reflect the relative order of the
flow of a work request (transaction) from one application environment to the
next. The first hop is 0, the next is hop 1, the next is hop 2, and so on.

hop-name String A text name generated for this hop number.

hop-statistics Object A hop-report-statistics object that reflects statistics for this hop as a whole (all
application environment groups and their virtual servers that are contained
in this hop). The format of the returned object is described in Table 91 on
page 464.

hop-application-
environments

Array of
objects

An array of nested hop-application-env objects. The format of the returned
object is described in Table 92 on page 464.

Each nested hops-report-statistics object contains the following fields:

Chapter 13. Workload resource group management 463

Table 91. Format of a hops-report-statistics object

Field name Type Description

successful-
transactions

Integer The total number of transactions that completed successfully.

failed-transactions Integer The total number of transactions that failed.

stopped-transactions Integer Total number of transactions that stopped before completing. These
transactions did not fail or complete successfully; a transaction can enter the
stopped state if it encounters an error with the application or server that is
processing the transaction. For example, if an application detects that its
caller or client terminates the request before the transaction instance
completes, the application can stop processing for the transaction instance
and report it as stopped, rather than failed or successful.

inflight-transactions Integer The total number of transactions that had started, but not yet completed by
the end of the requested reporting interval.

Optional: This data may not always be available. For example, when Linux is
involved, it is not usually possible to obtain this statistic. If it is not available,
this field will not be returned.

queue-time Integer The average amount of time (in microseconds) from the time a transaction is
received until processing of the transaction begins.

Optional: This data may not always be available. For example, when Linux is
involved, it is not usually possible to obtain this statistic. If it is not available,
this field will not be returned.

execution-time Integer The average amount of time (in microseconds) that transactions took to
execute.

Optional: This data may not always be available. For example, when Linux is
involved, it is not usually possible to obtain this statistic. If it is not available,
this field will not be returned.

successful-avg-
response-time

Integer Average response time (in microseconds) of all successful transactions.

inflight-avg-
response-time

Integer Average amount of time (in microseconds) spent toward response time for
inflight transactions.

Optional: This data may not always be available. For example, when Linux is
involved, it is not usually possible to obtain this statistic. If it is not available,
this field will not be returned.

Each nested hop-application-env object contains the following fields:

Table 92. Format of a hop-application-env object

Field name Type Description

appl-env-name String The name of the application environment. An application environment is the
environment that includes the software and the server or network
infrastructure that supports it. As defined by The Open Group application
response measurement (ARM) standard, the name is no more than 128
characters in length.

group-name String The name of the application environment group with which this application
environment is associated. This value cannot be more than 128 characters
long but is zero length when the application environment does not belong to
a group.

464 HMC Web Services API

Table 92. Format of a hop-application-env object (continued)

Field name Type Description

appl-env-hop-
statistics

Object A hop-statistics object that reflects statistics for this application environment
as a whole (all virtual servers that are contained in this application
environment). The format of the returned object is described in Table 91 on
page 464.

hop-application-env-
virtual-servers

Array of
objects

An array of nested hop-application-env-virtual-server objects. The format of
the returned object is described in Table 93.

Each nested hop-application-env-virtual-server object contains the following fields:

Table 93. Format of a hop-application-env-virtual-server object

Field name Type Description

virtual-server-name String The displayable name of the virtual server. This field identifies the virtual
server within the application environment.

virtual-server-hop-
statistics

Object A hop-report-statistics object that reflects statistics for this specific virtual
server within the application environment. The format of the returned object
is described in Table 91 on page 464.

Description

The Generate Service Class Hops Report operation generates a report that contains the following
information for a specific workload resource group and service class over the requested time interval:
v A list of application-level hops associated with this specific workload resource group and service class

for which historical reporting information is available. A hop corresponds to a tier in the transactional
flow, and each hop can have one or more application environments associated with it.
A service class can have multiple hops associated with it, and each hop can have one or more
associated application environments. These application environments might have multiple virtual
servers.

v For each hop associated with the service class:
– A common set of statistics
– Statistics for the application environments and virtual servers within each hop.

“Response body contents” on page 462 describes the full list of data that is returned in this report.

For more information about transactional service classes, hops in the transaction flow, and application
environments, see the topic “Enhanced monitoring and management through guest platform management
providers” in the zEnterprise System Ensemble Performance Management Guide, GC27-2607.

If reporting data is not available for the requested time interval, an empty response object is provided
and the operation completes successfully. The hops report for the service class can be empty when one of
the following circumstances is true for all of the virtual servers associated with the service class:
v A guest platform management provider is not installed or running on the operating system.
v No ARM-instrumented applications are running on the operating system.
v None of the ARM-instrumented applications running on the operating system are hop 0 application

environments.

An error response is returned if the targeted ensemble does not exist or if you do not have the
requirements listed in “Authorization requirements” on page 466.

The request body is validated against the schema described in “Request body contents” on page 461. If
the request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered.

Chapter 13. Workload resource group management 465

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the ensemble object passed in the request URI.
v Action/task permission to the Hops Report task.

HTTP status and reason codes

On successful completion, HTTP status code 200 (OK) is returned and the response body is provided as
described in “Response body contents” on page 462.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object access permission to
the object.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Generate Service Class Virtual Server Topology Report
Use the Generate Service Class Virtual Server Topology Report operation to create a custom on-demand
topology report for a specific service class within a workload resource group over a requested time
period. The report is based on historical performance management data that was retained over that time
period.

HTTP method and URI
POST /api/ensembles/{ensemble-id}/performance-management/operations/generate-service-class-
virtual-server-topology-report

In this request, the URI variable {ensemble-id} is the object ID of the ensemble containing the workload
resource group for which you want to receive a virtual server topology report.

POST /api/ensembles/12345678-1234-1234-1234-123456789000/performance-management/operations/
generate-service-class-hops-report
{
"report-interval-start-time": 1296149252662,
"report-interval-duration": 60,
"workload-report-id": "Payroll Workload Resource Group",
"service-class-report-id": "Batch Service"

}

Figure 233. Generate Service Class Hops Report: Request

466 HMC Web Services API

Request body contents

The request body is a JSON object with the following fields:

Field name Type Rqd/Opt Description

report-interval-
start-time

Integer Required Standard date/time value indicating the requested starting date and
time of the report to be generated. The standard time value is
defined as the number of elapsed milliseconds after midnight on 1
January 1970.

report-interval-
duration

Integer Required The length, in minutes, of the interval this report covers, starting
from the value specified for the report-interval-start-time field. This
value must be greater than 0.

workload-report-id String Required An identifier used by the performance management reporting
structure to keep track of reporting data for the specific workload
resource group named in the workload-name field.
Note: This value is the same as one of the workload-report-id
values that are returned in the Workload Resource Groups Report
for this same interval.

service-class-
report-id

String Required An identifier used by the performance management reporting
structure to keep track of reporting data for the specific service class
named in the service-class-name field.
Note: This value is the same as the service-class-report-id value
that is returned in one of the service class entries in the Service
Classes Report for this same interval.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

report-interval-
start-time

Integer Standard date/time value indicating the requested starting date and time of
the report to be generated. The standard time value is defined as the number
of elapsed milliseconds after midnight on 1 January 1970.
Note: The returned value might differ from the requested time if no report
data was available at the requested time, but data was available starting
later within the requested interval.

report-interval-
duration

Integer The length, in minutes, of the interval this report covers, starting from the
value specified for the report-interval-start-time field. This value must be
greater than 0.
Note: The returned value might differ from the requested duration if report
data was not available for the entire requested interval, but data was
available for a shorter duration within that same requested interval.

workload-name String The displayable name of the workload resource group.

workload-report-id String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific workload resource group named
in the workload-name field.

service-class-name String The displayable name of the service class.

service-class-report-
id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific service class named in the
service-class-name field.

Chapter 13. Workload resource group management 467

Field name Type Description

equivalent-workload-
service-classes

Array of
objects

Because a specific virtual server can belong to more than one workload, the
hops report might contain reflect combined values for multiple workload
resource groups rather than those for the requested workload resource group
and service class. In this case, this field contains an array of nested
equivalent-workload-service-class objects, each of which identifies another
workload resource group or service class, if any, that have virtual servers
also contained within the reported hops. The format of the returned object is
described in Table 94. Otherwise, this field contains an empty array.

topo-hop-count Integer The total number of hops represented in this topology report.

topo-hops Array of
objects

An array of nested topo-hop objects. The format of the returned object is
described in Table 95.

Each nested equivalent-workload-service-class object contains the following fields:

Table 94. Format of an equivalent-workload-service-class object

Field name Type Description

equiv-workload-name String The displayable name of a workload resource group that is part of an
equivalent service class that was included in this report.

equiv-workload-
report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific workload resource group named
in the equiv-workload-name field.

equiv-service-class-
name

String The displayable name of the equivalent service class (within the workload
resource group defined by the equiv-workload-name) that was included in
this report.

equiv-service-class-
report-id

String An identifier used by the performance management reporting structure to
keep track of reporting data for the specific service class named in the
equiv-service-class-name field.

Each nested topo-hop object contains the following fields:

Table 95. Format of a topo-hop object

Field name Type Description

hop-number Integer The number of this hop. The hop numbers reflect the relative order of the
flow of a work request (transaction) from one application environment to the
next. The first hop is 0, the next is hop 1, the next is hop 2, and so on.

topo-virtual-server-
nodes

Array of
objects

An array of nested topo-virtual-server-node objects that represent virtual
servers that are part of this hop. The format of the returned object is
described in Table 96.

Each nested topo-virtual-server-node object contains the following fields:

Table 96. Format of a topo-virtual-server-node object

Field name Type Description

node-identifier String A topology node identifier that uniquely identifies this specific node within
this entire topology report. For example, a virtual server that shows up in
multiple hops of the transaction flow has the same virtual server name in all
of those nodes but each node identifier is different.

virtual-server-name String The displayable name of the virtual server.

468 HMC Web Services API

Table 96. Format of a topo-virtual-server-node object (continued)

Field name Type Description

hypervisor-type String The value of the type property of the virtualization host. See the
virtualization host “Data model” on page 163 for more details about the
valid values of this property.

hypervisor-name String The displayable name of the hypervisor under which this virtual server was
running.

was-active Boolean Indicates whether this virtual server was active during this reporting
interval. The value is "true" if the virtual server was active or "false" if it
was not active. If the value of this field is false, none of the remaining fields
in this table have data, so none of these fields are returned.

physical-cpu-
utilization-percent

Number The physical processor utilization percentage (%) of the virtual server. This
percentage is in fractional form (between 0 and 1 inclusive). Optional: This
field is returned only if the virtual server was active during this interval.

hypervisor-cpu-delay-
percent

Number The hypervisor processing unit delay in fractional form (between 0 and 1
inclusive). This field is returned for the following hypervisors only: z/VM
and PowerVM. In the case of z/VM, a value is available for this field only if
sampling is turned on for the guest. Optional: This field is returned only if
the virtual server was active during this interval and if the hypervisor type
supports this information.

idle-time-percent Number The idle time percentage (%) of the virtual server. It is the percentage of total
time that the virtual server had no work (that is, no application processes or
internal hypervisor specific process states). This percentage is in fractional
form (between 0 and 1 inclusive). Optional: This field is returned only if the
virtual server was active during this interval and if the hypervisor type
supports this information. For z/VM, this data is available only when
sampling is enabled and started. For PowerVM and PR/SM, idle time data is
not available.

other-time-percent Number The percentage (%) of total time that miscellaneous hypervisor specific
internal process states had control for this virtual server. In other words, the
percentage of time that the virtual server was not idle but also was not in a
state of active CPU utilization or hypervisor CPU delay. This percentage is in
fractional form (between 0 and 1 inclusive). Optional: This field is returned
only if the virtual server was active during this interval and if the hypervisor
type supports this information. For z/VM, this data is available only when
sampling is enabled and started. For PowerVM and PR/SM, other time data
is not available.

os-cpu-using-samples-
percent

Number The percentage of CPU using samples from among the total samples. For
example, if there are 10 CPU using samples out of a total of 10 samples, then
CPU using samples is 100% (because out of the total samples, all are CPU
using samples). This percentage is in fractional form (between 0 and 1
inclusive). Optional: This field is returned only if the virtual server was
active and a guest platform management provider was running on the
virtual server during this interval.

os-cpu-delay-samples-
percent

Number The percentage of CPU delay samples from among the total samples. For
example, if there are 10 CPU delay samples and 10 samples that are not CPU
delay samples, then CPU delay samples is 50% (because out of the total
samples half are CPU delay samples). This percentage is in fractional form
(between 0 and 1 inclusive). Optional: This field is returned only if the
virtual server was active and a guest platform management provider was
running on the virtual server during this interval.

Chapter 13. Workload resource group management 469

Table 96. Format of a topo-virtual-server-node object (continued)

Field name Type Description

os-io-delay-samples-
percent

Number The percentage of I/O delay samples from among the total samples. The
percent I/O delay is the percent of samples taken when work was delayed
for non-paging DASD I/O. The I/O delay includes IOS queue, subchannel
pending, and control unit queue delays. For example, if there are 10 I/O
delay samples and 10 samples that are not I/O delay samples, then I/O
delay samples is 50% (because out of the total samples half are I/O delay
samples). This percentage is in fractional form (between 0 and 1 inclusive).
Optional: This field is returned only if the virtual server was active and a
guest platform management provider was running on the virtual server
during this interval.

os-page-delay-
samples-percent

Number The percentage of page delay samples from among the total samples. The
percent page delay is the percent of samples when the address space
experienced page faults in cross-memory access, and the page faults were
resolved from auxiliary storage. For example, if there are 10 page delay
samples and 10 samples that are not page delay samples, then page delay
samples is 50% (because out of the total samples half are page delay
samples). This percentage is in fractional form (between 0 and 1 inclusive).
Optional: This field is returned only if the virtual server was active and a
guest platform management provider was running on the virtual server
during this interval.

appl-env-vs-response-
data

Array of
objects

An array of nested appl-env-vs-response-entry objects that contain
response time data for each of the application environments with which the
virtual server is associated. If no response data is available, this field
contains an empty array. The format of the returned object is described in
Table 97.

appl-env-vs-
utilization-data

Array of
objects

An array of nested appl-env-vs-utilization-data objects that contain
utilization data for each of the application environments with which the
virtual server is associated. If no response data is available, this field
contains an empty array. The format of the returned object is described in
Table 98 on page 471.

child-virtual-server-
node-links

Array of
objects

An array of nested child-virtual-server-node-link objects that contain a
list of links to other virtual server nodes in the topology, if this particular
virtual server sent transactions to one or more virtual server nodes in the
next hop. These link objects provide the information required to identify
those next-level nodes (or “child” virtual servers). If this virtual server node
has no child nodes, this field contains an empty array. The format of the
returned object is described in Table 99 on page 472.

Each nested appl-env-vs-response-entry object contains the following fields:

Table 97. Format of an appl-env-vs-response-entry object

Field name Type Description

appl-env-name String The name of the application environment. An application environment is the
environment that includes the software and the server or network
infrastructure that supports it.

group-name String The name of the application environment group with which this application
environment is associated. This value cannot be more than 128 characters
long but is zero length when the application environment does not belong to
a group.

successful-
transactions

Integer The total number of transactions that completed successfully.

failed-transactions Integer The total number of transactions that failed.

470 HMC Web Services API

Table 97. Format of an appl-env-vs-response-entry object (continued)

Field name Type Description

stopped-transactions Integer Total number of transactions that stopped before completing. These
transactions did not fail or complete successfully; a transaction can enter the
stopped state if it encounters an error with the application or server that is
processing the transaction. For example, if an application detects that its
caller or client terminates the request before the transaction instance
completes, the application can stop processing for the transaction instance
and report it as stopped, rather than failed or successful.

inflight-transactions Integer The total number of transactions that had started, but not yet completed by
the end of the requested reporting interval.

Optional: This data may not always be available. For example, when Linux is
involved, it is not usually possible to obtain this statistic. If it is not available,
this field will not be returned.

queue-time Integer The average amount of time (in microseconds) from the time a transaction is
received until processing of the transaction begins.

Optional: This data may not always be available. For example, when Linux is
involved, it is not usually possible to obtain this statistic. If it is not available,
this field will not be returned.

execution-time Integer The average amount of time (in microseconds) that transactions took to
execute.

Optional: This data may not always be available. For example, when Linux is
involved, it is not usually possible to obtain this statistic. If it is not available,
this field will not be returned.

successful-avg-
response-time

Integer Average response time (in microseconds) of all successful transactions.

inflight-avg-
response-time

Integer Average amount of time (in microseconds) spent toward response time for
inflight transactions.

Optional: This data may not always be available. For example, when Linux is
involved, it is not usually possible to obtain this statistic. If it is not available,
this field will not be returned.

Each nested appl-env-vs-utilization-entry object contains the following fields:

Table 98. Format of an appl-env-vs-utilization-entry object

Field name Type Description

appl-env-name String The name of the application environment. An application environment is the
environment that includes the software and the server or network
infrastructure that supports it.

group-name String The name of the application environment group with which this application
environment is associated. This value cannot be more than 128 characters
long but is zero length when the application environment does not belong to
a group.

cpu-time Integer The processor (CPU) time, in microseconds, that was consumed on this
virtual server as part of this application environment.

Chapter 13. Workload resource group management 471

Table 98. Format of an appl-env-vs-utilization-entry object (continued)

Field name Type Description

os-cpu-using-samples-
percent

Number The percentage of CPU using samples from among the total samples. For
example, if there are 10 CPU using samples out of a total of 10 samples, then
CPU using samples is 100% (because out of the total samples, all are CPU
using samples). This percentage is in fractional form (between 0 and 1
inclusive). Optional: This field is returned only if the virtual server was
active and a guest platform management provider was running on the
virtual server during this interval.

os-cpu-delay-samples-
percent

Number The percentage of CPU delay samples from among the total samples. For
example, if there are 10 CPU delay samples and 10 samples that are not CPU
delay samples, then CPU delay samples is 50% (because out of the total
samples half are CPU delay samples). This percentage is in fractional form
(between 0 and 1 inclusive). Optional: This field is returned only if the
virtual server was active and a guest platform management provider was
running on the virtual server during this interval.

os-io-delay-samples-
percent

Number The percentage of I/O delay samples from among the total samples. The
percent I/O delay is the percent of samples taken when work was delayed
for non-paging DASD I/O. The I/O delay includes IOS queue, subchannel
pending, and control unit queue delays. For example, if there are 10 I/O
delay samples and 10 samples that are not I/O delay samples, then I/O
delay samples is 50% (because out of the total samples half are I/O delay
samples). This percentage is in fractional form (between 0 and 1 inclusive).
Optional: This field is returned only if the virtual server was active and a
guest platform management provider was running on the virtual server
during this interval.

os-page-delay-
samples-percent

Number The percentage of page delay samples from among the total samples. The
percent page delay is the percent of samples when the address space
experienced page faults in cross-memory access, and the page faults were
resolved from auxiliary storage. For example, if there are 10 page delay
samples and 10 samples that are not page delay samples, then page delay
samples is 50% (because out of the total samples half are page delay
samples). This percentage is in fractional form (between 0 and 1 inclusive).
Optional: This field is returned only if the virtual server was active and a
guest platform management provider was running on the virtual server
during this interval.

Each nested child-virtual-server-node-link object contains the following fields:

Table 99. Format of a child-virtual-server-node-link object

Field name Type Description

child-node-identifier String The unique identifier assigned within this topology report to this child
virtual server node.

child-hop-number Integer The number of the hop that contains this child virtual server node.

transaction-count Integer The number of transactions that flowed from the parent virtual server node
to this specific child virtual server node over this reporting period. If no
transaction data is available, this field is not returned.

Description

The Generate Service Class Virtual Server Topology Report operation generates a report that contains
the following information for a specific service class within a workload resource group over the requested
time interval:

472 HMC Web Services API

v A list of application-level hops associated with this specific workload resource group and service class
for which historical reporting information is available. A hop corresponds to a tier in the transactional
flow, and each hop can have one or more application environments associated with it.
A service class can have multiple hops associated with it, and each hop can have one or more
associated application environments. These application environments might have multiple virtual
servers.

v For each hop associated with the service class:
– A common set of statistics
– Statistics for the application environments and virtual servers within each hop.

This report returns information that is similar to the output of the Generate Service Class Hops Report
operation; the virtual server nodes are organized by hop and the reports contain some similar statistics
for each virtual server. This topology report, however, also returns information about the relationship
between the virtual servers from one hop to the next. This type of information relationships is not always
available, depending on the actual configuration of the application environments.

For an example of a graphical representation of the virtual server topology, use the Virtual Server
Topology Report that is available through the HMC or see the topic about that report in the zEnterprise
System Ensemble Performance Management Guide, GC27-2607. The Virtual Server Topology Report task
graphically depicts the relationships between virtual servers that are running the workload resource
group and providing the resources to complete the work. The framed image in that report displays
graphical representations of virtual servers. Each is represented by an icon that displays the name and
status of the virtual server; by clicking the icon, you can view statistics for that virtual server node. The
Generate Service Class Virtual Server Topology Report operation generates the same information that
you can access through the Virtual Server Topology Report and the icons in its display.

“Response body contents” on page 467 describes the full list of data that is returned in the report for this
workload resource group.

If reporting data is not available for the requested time interval, an empty response object is provided
and the operation completes successfully. An error response is returned if the targeted ensemble does not
exist or if you do not have the requirements listed in “Authorization requirements.”

The request body is validated against the schema described in “Request body contents” on page 467. If
the request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the ensemble object passed in the request URI.
v Action/task permission to the Virtual Server Topology Report and the View Statistics tasks.

HTTP status and reason codes

On successful completion, HTTP status code 200 (OK) is returned and the response body is provided as
described in “Response body contents” on page 467.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

Chapter 13. Workload resource group management 473

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object access permission to
the object.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Generate Load Balancing Report
Use the Generate Load Balancing Report operation to list information about network load balancing
activity in an ensemble. Unlike other performance management reports, which are based on historical
performance management data that was retained over a specific time period, this report contains data
that is available when the Generate Load Balancing Report API is called.

HTTP method and URI
POST /api/ensembles/{ensemble-id}/performance-management/operations/generate-load-balancing-report

In this request, the URI variable {ensemble-id} is the object ID of the ensemble for which you want to
receive a load balancing report.

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

load-balancing-groups Array of
objects

An array of nested load-balancing-group objects. If no load balancing groups
have been defined for this ensemble, an empty array is returned for this
field.

Each nested load-balancing-group object contains the following fields:

POST /api/ensembles/12345678-1234-1234-1234-123456789000/performance-management/operations/
generate-service-class-virtual-server-topology-report
{
"report-interval-start-time": 1296149252662,
"report-interval-duration": 60,
"workload-report-id": "Payroll Workload Resource Group",
"service-class-report-id": "Batch Service"

}

Figure 234. Generate Service Class Virtual Server Topology Report: Request

474 HMC Web Services API

Field name Type Description

load-balancer-group-
name

String The name given to this load balancer group. The returned string in this field
conforms to Server/Application State Protocol (SASP) standards, which
allow a group name to consist of 1 through 255 UTF8 characters.

load-balancer-group-
members

Array of
objects

An array of nested load-balancer-group-member objects. If a group does not
have any members associated with it, an empty array is returned for this
field.

Each nested load-balancer-group-member object contains the following fields:

Field name Type Description

virtual-server-name String The name of a virtual server defined to this load balancing group.

hostname-ipaddr String The IP address of the virtual server.

weight Number The relative weight recommendation that zManager assigned to this member.

status String
Enum

The status of or environmental conditions for each virtual server in the
selected load balancing group. Possible values are:
v "active"
v "down"
v "inactive"
v "failure-recovery"
v "quiesced"
v "unknown"

status-detailed String
Enum

A further explanation for the specific status condition "down" or "inactive";
for other status field values, this field is not returned. Possible values are:
v "matching-ip-address-not-found"
v "gpmp-downlevel"
v "lsof-not-available"
v "no-process-listening"
v "not-initialized"
v "vs-not-operating"
v "load-balance-data-initializing"
v "unsupported-hypervisor-config"
v "hypervisor-details-not-available"
v "data-retrieval-error"

port-number Integer The port number on the virtual server that is being used for load balancing
purposes. This field is not returned if the port number is not available.

protocol-type String
Enum

The protocol in use for this virtual server; possible values are:
v "tcp" for Transmission Control Protocol, or
v "udp" for User Datagram Protocol

This field is not returned if the protocol type is not available.

Description

The Generate Load Balancing Report operation generates a report that contains a list of all of the
load-balancing groups that zManager is monitoring within a specific ensemble. For each load-balancing
group, the report also contains information about each individual virtual server that is a member of the
group. “Response body contents” on page 474 describes the full list of data that is returned in this report
for each load-balancing group and its members.

The generated load-balancing report contains data that is available when the Generate Load Balancing
Report API is called. Load-balancing data for an ensemble is refreshed every 30 seconds. For the most
efficient use of the Generate Load Balancing Report API, space additional API calls at least 30 seconds
apart.

Chapter 13. Workload resource group management 475

If no load-balancing groups are defined for this ensemble, an empty response object is provided and the
operation completes successfully. An error response is returned if the targeted ensemble does not exist or
if you do not have the requirements listed in “Authorization requirements.”

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the ensemble object passed in the request URI.
v Action/task permission to the Load Balancing Report task.

HTTP status and reason codes

On successful completion, HTTP status code 200 (OK) is returned and the response body is provided as
described in “Response body contents” on page 474.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object access permission to
the object.

Example HTTP interaction

Get Performance Management Velocity Level Range Mappings
Use the Get Performance Management Velocity Level Range Mappings operation to retrieve the
numeric ranges that zManager uses to calculate the actual performance velocity for a service class. Each
range of numbers is mapped to one of the valid descriptive values that are used in performance
management reports for service classes that have a velocity rather than discretionary performance goal.

HTTP method and URI
GET /api/ensembles/{ensemble-id}/performance-management/velocity-level-range-mappings

In this request, the URI variable {ensemble-id} is the object ID of the ensemble object.

POST /api/ensembles/12345678-1234-1234-1234-123456789000/performance-management/operations/
generate-load-balancing-report

Figure 235. Generate Load Balancing Report: Request

476 HMC Web Services API

Response body contents

On successful completion, the response body is a JSON object with the following fields:

Field name Type Description

performance-
management-velocity-
level-range-mappings

Array of
objects

An array of nested velocity-level-range-mapping-entry objects.

Each nested velocity-level-range-mapping-entry object contains the following fields:

Field name Type Description

low-boundary Integer This value defines the low boundary (inclusive) that defines this specific
range of calculated velocity numbers.

high-boundary Integer This value defines the upper boundary (inclusive) that defines this specific
range of calculated velocity numbers.

velocity-level String
Enum

The descriptive velocity level that this numeric range represents. Possible
values are: "fastest", "fast", "moderate", "slow", and "slowest".

Description

The Get Performance Management Velocity Level Range Mappings operation retrieves the list of
numeric ranges that zManager uses to calculate the actual performance for a service class that has a
performance goal of the "velocity" (rather than "discretionary") type. Each range of numbers is mapped
to one of the valid descriptive values that are used in performance management reports; these descriptive
values are: "fastest", "fast", "moderate", "slow", and "slowest".

For service classes with a velocity performance goal, zManager:
1. Calculates a numeric value for actual performance
2. Compares the calculated numeric value to a predefined set of ranges, one range for each of the

descriptive velocity-level values
3. Substitutes the appropriate descriptive value to present in performance management reports.

This substitution occurs because the actual performance is not significantly different between numbers
that are close together; it is more meaningful to define a smaller set of velocity levels that describe the
performance.

Through the Get Performance Management Velocity Level Range Mappings API and the service class
metrics described in “Workload service class data metrics group” on page 659, you can calculate raw
velocity numbers and compare and substitute the performance level using the same descriptive velocity
levels that zManager uses in its performance management reports.

“Response body contents” describes the full list of data that is returned for the Get Performance
Management Velocity Level Range Mappings operation. An error response is returned if the targeted
ensemble does not exist or if you do not have the requirements listed in “Authorization requirements.”

Authorization requirements

This operation has the following authorization requirement:
v object-access permission to the ensemble object passed in the request URI.

Chapter 13. Workload resource group management 477

HTTP status and reason codes

On successful completion, HTTP status code 200 (OK) is returned and the response body is provided as
described in “Response body contents” on page 477.

Otherwise, the following HTTP status codes are returned for the indicated errors. The response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object access permission to
the object.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Inventory service data
Information about the Workload Resource Groups managed by the HMC and the associated Performance
Policies can be optionally included in the inventory data provided by the Inventory Service.

Inventory entries for workload and associated policy objects are included in the response to the Inventory
Service's Get Inventory operation when the request specifies (explicitly by class, implicitly via a
containing category, or by default) that objects of class "workload-resource-group" are to be included.
Information for a particular workload (and associated policies) is included only if the API user has
object-access permission to that object.

For each workload to be included, the inventory response array includes the following:
v An array entry for the workload object itself. This entry is a JSON object with the same contents as is

specified in the Response Body Contents section for “Get Workload Resource Group Properties” on
page 375. That is, the data provided is the same as would be provided if a Get Workload Resource
Group Properties operation were requested targeting this object.

v An array entry for each policy associated with the workload. For each such policy, an entry is included
that is a JSON object with the same contents as specified in the Response Body Contents section of
“Get Performance Policy Properties” on page 402. As a result, the data provided is the same as would
be obtained if a Get Performance Policy Properties operation were requested for each policy listed by
a List Performance Policies operation targeting the workload.

The array entry for a workload object will appear in the results array before entries for associated
performance policies.

GET /api/ensembles/12345678-1234-1234-1234-123456789000/performance-management/
velocity-level-range-mappings

Figure 236. Get Performance Management Velocity Level Range Mappings: Request

478 HMC Web Services API

Sample inventory data

The following fragment is an example of the JSON object that would be included in the Get Inventory
response to describe a single workload (named “Online Ordering”) that defines a custom performance
policy (“Prime shift”) in addition to the default policy. These objects would appear as a sequence of array
entries in the response array:

{
"active-perf-policy": {

"activation-status": "active",
"element-id": "cc79445a-95e4-11e0-b6ef-000c29bb873c",
"element-uri": "/api/workload-resource-groups/cc79fa6c-95e4-11e0-b6ef-000c29bb873c
/performance-policies/cc79445a-95e4-11e0-b6ef-000c29bb873c",
"name": "Prime shift"

},
"category": "Retail Operations",
"class": "workload-resource-group",
"custom-perf-policies": [

{
"activation-status": "active",
"element-id": "cc79445a-95e4-11e0-b6ef-000c29bb873c",
"element-uri": "/api/workload-resource-groups/cc79fa6c-95e4-11e0-b6ef-000c29bb873c

/performance-policies/cc79445a-95e4-11e0-b6ef-000c29bb873c",
"name": "Prime shift"

}
],
"default-perf-policy": {

"activation-status": "not-active",
"element-id": "cc7b38dc-95e4-11e0-b6ef-000c29bb873c",
"element-uri": "/api/workload-resource-groups/cc79fa6c-95e4-11e0-b6ef-000c29bb873c
/performance-policies/cc7b38dc-95e4-11e0-b6ef-000c29bb873c",
"name": "Default"

},
"description": "Workload Resource Group for managing the online ordering application.",
"is-default": false,
"name": "Online Ordering",
"object-id": "cc79fa6c-95e4-11e0-b6ef-000c29bb873c",
"object-uri": "/api/workload-resource-groups/cc79fa6c-95e4-11e0-b6ef-000c29bb873c",
"parent": "/api/ensembles/890b6df2-93a4-11e0-887c-000c29bb873c",
"perf-activation-node-count": 0,
"perf-activation-status": "active"

},
{

"activation-status": "active",
"class": "performance-policy",
"created-by": "ENSADMIN",
"created-date": 1307987073673,

Figure 237. Workload Resource Group: Sample inventory data (Part 1)

Chapter 13. Workload resource group management 479

"custom-service-classes": [
{

"business-importance": "highest",
"classification-rule": {

"filter": {
"operation": "string-match",
"type": "virtual-server-name",
"value": "OOWS(*)"

},
"type": "rule"

},
"description": "",
"goal-type": "velocity",
"name": "Web servers",
"type": "server",
"velocity": "fast"

},
{

"business-importance": "highest",
"classification-rule": {

"filter": {
"operation": "string-match",
"type": "virtual-server-name",
"value": "OODB(*)"

},
"type": "rule"

},
"description": "",
"goal-type": "velocity",
"name": "DB Servers",
"type": "server",
"velocity": "fastest"

}
],

Figure 238. Workload Resource Group: Sample inventory data (Part 2)

480 HMC Web Services API

"default-service-class": {
"business-importance": "medium",
"classification-rule": {

"filter": {
"operation": "string-match",
"type": "(*)",
"value": "(*)"

},
"type": "rule"

},
"description": "The default workload performance policy service class.",
"goal-type": "velocity",
"name": "Default",
"type": "server",
"velocity": "moderate"

},
"description": "Performance policy for prime shift operatoin",
"element-id": "cc79445a-95e4-11e0-b6ef-000c29bb873c",
"element-uri": "/api/workload-resource-groups/cc79fa6c-95e4-11e0-b6ef-
000c29bb873c/performance-policies/cc79445a-95e4-11e0-b6ef-000c29bb873c",
"importance": "highest",
"is-default": false,
"last-activated-by": "PEDEBUG",
"last-activation-completed-date": 1307991376227,
"last-activation-requested-date": 1307991376226,
"last-modified-by": "ENSADMIN",
"last-modified-date": 1307987073673,
"name": "Prime shift",
"parent": "/api/workload-resource-groups/cc79fa6c-95e4-11e0-b6ef-000c29bb873c",
"revision": 1

},
{

"activation-status": "not-active",
"class": "performance-policy",
"created-by": "",
"created-date": -1,
"custom-service-classes": [],

Figure 239. Workload Resource Group: Sample inventory data (Part 3)

Chapter 13. Workload resource group management 481

"default-service-class": {
"business-importance": "medium",
"classification-rule": {

"filter": {
"operation": "string-match",
"type": "(*)",
"value": "(*)"

},
"type": "rule"

},
"description": "The default workload performance policy service class.",
"goal-type": "velocity",
"name": "Default",
"type": "server",
"velocity": "moderate"

},
"description": "The default workload performance policy",
"element-id": "cc7b38dc-95e4-11e0-b6ef-000c29bb873c",
"element-uri": "/api/workload-resource-groups/cc79fa6c-95e4-11e0-b6ef-000c29bb873c
/performance-policies/cc7b38dc-95e4-11e0-b6ef-000c29bb873c",
"importance": "medium",
"is-default": true,
"last-activated-by": "PEDEBUG",
"last-activation-completed-date": 1307991361463,
"last-activation-requested-date": 1307991361463,
"last-modified-by": "",
"last-modified-date": -1,
"name": "Default",
"parent": "/api/workload-resource-groups/cc79fa6c-95e4-11e0-b6ef-000c29bb873c",
"revision": 1

}

Figure 240. Workload Resource Group: Sample inventory data (Part 4)

482 HMC Web Services API

Chapter 14. Core System z resources

These APIs provide access to and control of the following HMC/SE objects:
v Console
v Group
v CPC
v Logical Partition

In addition, these APIs provide access to the following CPC-related data items:
v Reset Activation Profiles
v Image Activation Profiles
v Load Activation Profiles
v Group Profiles
v Capacity Records

Operations Summary
Following are the operations summaries for the Console, Custom Groups, CPC, Logical Partitions,
Activation Profile, and Capacity Record objects.

Console operations summary
The following table provides an overview of the operations provided for Console objects.

Table 100. Core System z resources - Console: operations summary

Operation name HTTP method and URI path

“Get Console Properties”
on page 492

GET /api/console

“Restart Console” on page
496

POST /api/console/operations/restart

“Make Console Primary”
on page 498

POST /api/console/operations/make-primary

“Shutdown Console” on
page 499

POST /api/console/operations/shutdown

Custom groups operations summary
The following table provides an overview of the operations provided for Group objects.

Table 101. Core System z resources - Custom groups: operations summary

Operation name HTTP method and URI path

“List Custom Groups” on
page 502

GET /api/groups

“Get Custom Group
Properties” on page 504

GET /api/groups/{group-id}

“Create Custom Group” on
page 505

POST /api/groups

© Copyright IBM Corp. 2012, 2013 483

|

Table 101. Core System z resources - Custom groups: operations summary (continued)

Operation name HTTP method and URI path

“Delete Custom Group” on
page 507

DELETE /api/groups/{group-id}

“List Custom Group
Members” on page 512

GET /api/groups/{group-id}/members

“Add Member to Custom
Group” on page 508

POST /api/groups/{group-id}/operations/add-member

“Remove Member from
Custom Group” on page
510

POST /api/groups/{group-id}/operations/remove-member

Table 102. Core System z resources - Custom groups: URI variables

URI variable Description

{group-id} Object ID of a Group object

CPC operations summary
The following tables provide an overview of the operations provided for CPC objects.

Table 103. Core System z resources - CPC: operations summary

Operation name HTTP method and URI path

“List CPC Objects” on page
523

GET /api/cpcs

“List Ensemble CPC
Objects” on page 525

GET /api/ensembles/{ensemble-id}/cpcs

“Get CPC Properties” on
page 527

GET /api/cpcs/{cpc-id}

“Update CPC Properties”
on page 533

POST /api/cpcs/{cpc-id}

“Activate CPC” on page
535

POST /api/cpcs/{cpc-id}/operations/activate

“Deactivate CPC” on page
537

POST /api/cpcs/{cpc-id}/operations/deactivate

“Import Profiles” on page
539

POST /api/cpcs/{cpc-id}/operations/import-profiles

“Export Profiles” on page
540

POST /api/cpcs/{cpc-id}/operations/export-profiles

“Add Temporary Capacity”
on page 541

POST /api/cpcs/{cpc-id}/operations/add-temporary-capacity

“Remove Temporary
Capacity” on page 543

POST /api/cpcs/{cpc-id}/operations/remove-temporary-capacity

“Swap Current Time
Server” on page 545

POST /api/cpcs/{cpc-id}/operations/swap-cts

“Set STP Configuration” on
page 546

POST /api/cpcs/{cpc-id}/operations/set-stp-config

“Change STP-only
Coordinated Timing
Network” on page 547

POST /api/cpcs/{cpc-id}/operations/change-stponly-ctn

484 HMC Web Services API

Table 103. Core System z resources - CPC: operations summary (continued)

Operation name HTTP method and URI path

“Join STP-only Coordinated
Timing Network” on page
549

POST /api/cpcs/{cpc-id}/operations/join-stponly-ctn

“Leave STP-only
Coordinated Timing
Network” on page 550

POST /api/cpcs/{cpc-id}/operations/leave-stponly-ctn

Table 104. Core System z resources - CPC: URI variables

URI variable Description

{cpc-id} Object ID of a CPC object

{ensemble-id} Object ID of an ensemble object

Logical partitions operation summary
The following tables provide an overview of the operations provided for Logical Partition objects.

Table 105. Core System z resources - Logical partitions: operations summary

Operation name HTTP method and URI path

“List Logical Partitions of
CPC” on page 564

GET /api/cpcs/{cpc-id}/logical-partitions

“Get Logical Partition
Properties” on page 566

GET /api/logical-partitions/{logical-partition-id}

“Update Logical Partition
Properties” on page 569

POST /api/logical-partitions/{logical-partition-id}

“Activate Logical Partition”
on page 570

POST /api/logical-partitions/{logical-partition-id}/operations/activate

“Deactivate Logical
Partition” on page 572

POST /api/logical-partitions/{logical-partition-id}/operations/deactivate

“Reset Normal” on page
574

POST /api/logical-partitions/{logical-partition-id}/operations/reset-normal

“Reset Clear” on page 576 POST /api/logical-partitions/{logical-partition-id}/operations/reset-clear

“Load Logical Partition” on
page 578

POST /api/logical-partitions/{logical-partition-id}/operations/load

“PSW Restart” on page 580 POST /api/logical-partitions/{logical-partition-id}/operations/psw-restart

“Start Logical Partition” on
page 581

POST /api/logical-partitions/{logical-partition-id}/operations/start

“Stop Logical Partition” on
page 583

POST /api/logical-partitions/{logical-partition-id}/operations/stop

“SCSI Load” on page 584 POST /api/logical-partitions/{logical-partition-id}/operations/scsi-load

“SCSI Dump” on page 586 POST /api/logical-partitions/{logical-partition-id}/operations/scsi-dump

Table 106. Core System z resources - Logical partitions: URI variables

URI variable Description

{cpc-id} Object ID of a CPC object

{logical-partition-id} Object ID of a Logical Partition object

Chapter 14. Core System z resources 485

Activation profile operations summary
The following tables provide an overview of the operations provided for the various types of Activation
Profile objects.

Table 107. Core System z resources - Reset activation profile: operations summary

Operation name HTTP method and URI path

“List Reset Activation
Profiles” on page 589

GET /api/cpcs/{cpc-id}/reset-activation-profiles

“Get Reset Activation
Profile Properties” on page
591

GET /api/cpcs/{cpc-id}/reset-activation-profiles/{reset-activation-profile-
name}

“Update Reset Activation
Profile Properties” on page
593

POST /api/cpcs/{cpc-id}/reset-activation-profiles/{reset-activation-profile-
name}

Table 108. Core System z resources - Image activation profile: operations summary

Operation name HTTP method and URI path

“List Image Activation
Profiles” on page 609

GET /api/cpcs/{cpc-id}/image-activation-profiles

“Get Image Activation
Profile Properties” on page
611

GET /api/cpcs/{cpc-id}/image-activation-profiles/{image-activation-profile-
name}

“Update Image Activation
Profile Properties” on page
614

POST /api/cpcs/{cpc-id}/image-activation-profiles/{image-activation-profile-
name}

Table 109. Core System z resources - Load activation profile: operations summary

Operation name HTTP method and URI path

“List Load Activation
Profiles” on page 618

GET /api/cpcs/{cpc-id}/load-activation-profiles

“Get Load Activation
Profile Properties” on page
620

GET /api/cpcs/{cpc-id}/load-activation-profiles/{load-activation-profile-name}

“Update Load Activation
Profile Properties” on page
621

POST /api/cpcs/{cpc-id}/load-activation-profiles/{load-activation-profile-
name}

Table 110. Core System z resources - Group profile: operations summary

Operation name HTTP method and URI path

“List Group Profiles” on
page 623

GET /api/cpcs/{cpc-id}/group-profiles

“Get Group Profile
Properties” on page 625

GET /api/cpcs/{cpc-id}/group-profiles/{group-profile-name}

“Update Group Profile
Properties” on page 627

POST /api/cpcs/{cpc-id}/group-profiles/{group-profile-name}

Table 111. Core System z resources - Activation profile: URI variables

URI variable Description

{cpc-id} Object ID of a CPC object

486 HMC Web Services API

Table 111. Core System z resources - Activation profile: URI variables (continued)

URI variable Description

{group-profile-name} Group profile name

{image-activation-profile-
name}

Image activation profile name

{load-activation-profile-name} Load activation profile name

{reset-activation-profile-name} Reset activation profile name

Capacity record operations summary
The following tables provide an overview of the operations provided for Logical Partition objects.

Table 112. Core System z resources - Capacity record: operations summary

Operation name HTTP method and URI path

“List Capacity Records” on
page 630

GET /api/cpcs/{cpc-id}/capacity-records

“Get Capacity Record
Properties” on page 631

GET /api/cpcs/{cpc-id}/capacity-records/{capacity-record-id}

Table 113. Core System z resources - Capacity record: URI variables

URI variable Description

{cpc-id} Object ID of a CPC object

{capacity-record-id} Capacity record identifier

Shared nested objects
Some of the Core API objects share common nested objects and are documented here for ease of
reference.

Table 114. ec-mcl-description object

Field name Type Description

actions Array of
action
objects

An optional array of pending action objects. This field is only provided when
the HMC is communicating with the CPC's SE.

ec Array of ec
objects

An optional array of EC objects. This field is only provided when the HMC is
communicating with the CPC's SE.

Table 115. action object

Field name Type Description

type String
Enum

One of:
v "channel-config" - channels pending a config on/off
v "coupling-facility-reactivation" - at least one coupling facility pending

reactivation
v "power-on-reset-tracking" - there is a need for a power-on-reset
v "zhybrid-blades-activation" - (zHybrid accelerator blades are pending an

activation.

activation String
Enum

One of:
v "current" - the action is for the current activation
v "next" - the action is for the next install and activation.

Chapter 14. Core System z resources 487

Table 115. action object (continued)

Field name Type Description

pending Boolean Is the action pending (true) or not pending (false)

Table 116. ec object

Field name Type Description

number String (1-6) Engineering Change stream identifier.

part-number String (1-8) Engineering Change stream part number.

type String
(1-32)

Engineering Change stream name.

description String
(1-65)

Engineering Change stream descriptive text.

mcl Aray of
mcl objects

The list of MicroCode Levels for this Engineering Change.

Table 117. mcl object

Field name Type Description

type String
Enum

One of:
v "retrieved" - a retrieved or staged level
v "activated" - an activated or applied level
v "accepted" - a committed level
v "installable-concurrent" - a non-disruptive apply-able level
v "removable-concurrent" - a non-disruptive reject-able level.

level String (1-3) Microcode level.

last-update Timestamp Time stamp of the last update, in the number of milliseconds since midnight
January 1, 1970 UTC. A null object is returned if no updates have occurred.

Table 118. stp-config object

Field name Type Description

stp-id String (1-8) If in STP-only or Mixed CTN, the STP identifier. Otherwise, an empty string.
Valid characters are 0-9, a-z, A-Z, underscore(_) and dash(-).

etr-id Integer
(0-31)

ETR Identifier, if in ETR mode. If not in ETR mode, a null object is returned.

preferred-time-server stp-node-
object

Describes the Preferred Timer Server. This property is optional, only returned
on a Get request when the information is set.

backup-time-server stp-node-
object

Describes the Backup Timer Server. This property is optional, only returned on
a Get request when the information is set.

arbiter stp-node-
object

Describes the arbiter of the CTN. This property is optional, only returned on a
Get request when the information is set.

current-time-server String
Enum

Describes the CPC's role in the CTN. One of:
v "preferred" - CPC is the Preferred Time Server
v "backup" - CPC is the Backup Time Server.

This object is used to identify a CPC to the STP services. When used as input on the Set STP
Configuration operation, if the object-uri field is not provided, all other fields are required. If the
object-uri field is provided, all other fields are optional. If all fields are provided, the object-uri field is
ignored.

488 HMC Web Services API

Table 119. stp-node object

Field name Type Description

object-uri String URI If the CPC is known to the HMC, contains the CPC's object-uri. Otherwise,
contains a null object

type String (0-6) The CPC machine type, right justified and left padded with zeros or a empty
string

model String (0-3) The CPC machine model or a empty string

manuf String (0-3) The CPC manufacturer or a empty string

po-manuf String (0-2) The CPC plant of manufacturer or a empty string

seq-num String
(0-12)

The CPC sequence number or a empty string

Table 120. psw-description object

Field name Type Description

psw String Program Status Word (PSW) information for a single processor.

cpid String (2) The hexadecimal processor identifier, right justified and left padded with zeros.

Table 121. zaware-network object

Field name Type Description

chpid String (2) The required network adapter channel path identifier, in hexadecimal characters
0-9,a-f,A-F. The format is two hexadecimal digits (00-FF).

ipaddr-type String
Enum

Indicates how this network adapter's IP address is obtained. One of the
following values:
v "dhcp" - obtains an IP address via DHCP
v "link-local" - obtains a link-local IP address
v "static" - uses the specified IP address information.

vlan-id Integer
(0-65535)

If this network adapter is attached to a Virtual LAN, this field contains the
VLAN identifier. Otherwise, a null object indicating that this network adapter is
not attached to a Virtual LAN.

static-ip-info network-
ip-info
object

When ipaddr-type is "static", contains the static IP information. Otherwise,
contains a null object indicating that a static IP address is not used.

Table 122. ip-info object

Field name Type Description

type String
Enum

The type of IP address being provided. One of the following values:
v "ipv4" - an IPv4 address is provided
v "ipv6" - an IPv6 address is provided.

ip-address String/
IPV4
address or
String/
IPV6
address

The IP address to be used. The format of the string (IPv4 or IPv6) must be as
indicated by the type field.

Chapter 14. Core System z resources 489

Table 123. network-ip-info object

Field name Type Description

type String
Enum

The type of IP address being provided. One of the following values:
v "ipv4" - an IPv4 address is provided
v "ipv6" - an IPv6 address is provided.

ip-address String/
IPV4
address or
String/
IPV6
address

The IP address to be used. The format of the string (IPv4 or IPv6) must be as
indicated by the type field.

prefix Integer The number of leading bits of ip-address that represent the network prefix.
v When type is "ipv4" - valid values are 0-32
v When type is "ipv6" - valid values are 0-128.

Console object
The Console object represents the single zEnterprise Hardware Management Console (HMC) application.
The Console object offers a heterogeneous set of services and capabilities, from basic HMC control
operations to general HMC information.

Object access to the single Console object representing the local HMC is automatic for all authenticated
users. A Console may (but need not) participate in a { Primary, Alternate } pairing with another Console.
The Console object helps facilitate the management of a HMC's role in such a pairing.

Data model
This object includes the properties defined in the “Base managed object properties schema” on page 33,
but does not provide the operational-status-related properties defined in that schema because it does not
maintain the concept of an operational status.

For definitions of the qualifier abbreviations in the following tables, see “Property characteristics” on
page 32.

The following class-specific specializations apply to the other Base Managed Object properties:

Table 124. Console object: base managed object properties specializations

Name Qualifier Type Description of specialization

object-uri — String/URI The canonical URI path of the Console object, of the form
/api/console

parent — String/URI A Console object has no parent, so this property is always a null
object.

class — String The class of a Console object is "console".

name (ro) String The installation assigned name

description (ro) String This property is not supported, and returned as null.

Class specific additional properties
In addition to the properties defined via included schemas, this object includes the following additional
class-specific properties:

490 HMC Web Services API

Table 125. Console object: class specific additional properties

Name Type Description

version String (1-8) The version number for the Console object.

paired-role String Enum An indication ("primary" or "alternate") of how the Console object
functions in a pairing, or null if this Console object is not paired.

ec-mcl-description ec-mcl-
description
object

A nested object that describes the EC (Engineering Change) and MCL
(Microcode Level) for the Console. Refer to the description of the
ec-mcl-description object for details.

is-auto-switch-enabled Boolean Automatic switching between primary and alternate Hardware
Management Consoles is enabled (true), or is not enabled (false).

network-info network-info
object

A nested object describing the network information for this Hardware
Management Console and for any other Hardware Management
console with which this Hardware Management Console may be
paired.

machine-info machine-info
object

A nested object describing the machine's BIOS characteristics.

ip-swapping-available Boolean Whether the current primary HMC IP addresses will be moved when
making the alternate HMC the new primary (true) or not (false).

Table 126. network-info object properties

Name Type Description

this-hmc Array of
detailed-
network-info
objects

The collection of network information for the local Hardware
Management Console. The number of objects returned is a function of
the machine model and type on which the Hardware Management
Console is executing. This information is available in the machine-info
property.

paired-hmc paired-ip-info
object

Describes the IP information for the paired Hardware Management
Console known to the local Hardware Management Console

Table 127. detailed-network-info properties

Name Type Description

hmc-name String (1-16) The Hardware Management Console name

interface-name String The network interface name

domain-name String (1-255) The domain name configured for this network interface

is-private Boolean Whether the interface is private (true) or public (false).

mac String (1-12) The MAC address of this network interface.

ipv4-address Array of
ipv4-info
objects

A collection of nested objects which describe the IPv4 addresses for this
network interface.

ipv6-address Array of
ipv6-info
objects

A collection of nested objects which describe the IPv6 addresses for this
network interface.

Table 128. paired-ip-info properties

Name Type Description

hmc-name String (1-16) The Hardware Management Console name

Chapter 14. Core System z resources 491

Table 128. paired-ip-info properties (continued)

Name Type Description

ipv4-address Array of
String IPV4
address

The collection of IPv4 addresses

ipv6-address Array of
String IPV6
address

The collection of IPv6 addresses

Table 129. ipv4-info properties

Name Qualifier Type Description

subnet-mask (pc) String (1-15) The IP mask value

ip-address (pc) String IPV4
address

The IPv4 address

Table 130. ipv6-info properties

Name Qualifier Type Description

prefix-length (pc) Integer The number of leading bits of the IPv6 address that represent
the network prefix.

ip-address (pc) String IPV6
address

The IPv6 address

Table 131. machine-info properties

Name Type Description

machine-type String (1-4) The type of machine on which the Hardware Management Console is
executing.

machine-model String (1-3) The model of machine on which the Hardware Management Console is
executing.

machine-serial String (1-10) The serial number of machine on which the Hardware Management
Console is executing.

Get Console Properties
The Get Console Properties operation retrieves the properties of the Console object.

HTTP method and URI
GET /api/console

Response body contents

On successful completion, the response body contains an object that provides the current values of the
properties for the Console object as defined in “Data model” on page 490. Field names and data types in
the object are the same as the property names and data types defined in the data model.

Description

This operation returns the current properties for the Console object.

This operation may be targeted to an alternate Hardware Management Console.

492 HMC Web Services API

On successful execution, HTTP status code 200 (OK) is returned and all of the current properties as
defined by the Data Model for the Console object are provided in the response body.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described
“Response body contents” on page 492.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/console HTTP/1.1
x-api-session: 6djngfmjus22whw3b5oj670c09rb2izzaafr4t3i1iw60ujmkd

Figure 241. Get Console Properties: Request

Chapter 14. Core System z resources 493

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 16:04:31 GMT
content-type: application/json;charset=UTF-8
content-length: 4250
{

"class": "console",
"description": "R32 Primary/Alternate HMC",
"ec-mcl-description": {

"ec": [
{

"description": "Hardware Management Console Framework",
"mcl": [

{
"last-update": "2011-11-09T15:06:34Z",
"level": "205",
"type": "retrieved"

},
{

"last-update": "2011-11-09T15:09:07Z",
"level": "205",
"type": "activated"

},
{

"last-update": "2011-11-09T15:05:51Z",
"level": "167",
"type": "accepted"

},
{

"level": "205",
"type": "installable-concurrent"

},
{

"level": "168",
"type": "removable-concurrent"

}
],
"number": "N48180",
"part-number": "45D8928",
"type": "SYSTEM"

},

Figure 242. Get Console Properties: Response (Part 1)

494 HMC Web Services API

{
"description": "Embedded Operating System",
"mcl": [

{
"level": "000",
"type": "retrieved"

},
{

"level": "000",
"type": "activated"

},
{

"level": "000",
"type": "accepted"

},
{

"level": "000",
"type": "installable-concurrent"

},
{

"level": "000",
"type": "removable-concurrent"

}
],
"number": "N48198",
"part-number": "45D8929",
"type": "OS"

}
]

},
"ip-swapping-available": true,
"is-auto-switch-enabled": true,
"is-locked": false,
"machine-info": {

"machine-model": "PAA",
"machine-serial": "KQZBLKD",
"machine-type": "7327"

},
"name": "HMCR32PRI",
"network-info": {

"paired-hmc": {
"hmc-name": "HMCR32ALT",
"ipv4-address": [

"9.60.15.47",
"9.60.14.47"

],
"ipv6-address": [

"fdd8:673b:d89b:1:221:5eff:fe69:e3f5",
"2002:93c:ffb:1:221:5eff:fe69:e3f5",
"fe80:0:0:0:221:5eff:fe69:e3f5",
"fe80:0:0:0:210:18ff:fe4c:8026"

]
},

Figure 243. Get Console Properties: Response (Part 2)

Chapter 14. Core System z resources 495

Restart Console
The Restart Console operation restarts the Hardware Management Console.

"this-hmc": [
{

"domain-name": "endicott.ibm.com",
"hmc-name": "HMCR32PRI",
"interface-name": "eth0",
"ipv4-address": [

{
"ip-address": "9.60.15.48",
"subnet-mask": "255.255.255.0"

}
],
"ipv6-address": [

{
"ip-address": "fdd8:673b:d89b:1:221:5eff:fe69:dea0",
"prefix-length": 64

},
{

"ip-address": "2002:93c:ffb:1:221:5eff:fe69:dea0",
"prefix-length": 64

},
{

"ip-address": "fe80:0:0:0:221:5eff:fe69:dea0",
"prefix-length": 64

}
],
"is-private": false,
"mac": "00215E69DEA0"

},
{

"domain-name": "endicott.ibm.com",
"hmc-name": "HMCR32PRI",
"interface-name": "eth1",
"ipv4-address": [

{
"ip-address": "9.60.14.48",
"subnet-mask": "255.255.255.0"

}
],
"ipv6-address": [

{
"ip-address": "fe80:0:0:0:210:18ff:fe4c:8334",
"prefix-length": 64

}
],
"is-private": false,
"mac": "0010184C8334"

}
]

},
"object-id": "1e8b3137-85b0-3a06-9269-0b25fc170d44",
"object-uri": "/api/console",
"paired-role": "primary",
"parent": null,
"version": "2.11.1"

}

Figure 244. Get Console Properties: Response (Part 3)

496 HMC Web Services API

HTTP method and URI
POST /api/console/operations/restart

Request body contents

The request body is expected to contain a JSON object with the following fields:

Field name Type Rqd/Opt Description

force Boolean Optional Whether the restart operation is processed when users are connected
(true) or not (false). The default is false.

Description

The Hardware Management Console is restarted. This operation may be targeted to an alternate
Hardware Management Console.

By default, the restart does not occur if one or more users are currently connected to the Hardware
Management Console. This can be overridden by use of the force field in the request body.

On success, HTTP status code 202 (Accepted) is returned.

Authorization

To use Restart Console, you must have the following:
v Action/Task permission to the Shutdown/Restart task
v Remote Restart must be enabled on the Hardware Management Console.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See“Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

267 The operation is rejected, due to the presence of HMC users. Either wait
until all HMC users have logged off or retry the request with the force field
set to "true".

403 (Forbidden) 269 This operation is currently blocked. The error message will contain
information on the blocking application.

270 The remote restart operation is not enabled on the HMC.

1 The remote restart operation is not enabled on the HMC.

500 (Server Error) 273 An unexpected error occurred during the operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Chapter 14. Core System z resources 497

Make Console Primary
Make Console Primary initiates a primary/alternate role switch when directed at a Hardware
Management Console that is currently operating in the alternate role. It is only supported for a Hardware
Management Console participating in a {primary, alternate} pairing.

HTTP method and URI
POST /api/console/operations/make-primary

Description

This operation initiates a primary/alternate role switch when directed at a Hardware Management
Console that is currently operating in the alternate role. As this command will cause both consoles to be
rebooted, any active sessions (GUI based or API based) will be terminated.

If this operation is directed at a Hardware Management Console which does not participate in a {primary,
alternate} pairing, it returns with HTTP status code 400 (Bad Request).

If this operation is directed at a Hardware Management Console whose pair-role is "alternate", it initiates
the role-switch process, and returns with HTTP status code 204 (No Content).

If this operation is directed at a Hardware Management Console whose pair-role is already "primary", it
has no effect, and returns with HTTP status code 204 (No Content).

Authorization

To use Make Console Primary, you must have the following:
v Action/task permission to the Manage Alternate HMC task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

265 The operation was directed at a Hardware Management Console which is
not participating in a {primary, alternate} pairing, which is not supported.

403 (Forbidden) 1 The user under which the API request was authenticated does not have the
required authority to perform this operation.

500 (Server Error) 273 An unexpected error occurred during the operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Usage notes

When configured as recommended by IBM, the process of recovering from the failure of the primary
HMC by takeover by the alternate HMC includes movement of the IP address of the former primary
HMC to the new primary HMC. When this occurs, explicit redirection of API requests to the newly

498 HMC Web Services API

designated primary HMC is not needed. However, the IP address swapping may not be possible in
certain network configurations. The address of the alternate HMC is provided to allow applications to
explicitly redirect requests to the other HMC of the pair in these cases.

Shutdown Console
Shutdown Console powers off the Hardware Management Console.

HTTP method and URI
POST /api/console/operations/shutdown

Request body contents

A request body must be specified. It has the following fields:

Field name Type Rqd/Opt Description

force Boolean Optional Whether the shutdown operation is processed when users are
connected (true) or not (false). The default is false.

Description

The Hardware Management Console is powered off.

This operation may be targeted to an alternate Hardware Management Console.

By default, the shutdown does not occur if one or more users are currently connected to the Hardware
Management Console. This can be overridden by use of the force field in the request body.

The action to shutdown the Hardware Management Console occurs asynchronously. If the request is
accepted, HTTP status code 202 (Accepted) is returned to indicate that the request has been initiated.
However, because this action results in the targeted Hardware Management Console becoming inactive
and powered off at completion, it is not possible to track the completion of this request. Thus no response
body containing an asynchronous job URI is provided, nor is a job completion notification generated
upon completion.

Authorization

To use Shutdown Console, you must have the following:
v Action/task permission to the Shutdown/Restart task.
v Remote Shutdown must be enabled on the Hardware Management Console.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned but no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

Chapter 14. Core System z resources 499

|

|

|

|

|

|

|||||

||||
|
|

|

|

|

|
|

|
|
|
|
|
|

|

|
|
|

|

|

|
|

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

267 The operation is rejected, due to the presence of HMC users. Either wait
until all HMC users have logged off or retry the request with the force field
set to true.

403 (Forbidden) 1 The user under which the API request was authenticated does not have the
required authority to perform this operation.

270 The remote restart operation is not enabled on the HMC.

304 This operation is currently blocked. The error message will contain
information on the blocking application.

500 (Server Error) 273 An unexpected error occurred during the operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Group Object
The Hardware Management Console provides a fixed set of system-defined groups to which managed
objects of certain types automatically belong, as members. For example, defined CPCs are automatically
members of the CPC group.

These system-defined groups are distinct from user-defined (“custom”) groups. The latter are explicitly
created by users for their own purposes: for example, it may be convenient for management purposes to
take some proper subset of the members of the system-defined CPC group as a user-defined group of
CPCs. User-defined groups may be homogeneous (all members of the same managed object type, as in
this previous example), but need not be.

This API pertains only to user-defined groups. This is because:

POST /api/console/operations/shutdown HTTP/1.1/
x-api-session: 5dul8zvlwa5s83eobcukaf1vug3s3kgidkyk9e5c5acsekabsl
content-type: application/json
content-length: 16
{

"force": false
}

Figure 245. Shutdown Console: Request

202 Accepted
server: zSeries management console API web server / 2.0
cache-control: no-cache
date: Fri, 01 Mar 2013 19:38:25 GMT

<No response body>

Figure 246. Shutdown Console: Response

500 HMC Web Services API

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

||
|
|
||

|||
|
|

||
|
|

|||
|

||

||
|

|||
|

|
|

|
||

|

v By their nature, the members of the system-defined groups are already obtainable via list operations of
the appropriate API. For example, all the CPCs managed by a Hardware Management Console can be
obtained via a List CPCs operation. Therefore, list operations for system-defined groups are
unnecessary.

v By their nature, the existence of a system-defined group and its content (members) is implicit.
Therefore, create/delete operations for system-defined groups are both unnecessary and inappropriate.

A Group object represents one or more managed objects which are called group members. Each member
is of some object type: CPC, Logical Partition, etc. Note that groups may be heterogeneous (with member
objects of differing types), and may even have other groups as members.

Users may define groups in one of two ways:
1. by use of a pattern-match expression to implicitly define membership (pattern-matching group)
2. by explicitly choosing members.

This API can be used to view/manage custom groups, and membership within these groups. The latter is
subject to restrictions, based on which of the two fundamentally different means of definition the user
employed:
v If pattern-matching was specified, then group membership is “implicit”. In this case, operations to

add/remove a member are unnecessary (simply create/delete the managed object, itself, using the
appropriate API operation). Accordingly, member-management operations are not supported for groups
using pattern-matching.

v If pattern-matching was not specified, then group membership is “explicit”, and in this case operations
to add/remove group members are both useful and appropriate. Accordingly, for custom groups not
based on pattern-matching, member-management operations are supported. Note that such operations
do not affect the member object itself, only its group membership status.

v When groups are defined using pattern-matching, the types of managed objects to which
pattern-matching is applied must be explicitly specified. Regardless of the POSIX regular expression
specified as the match pattern, managed objects whose names match the pattern but who are not of the
specified object type(s) are not considered to be members of the group.

v Groups are not intrinsically ordered in any way, nor are members within a given group. List-oriented
operations therefore do not return ordered results.

Data model
This object includes the properties defined in the “Base managed object properties schema” on page 33,
but does not provide the operational-status-related properties defined in that schema because it does not
maintain the concept of an operational status.

For definitions of the qualifier abbreviations in the following tables, see “Property characteristics” on
page 32

The following class-specific specializations apply to the other Base Managed Object properties:

Table 132. Group object: base managed object properties specializations

Name Qualifier Type Description of specialization

object-uri — String/
URI

The canonical URI path of the Group object, of the form
/api/groups/{group-id} where {group-id} is the value of the object-id
property of the Group object.

parent — String This property is always a null object.

class — String The class of a Group object is "group".

name (ro) String The group name specified by the user when the group was created

Chapter 14. Core System z resources 501

Table 132. Group object: base managed object properties specializations (continued)

Name Qualifier Type Description of specialization

description (ro) String The description specified by the user when the group was created, or
if none was provided, the IBM provided caption text.

Class specific additional properties
In addition to the properties defined via included schemas, this object includes the following additional
class-specific properties:

Table 133. Group object: class specific additional properties

Name Type Description

match-info match-info
object

A nested object which pertains to pattern-matching groups only, as
described in the next table. An empty value is returned for groups
which do not use pattern-matching.

The match-info object contains the following fields:

Table 134. match-info object properties

Name Type Description

pattern String A regular expression used to define membership for pattern-matching
groups. This field has no length limitations.

types Array of
String Enum

Specifies the type(s) of objects that are eligible for membership in
pattern-matching groups. One or more of the following:
v "custom-groups" - zManager API objects of class “group”
v "defined-cpc" - zManager API objects of class “cpc”
v "director-timer-console" - ESCON® director and/or Sysplex timer

consoles
v "ibm-fiber-saver" - IBM 2029 fiber optic data transports
v "logical-partition" - zManager API objects of class “logical-partition”
v "zvm-virtual-machines" - zManager API objects of class

“virtual-server”, type of "zvm"
v "blade-center" - zManager API objects of class “bladecenter”
v "data-power-xi50z-blades" - zManager API objects of class “blade”,

type of "dpxi50z"
v "ibm-smart-analytics-optimizer-blades" - zManager API objects of

class “blade”, type of "isaopt"
v "power-blade" - zManager API objects of class “blade”, type of

"power"
v "system-x-blade" - zManager API objects of class “blade”, type of

"x-hyp"
v "power-vm-virtual-server" - zManager API objects of class

“virtual-server”, type of "power-vm"
v "system-x-virtual-server" - zManager API objects of class

“virtual-server”, type of "x-hyp"
v "workload" - zManager API objects of class “workload”.

List Custom Groups
The List Custom Groups operation lists the custom groups which are visible to the API user.

HTTP method and URI
GET /api/groups

Query Parameters

502 HMC Web Services API

Name Type Rqd/Opt Description

name String Optional A regular expression used to limit returned objects to those that have a
matching name property. If matches are found, the response will be an
array with all objects that match. If no match is found, the response
will be an empty array.

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

groups Array of
group-info
objects

Array of nested objects which identify custom groups that are visible to the
API user.

Each nested group-info object contains the following fields:

Field name Type Description

object-uri String/URI The value of the Group object's object-uri property.

name String The value of the Group object's name property.

Description

This operation lists the custom group objects which are visible to the API user. Only groups to which the
caller has authorization will be returned.

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in the
Response Body Contents section. If no custom groups exist, or if no custom groups are visible to the API
user, HTTP status code 200 (OK) is returned, along with an empty response body.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the group object.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described
“Response body contents.”

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

299 A query parameter has an invalid syntax.

Chapter 14. Core System z resources 503

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Get Custom Group Properties
The Get Custom Group Properties operation retrieves the properties of a single custom group object that
is designated by the {group-id}.

HTTP method and URI
GET /api/groups/{group-id}

In this request, the URI variable {group-id} is the object ID of the group.

Response body contents

On success, HTTP status code 200 (OK) is returned and the response body contains an object that
provides the current values of the properties for the Group object as defined in “Data model” on page
501. Field names and data types in the object are the same as the property names and data types defined
in the data model.

Description

This operation returns the current properties for the custom group object designated by {group-id}.

The URI path {group-id} must designate an existing custom group object.

GET /api/groups HTTP/1.1
x-api-session: 4ipkcgbjpy5kocelt652l3dvb85gi81iqy5bz8yrpt6vtrt8ks

Figure 247. List Custom Groups: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 16:02:42 GMT
content-type: application/json;charset=UTF-8
content-length: 283
{

"groups": [
{

"name": "SS-Web-Servers",
"object-uri": "/api/groups/ee2782af-dd98-3ec0-bc2d-cfe2e9154341"

},
{

"name": "Test Group",
"object-uri": "/api/groups/febde5ab-a4a6-35bf-9e01-83aae59d7e52"

}
]

}

Figure 248. List Custom Groups: Response

504 HMC Web Services API

Authorization requirements

This operation has the following authorization requirement:
v Object-access permission to the custom group object designated by {group-id}.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 504.

On error, appropriate HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object-id in the URI ({group-id}) does not designate an existing custom
group, or the API user does not have sufficient access (as described above).

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Create Custom Group
Use the Create Custom Group operation to create a custom group name.

GET /api/groups/ee2782af-dd98-3ec0-bc2d-cfe2e9154341 HTTP/1.1
x-api-session: 42r6t4chltipvd6l4l61wi3111tf7fv2hes80hjqjs3invt7cp

Figure 249. Get Custom Group Properties: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 16:45:45 GMT
content-type: application/json;charset=UTF-8
content-length: 250
{

"class": "group",
"description": "Spacely Sprockets Web Servers",
"is-locked": false,
"match-info": {},
"name": "SS-Web-Servers",
"object-id": "ee2782af-dd98-3ec0-bc2d-cfe2e9154341",
"object-uri": "/api/groups/ee2782af-dd98-3ec0-bc2d-cfe2e9154341",
"parent": null

}

Figure 250. Get Custom Group Properties: Response

Chapter 14. Core System z resources 505

HTTP method and URI
POST /api/groups

Request body contents

The request body is expected to contain a JSON object with the following fields:

Field name Type Rqd/Opt Description

name String Required The name for the new custom group object

description String Optional The description for the new custom group object

match-info match-
info
object

Optional A nested object describing the pattern match. If not provided, this
is not a pattern-match custom group. Refer to “Class specific
additional properties” on page 502 for details.

Response body contents

Field name Type Description

object-uri String The object URI of the new custom group.

Description

Group objects are programmatically identified by object-id and not by name. To avoid the confusion
which might result from allowing redundant names, the name property is required for this operation,
and the (case-sensitive) value supplied for the name property must be distinct from that of all
currently-existing group objects. In keeping with restrictions imposed by the Hardware Management
Console's Graphical User Interface (GUI), the following set of names is also not allowed:
v the current name of the Hardware Management Console
v the GUI View names {“Groups”, “Exceptions”, “Active Tasks”, “Console Actions”, “Task List”,

“Books”, “Help”, “Ensemble”}

On success, a custom group managed object is created reflecting the Request Body contents and HTTP
status code 201 (Created) is returned.

Authorization requirements

This operation has the following authorization requirement:
v Action/task permission to the Grouping task.

HTTP status and reason codes

On success, HTTP status code 201 (Created) is returned and the response body is provided as described
in “Response body contents.” In addition, the Location response header contains the URI of the newly
created object.

On error, appropriate HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

506 HMC Web Services API

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

261 One of the following errors was detected:
v The pattern string specified in match-info is not valid. This must be a

non-empty string which is a valid regular expression.
v One or more of the types specified in match-info is invalid. At least one

type must be specified, and all must be values as documented for the
match-info types property.

290 The requested name is either reserved or already in use.

403 (Forbidden) 1 The user under which the API request was authenticated does not have the
required authority to perform this operation.

500 (Server Error) 273 An unexpected error occurred during the operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Delete Custom Group
Use the Delete Custom Group operation to delete a custom group.

HTTP method and URI
DELETE /api/groups/{group-id}

In this request, the URI variable {group-id} is the object ID of the group.

POST /api/groups HTTP/1.1
x-api-session: 42r6t4chltipvd6l4l61wi3111tf7fv2hes80hjqjs3invt7cp
content-type: application/json
content-length: 74
{

"description": "Spacely Sprockets Web Servers",
"name": "SS-Web-Servers"

}

Figure 251. Create Custom Group: Request

201 Created
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 16:45:44 GMT
content-type: application/json;charset=UTF-8
content-length: 65
{

"object-uri": "/api/groups/ee2782af-dd98-3ec0-bc2d-cfe2e9154341"
}

Figure 252. Create Custom Group: Response

Chapter 14. Core System z resources 507

Description

If successful, the custom group managed object designated by {group-id} is deleted.

If {group-id} does not identify an existing custom group, status code 404 (Not Found) is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object-access permission to the custom group designated by {group-id}
v Action/task permission for the Grouping task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

On error, appropriate HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The user under which the API request was authenticated does not have the
required authority to perform this operation.

404 (Not Found) 1 The URI's {group-id} does not designate an existing custom group object, or
the API user does not have object access to the group.

500 (Server Error) 273 An unexpected error occurred during the operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Add Member to Custom Group
Use the Add Member to Custom Group operation to add a member to a custom group.

DELETE /api/groups/ee2782af-dd98-3ec0-bc2d-cfe2e9154341 HTTP/1.1
x-api-session: 42r6t4chltipvd6l4l61wi3111tf7fv2hes80hjqjs3invt7cp

Figure 253. Delete Custom Group: Request

204 No Content
date: Fri, 25 Nov 2011 16:45:45 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 254. Delete Custom Group: Response

508 HMC Web Services API

HTTP method and URI
POST /api/groups/{group-id}/operations/add-member

In this request, the URI variable {group-id} is the object ID of the group.

Request body contents

The request body is expected to contain a JSON object with the following fields:

Field name Type Rqd/Opt Description

object-uri String Required The object URI of the object to be added to the group

Description

If successful, the managed object designated in the request body attains membership in the custom group
identified by {group-id}.

The operation is subject to the following restrictions:
v The designated managed object must exist and must not already be a member of the group identified

by {group-id}
v The group identified by {group-id} must be a custom group defined without a pattern-matching

specification.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the custom group object designated by {group-id}
v Object access permission to the object designated by the request body
v Action/task permission for the Grouping task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

On error, appropriate HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

291 The designated managed object is already a member of the custom group
identified by {group-id}.

294 The group identified by {group-id} was defined using pattern-matching.

403 (Forbidden) 1 The user under which the API request was authenticated does not have the
required authority to perform this operation.

293 The addition of the member to the custom group designated by the URI
({group-id}) would introduce a circular reference, which is not permitted.

404 (Not Found) 1 The URI's {group-id} does not designate an existing custom group object, or
the API user does not have object access to the group.

2 The request body does not designate an existing managed object, or the API
user does not have sufficient access to the managed object.

Chapter 14. Core System z resources 509

HTTP error status
code

Reason
code Description

500 (Server Error) 273 An unexpected error occurred during the operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Remove Member from Custom Group
Use the Remove Member from Custom Group operation to remove a member from a custom group.

HTTP method and URI
POST /api/groups/{group-id}/operations/remove-member

In this request, the URI variable {group-id} is the object ID of the group

Request body contents

The request body is expected to contain a JSON object with the following fields:

Field name Type Rqd/Opt Description

object-uri String Required The object URI of the object to be removed from the group

Description

The managed object designated in the request body relinquishes its membership in the custom group
identified by {group-id}.

The operation is subject to the following restrictions:
v The managed object designated in the request body must currently be a member of the group

identified by {group-id}.

POST /api/groups/ee2782af-dd98-3ec0-bc2d-cfe2e9154341/operations/add-member HTTP/1.1
x-api-session: 42r6t4chltipvd6l4l61wi3111tf7fv2hes80hjqjs3invt7cp
content-type: application/json
content-length: 75
{

"object-uri": "/api/virtual-servers/588d8c18-0db7-11e1-b1f1-f0def14b63af"
}

Figure 255. Add Member to Custom Group: Request

204 No Content
date: Fri, 25 Nov 2011 16:45:44 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 256. Add Member to Custom Group: Response

510 HMC Web Services API

v The group identified by {group-id} must be a custom group defined without a pattern-matching
specification

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the custom group object designated by {group-id}
v Object access permission to the object designated by the request body
v Action/task permission for the Grouping task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

On error, appropriate HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

291 The designated managed object is not a member of the custom group
identified by {group-id}.

294 The group identified by {group-id} was defined using pattern-matching.

403 (Forbidden) 1 The user under which the API request was authenticated does not have the
required authority to perform this operation.

404 (Not Found) 1 The URI's {group-id} does not designate an existing custom group object, or
the API user does not have object access to the group.

2 The request body does not designate an existing managed object, or the API
user does not have sufficient access to the managed object.

500 (Server Error) 273 An unexpected error occurred during the operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

POST /api/groups/ee2782af-dd98-3ec0-bc2d-cfe2e9154341/operations/remove-member HTTP/1.1
x-api-session: 42r6t4chltipvd6l4l61wi3111tf7fv2hes80hjqjs3invt7cp
content-type: application/json
content-length: 75
{

"object-uri": "/api/virtual-servers/588d8c18-0db7-11e1-b1f1-f0def14b63af"
}

Figure 257. Remove Member from Custom Group: Request

Chapter 14. Core System z resources 511

List Custom Group Members
Use the List Custom Group Members operation to list custom group members.

HTTP method and URI
GET /api/groups/{group-id}/members

In this request, the URI variable {group-id} is the object ID of the group.

Response body contents

Field name Type Description

members Array of
nested
objects

Array of nested objects which identify members of the custom group
designated by {group-id}.

Each nested member object contains the following fields:

Field name Type Description

object-uri String/URI The value of the member object's object-uri property.

name String The value of the member object's name property.

Description

This operation lists the members of the custom group object designated by {group-id}. The results of this
operation only include references to member objects for which the API user has object access authority.

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in the
Response Body Contents section. If the custom group currently has no members, HTTP status code 200
(OK) is returned, along with an empty response body.

On error, appropriate HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the group object.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

204 No Content
date: Fri, 25 Nov 2011 16:45:45 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache

<No response body>

Figure 258. Remove Member from Custom Group: Response

512 HMC Web Services API

On error, appropriate HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The custom group designated by the URI ({group-id}) does not exist, or the
API user does not have sufficient access (as described above).

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

CPC object
A CPC object represents a single zEnterprise Central Processor Complex (CPC) that is being managed by
an HMC.

Data model
For definitions of the qualifier abbreviations in the following tables, see “Property characteristics” on
page 32.

This object includes the properties defined in the “Base managed object properties schema” on page 33,
with the following class-specific specialization:

GET /api/groups/ee2782af-dd98-3ec0-bc2d-cfe2e9154341/members HTTP/1.1
x-api-session: 42r6t4chltipvd6l4l61wi3111tf7fv2hes80hjqjs3invt7cp

Figure 259. List Custom Group Members: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 16:45:45 GMT
content-type: application/json;charset=UTF-8
content-length: 207
{

"members": [
{

"name": "SS-Web-Svr-1",
"object-uri": "/api/virtual-servers/576569dc-0db7-11e1-b1f1-f0def14b63af"

},
{

"name": "SS-Web-Svr-2",
"object-uri": "/api/virtual-servers/588d8c18-0db7-11e1-b1f1-f0def14b63af"

}
]

}

Figure 260. List Custom Group Members: Response

Chapter 14. Core System z resources 513

Table 135. CPC object: base managed object properties specializations

Name Qualifier Type Description of specialization

object-uri — String/
URI

The canonical URI path of the CPC object, of the form
/api/cpcs/{cpc-id} where {cpc-id} is the value of the object-id
property of the CPC object.

parent — String/
URI

If the CPC is a member of an ensemble, the parent is the canonical
URI path for the ensemble object. Otherwise, this property contains a
null object.

class — String The class of a CPC object is "cpc".

name (ro) String (1-8) The CPC name

description (ro) String
(0-1024)

The descriptive text associated with this CPC object.

status (sc) String
Enum

The current operational status of the CPC object. One of:
v "operating" - the CPC is operational
v "not-communicating" - the CPC is not communicating with the

HMC
v "exceptions" - the CPC has one or more unusual conditions
v "status-check" - the SE is not communicating with the CPC
v "service" - the CPC has been placed in service mode
v "not-operating" - the CPC is not operational
v "no power" - the CPC has no power
v "service-required" - the CPC is operating on the last redundant part

of a particular type
v "degraded" - one or more of the CPC elements are degraded.

acceptable-status (w)(pc) Array of
String
Enum

The set of operational status values in which the CPC object can exist
and be considered in an acceptable (not alert causing) state. One or
more of the values listed for the status property.

Class specific additional properties
In addition to the properties defined via included schemas, this object includes the following additional
class-specific properties.

Table 136. CPC object: class specific additional properties

Name Qualifier Type Description

se-version (pc) String (1-8) The current release level of the primary SE internal code. For
example, “2.11.1”. Note that the alternate SE is normally at the
same level, except when installing new internal code levels.

has-hardware-
messages

(pc) Boolean The CPC object has hardware messages (true), or does not
have hardware messages (false).

is-ensemble-member (pc) Boolean Whether the CPC is currently part of an ensemble (true) or
not (false).

iml-mode (pc) String Enum The Initial Microcode Load (IML) mode type of the CPC
object. One of:
v "not-set" - the CPC is not IMLed
v "esa390" - the CPE is in ESA/390 mode
v "lpar" - the CPC is in logical partition mode
v "esa390-tpf" - the CPC is in ESA/390 TPF mode

next-activation-profile-
name

(w)(pc) String (1-16) The name of the activation profile to be used on the next
activation of the CPC.

last-used-activation-
profile-name

(pc) String (0-16) The name of the activation profile used on the last activation
of the CPC or a null string.

514 HMC Web Services API

Table 136. CPC object: class specific additional properties (continued)

Name Qualifier Type Description

machine-model (pc) String (1-3) The model of the machine containing this CPC. For example,
“M15”.

machine-type (pc) String (1-4) The type of the machine containing this CPC. For example,
“2817”.

machine-serial-number (pc) String (1-12) The serial number of the machine containing this CPC. For
example, “00 - SP1D92B”.

cpc-serial-number — String (1-12) The serial number of the CPC. For example, “00000SP1D92B”.

cpc-node-descriptor (pc) String (2) The hexadecimal number mapped to the device location of the
CPC. This property identifies the CPC's relative order among
other CPCs, if any, in the machine. For example, “00”.

is-cbu-installed — Boolean The Capacity Backup Upgrade (CBU) facility is installed
(true), or not installed (false). Note: if status is
“not-communicating”, a null object is returned. Refer to the
Capacity On Demand User's Guide for details.

is-cbu-enabled — Boolean CBU is enabled (true), or is not enabled (false). Note: if status
is “not-communicating”, a null object is returned. Refer to the
Capacity On Demand User's Guide for details.

is-cbu-activated — Boolean CBU is activated (true), or is not activated (false). Note: if
status is “not-communicating”, a null object is returned. Refer
to the Capacity On Demand User's Guide for details.

is-real-cbu-available — Boolean Real CBU is available (true), or not available (false). Note: if
status is “not-communicating”, a null object is returned. Refer
to the Capacity On Demand User's Guide for details.

cbu-activation-date — Timestamp The date of CBU activation or a null string. Note: if status is
“not-communicating”, a null object is returned. Refer to the
Capacity On Demand User's Guide for details.

cbu-expiration-date — Timestamp The date of CBU expiration or a null string. Note: if status is
“not-communicating”, a null object is returned. Refer to the
Capacity On Demand User's Guide for details.

cbu-number-of-tests-
left

— Integer The number of CBU tests left. Note: if status is
“not-communicating”, a null object is returned. Refer to the
Capacity On Demand User's Guide for details.

is-service-required — Boolean Whether the CPC is operating using the last redundant part of
a particular type (true) or not (false). If true, repairs should be
made before additional parts fail that would make this CPC
non-operational. Refer to the Support Element Operations Guide
for more details.

degraded-status (pc) Array of
String Enum

The set of degraded status values. If the CPC is not degraded,
this property contains “not-degraded” as the only value.
Otherwise, this property contains one or more of the
following:
v "memory" - loss of memory
v "io" - loss f I/O channels
v "node" - one or more books are no longer functioning
v "ring" - the ring connecting the book is open
v "cbu" - CBU resources have expired
v "mru" - cycle time reduction due to an MRU problem
v "ambient-temp" -cycle time reduction due to a temperature

problem
v "iml" - CPC was IMLed during cycle time reduction.

Chapter 14. Core System z resources 515

Table 136. CPC object: class specific additional properties (continued)

Name Qualifier Type Description

processor-running-
time-type

(w) String Enum Denotes how the processor-running-time property value was
determined. One of:
v "system-determined" - the processor running time is

dynamically determined by the system
v "user-determined" - the processor running time is set to a

constant value.

Note: if iml-mode is not "lpar", a null object is returned.

processor-running-time (w) Integer The amount of continuous time, in milliseconds, allowed for
logical processors to perform jobs on shared processors for the
CPC object. Note: a null object is returned if the iml-mode is
not "lpar" or processor-running-time-type is
"system-determined".

does-wait-state-end-
time-slice

(w) Boolean Logical Partitions of the CPC should lose their share of
running time when they enter a wait state (true), or should
not lose their share of running time when they enter a wait
state (false). Note: a null object is returned if the iml-mode is
not "lpar" or processor-running-time-type is
"system-determined".

is-on-off-cod-installed — Boolean On/Off Capacity on Demand is installed for the CPC object
(true), or is not installed (false). Note: if status is
“not-communicating”, a null object is returned. Refer to the
Capacity On Demand User's Guide for details.

is-on-off-cod-enabled — Boolean On/Off CoD is enabled (true), or is not enabled (false). Note:
if status is “not-communicating”, a null object is returned.
Refer to the Capacity On Demand User's Guide for details.

is-on-off-cod-activated — Boolean On/Off CoD is currently activated for the CPC object (true),
or is not currently activated (false). Note: if status is
“not-communicating”, a null object is returned. Refer to the
Capacity On Demand User's Guide for details.

on-off-cod-activation-
mode

— Timestamp The date when On/Off CoD was activated. Note: if status is
“not-communicating”, a null object is returned. Refer to the
Capacity On Demand User's Guide for details.

software-model-
permanent

(pc) String (1-3) The software model based on the permanent processors. For
example, “700”.

software-model-
permanent-plus-
billable

(pc) String (1-3) The software model based on the permanent plus billable
processors. For example, “700”.

software-model-
permanent-plus-
temporary

(pc) String (1-3) The software model based on the permanent plus all
temporary processors. For example, “700”.

msu-permanent — Integer The MSU value associated with the software model based on
the permanent processors.

msu-permanent-plus-
billable

— Integer The MSU value associated with the software model based on
the permanent plus billable processors.

msu-permanent-plus-
temporary

— Integer The MSU value associated with the software model based on
the permanent plus all temporary processors.

processor-count-
general-purpose

— Integer The count of active general purpose processors.

processor-count-
service-assist

— Integer The count of active service assist processors.

516 HMC Web Services API

Table 136. CPC object: class specific additional properties (continued)

Name Qualifier Type Description

processor-count-aap — Integer The count of active IBM System z Application Assist Processor
(zAAP) processors.

processor-count-ifl — Integer The count of active IBM System z Integrated Facility for Linux
(IFL) processors.

processor-count-icf — Integer The count of active Internal Coupling Facility (ICF)
processors.

processor-count-iip — Integer The count of active IBM System z Integrated Information
Processor (zIIP) processors.

processor-count-
defective

— Integer The count of defective processors. Includes all processor types.

processor-count-spare — Integer The count of spare processors. Includes all processor types.

processor-count-
pending

— Integer The combined number of processors that will become active,
when more processors are made available by adding new
hardware or by deactivating capacity records.

processor-count-
pending-general-
purpose

— Integer The number of general purpose processors that will become
active, when more processors are made available by adding
new hardware or by deactivating capacity records. Note: if
status is “not-communicating”, a null object is returned.

processor-count-
pending-service-assist

— Integer The number of service assist processors that will become
active, when more processors are made available by adding
new hardware or by deactivating capacity records. Note: if
status is “not-communicating”, a null object is returned.

processor-count-
pending-aap

— Integer The number of Application Assist processors that will become
active, when more processors are made available by adding
new hardware or by deactivating capacity records. Note: if
status is “not-communicating”, a null object is returned.

processor-count-
pending-ifl

— Integer The number of Integrated Facility for Linux processors that
will become active, when more processors are made available
by adding new hardware or by deactivating capacity records.
Note: if status is “not-communicating”, a null object is
returned.

processor-count-
pending-icf

— Integer The number of Integrated Coupling Facility processors that
will become active, when more processors are made available
by adding new hardware or by deactivating capacity records.
Note: if status is “not-communicating”, a null object is
returned.

processor-count-
pending-iip

— Integer The number of Integrated Information processors that will
become active, when more processors are made available by
adding new hardware or by deactivating capacity records.
Note: if status is “not-communicating”, a null object is
returned.

has-temporary-
capacity-change-
allowed

— Boolean Whether API applications are allowed to make changes to
temporary capacity (true), or not (false).

network-info (pc) network-
info object

A nested object that details the network information for this
CPC.

ec-mcl-description — ec-mcl-
description
object

Describes the Engineering Change (EC) and MicroCode Level
(MCL) for the CPC object. An empty object is returned if the
information is unavailable from the SE. Refer to the
description of the ec-mcl-description object for details.

Chapter 14. Core System z resources 517

Table 136. CPC object: class specific additional properties (continued)

Name Qualifier Type Description

has-automatic-se-
switch-enabled

— Boolean Automatic switching between primary and alternate Support
Elements is enabled for the CPC object (true), or is not
enabled (false). Refer to the Support Element Operations Guide
for details on automatic SE switching.

stp-configuration — stp-config
object

Describes the Server Time Protocol (STP) configuration. Refer
to the description of the stp-config object for details. Note: if
the required feature(s) are not installed, the property is not
returned.

lan-interface1-type (pc) String Enum The adapter type of the Support Element's LAN interface 1.
One of the following:
v "ethernet"
v "token-ring"
v "unknown"

lan-interface1-address (pc) String (1-2) The MAC address of the Support Element's LAN interface 1.

lan-inerface2-type (pc) String Enum The adapter type of the Support Element's LAN interface 2.
One of the following:
v "ethernet"
v "token-ring"
v "unknown"

lan-interface2-address (pc) String (1-12) The MAC address of the Support Element's LAN interface 2.

network1-ipv4-mask (pc) String (1-15) The network IP mask value.

network2-ipv4-pri-
ipaddr

(pc) String IPV4
address

The primary IPv4 address or a null object if not configured.

network1-ipv4-alt-
ipaddr

(pc) String IPV4
address

The alternate IPv4 address or a null object if not configured.

network1-ipv6-info — Array of
ipv6-info
objects

A list of objects describing the Support Element's IPv6
network connections. If no IPv6 connections are defined, an
empty list is returned.

network2-ipv4-mask (pc) String (1-15) The network IP mask value.

network2-ipv4-pri-
ipaddr

(pc) String
IPCV4
address

The primary IPv4 address or a null object if not configured.

network2-ipv4-alt-
ipaddr

(pc) String IPV4
address

The alternate IPv4 address or a null object if not configured.

network2-ipv6-info — Array of
ipv6-info
objects

A list of objects describing the Support Element's IPV6
network connections. If no IPv6 connections are defined, an
empty list is returned.

Table 137. ipv6-info object properties

Name Type Description

type String Enum The IPv6 scope. One of the following values:
v "link-local"
v "static"
v "auto"

prefix Integer The number of leading bits of the IPv6 address that represent the
network prefix

pri-ip-address String IPV6
address

The primary IPv6 address

518 HMC Web Services API

Table 137. ipv6-info object properties (continued)

Name Type Description

alt-ip-address String IPV6
address

The alternate IPv6 address or a null object if not configured

Energy management related additional properties
In addition to the properties defined above, this object includes the following additional class-specific
properties related to energy management. For further explanation of the various states involved, please
see “Special states” on page 138.

For definitions of the qualifier abbreviations in the following tables, see “Property characteristics” on
page 32.

Table 138. CPC object: energy management related additional properties

Name Qualifier Type Description

cpc-power-rating — Integer Specifies the maximum power draw in watts (W) of this CPC. This
is a calculated value as indicated by the electrical rating labels or
system rating plates of the CPC components.

cpc-power-
consumption

(mg) Integer Specifies the current power consumption in watts (W) for this
CPC. The CPC power consumption includes the power
consumption of the zCPC and BladeCenters. The BladeCenter
power consumption includes the power consumption of the blades
contained within the BladeCenter. If the system does not include a
BladeCenter, the CPC power consumption will be equal to the
zCPC power consumption.

cpc-power-saving — String
Enum

Specifies the current power saving setting of the CPC. Power
saving is used to reduce the energy consumption of a system and
can be managed in the Set Power Saving operation. The possible
settings include:

v "high-performance" - The power consumption and performance
of the CPC are not reduced. This is the default setting.

v "low-power" - All components of the CPC enabled for power
saving will have reduced performance to allow for low power
consumption.

v "custom" - Custom mode indicates that some, but not all,
components of the CPC are in the Low power setting.

v "not-supported" - Power saving is not supported for this CPC.

v "not-available" - Specifies that cpc-power-saving property could
not be read from this CPC.

v "not-entitled" - The server is not entitled for Power saving.

Chapter 14. Core System z resources 519

Table 138. CPC object: energy management related additional properties (continued)

Name Qualifier Type Description

cpc-power-saving-
state

— String
Enum

Specifies the power saving setting of the CPC set by the user.
Please note that this property indicates the user setting and may
not match the real state of the hardware compared to the
cpc-power-saving property. For more information, see “Group
power saving” on page 139. The possible settings include:

v "high-performance" - Specifies not reducing the power
consumption and performance of the CPC.

v "low-power" - Specifies low power consumption for all
components of the CPC enabled for power saving.

v "custom" - Specifies that the CPC does not control the children.
This is the default setting.

v "not-supported" - Specifies that power saving is not supported
for this CPC.

v "not-entitled" - Specifies that the server is not entitled to power
saving.

cpc-power-save-
allowed

— String
Enum

Should be used to determine if a call of the power save operation
is currently allowed. If a value other that "allowed" is returned the
caller may reckon that the power save operation will fail.

The possible settings include:

v "allowed" - Alter power save setting is allowed for this CPC

v "unknown" - Unknown reason

v "not-supported" - Power saving is not supported for this CPC.

v "not-entitled" - Specifies the server is not entitled to power
capping.

cpc-power-capping-
state

— String
Enum

Specifies the current power capping setting of the CPC. Power
capping is used to limit peak power consumption of a system and
can be managed in the Set Power Cap operation. The possible
settings include:

v "disabled" - The power cap of the CPC is not set and the peak
power consumption is not limited. This is the default setting.

v "enabled" - All components of the CPC available for power
capping will be capped to limit the peak power consumption of
the CPC.

v "custom" - The components of the CPC can be individually
configured for power capping.

v "not-supported" - Power capping is not supported for this CPC.

v "not-entitled" - The server is not entitled for Power capping.

cpc-power-cap-
minimum

— Integer Specifies the minimum value for the CPC cap value in watts (W).
This is a sum of the component minimum cap values.

cpc-power-cap-
maximum

— Integer Specifies the maximum value for the CPC cap value in watts (W).
This is a sum of the component maximum cap values.

cpc-power-cap-
current

— Integer Specifies the current cap value for the CPC in watts (W). The
current cap value indicates the power budget for the CPC and is
the sum of the component Cap values.

520 HMC Web Services API

Table 138. CPC object: energy management related additional properties (continued)

Name Qualifier Type Description

cpc-power-cap-
allowed

— String
Enum

Should be used to determine if a call of the power capping
operation is currently allowed. If a value other that "allowed" is
returned the caller may reckon that the power capping operation
will fail.

The possible settings include:

v "allowed"- Alter power capping setting is allowed for this CPC

v "unknown" - Unknown reason

v "not-supported" - Power capping is not supported for this CPC.

v "not-entitled" - Specifies the server is not entitled to power
capping.

zcpc-power-rating — Integer Specifies the maximum power draw in watts (W) of this zCPC.
This is a calculated value as indicated by the electrical rating labels
or system rating plates of the zCPC components.

zcpc-power-
consumption

(mg) Integer Specifies the current power consumption of the zCPC in watts (W).

zcpc-power-saving — String
Enum

Specifies the current power saving setting of the zCPC. Power
saving is used to reduce the energy consumption of a system and
can be managed in the Set Power Saving operation. The possible
settings include:

v "high-performance" - The power consumption and performance
of the zCPC are not reduced. This is the default setting.

v "low-power" - The performance of the zCPC is reduced to allow
for low power consumption.

v "not-supported" - Power saving is not supported for this zCPC.

v "not-available" - Specifies that zcpc-power-saving property
could not be read for this zCPC.

v "not-entitled" - The server is not entitled for Power saving.

zcpc-power-saving-
state

— String
Enum

Specifies the power saving setting of the zCPC set by the user.
Please note that this property indicates the user setting and may
not match the real state of the hardware compared to the
zcpc-power-saving property. For more information, see “Group
power saving” on page 139. The possible settings include:

v "high-performance" - Specifies not reducing the power
consumption and performance of the zCPC. This is the default
setting.

v "low-power" - Specifies low power consumption for all
components of the zCPC enabled for power saving.

v "not-supported" - Specifies that power saving is not supported
for this zCPC.

v "not-entitled" - Specifies that the server is not entitled to power
saving.

Chapter 14. Core System z resources 521

Table 138. CPC object: energy management related additional properties (continued)

Name Qualifier Type Description

zcpc-power-save-
allowed

— String
Enum

Should be used to determine if a call of the power save operation
is currently allowed. If a value other that "allowed" is returned the
caller may reckon that the power save operation will fail.

The possible settings include:

v "allowed" - Alter power save is allowed for this zCPC

v "unknown" - Unknown reason

v "not-entitled" - Specifies the server is not entitled to power save.

v "under-group-control" - The zCPC is under group control and
cannot be individually altered.

v "not-supported" - Power saving is not supported for this zCPC.

v "once-a-day-exceeded" - Power saving mode has been entered at
some point during the day and will not be allowed again until
the next calendar day.

zcpc-power-
capping-state

String
Enum

Specifies the current power capping setting of the zCPC. Power
capping is used to limit peak power consumption of a system and
can be managed in the Set Power Cap operation. The possible
settings include:

v "disabled" - The power cap of the zCPC is not set and the peak
power consumption is not limited. This is the default setting.

v "enabled" - The peak power consumption of the zCPC is limited
to the Current cap value.

v "custom" - The components of the CPC can be individually
configured for power capping.

v "not-supported" - Power capping is not supported for this
zCPC.

v "not-entitled" - The server is not entitled for Power capping.

zcpc-power-cap-
minimum

— Integer Specifies the minimum value for the zCPC cap value in watts (W).

zcpc-power-cap-
maximum

— Integer Specifies the maximum value for the zCPC cap value in watts (W).

zcpc-power-cap-
current

— Integer Specifies the current cap value for the CPC in watts (W). The
current cap value indicates the power budget for the zCPC.

zcpc-power-cap-
allowed

— String
Enum

Should be used to determine if a call of the power capping
operation is currently allowed. If a value other that "allowed" is
returned the caller may reckon that the power capping operation
will fail.

The possible settings include:

v "allowed" - Alter power capping is allowed for this zCPC

v "unknown" - Unknown reason

v "not-entitled" - Specifies the server is not entitled to power save.

v "not-supported" - Power capping is not supported for this
zCPC.

v "under-group-control" - Power capping is under group control

zcpc-ambient-
temperature

(mg) Float Specifies the input air temperature in degrees Celsius (ºC) as
measured by the system.

zcpc-exhaust-
temperature

— Float Specifies the exhaust air temperature in degrees Celsius (ºC) as
calculated by the system. This is useful in determining potential
hot spots in the data center.

522 HMC Web Services API

Table 138. CPC object: energy management related additional properties (continued)

Name Qualifier Type Description

zcpc-humidity (mg) Integer Specifies the amount of water vapor in the air as measured by the
system. The humidity sensor gives a reading of the relative
humidity of the air entering the system. The recommended
long-term relative humidity for a system with an altitude from sea
level to 900 meters (2953 feet) is 60%. The range of acceptable
relative humidity is 8% - 80%.

For more information, see the chapter related to environmental
specifications in the Installation Manual for Physical Planning.

zcpc-dew-point (mg) Float Specifies the air temperature in degrees Celsius (ºC) at which water
vapor will condense into water. This is a calculated value based on
the current temperature and relative humidity. Cooling the server
to the dew point can result in condensation on critical internal
parts, leading to equipment failure, unless the computer room
environment is adequately maintained to prevent it.

For more information, see the chapter related to environmental
specifications in the Installation Manual for Physical Planning.

zcpc-heat-load (mg) Integer Specifies the amount of heat in Btu/hr. removed from the system.

zcpc-heat-load-
forced-air

— Integer Specifies the amount of heat in Btu/hr. removed from the system
by forced-air.

zcpc-heat-load-
water

— Integer Specifies the amount of heat in Btu/hr. removed from the system
by chilled water. The value is always 0 on an air cooled system.

zcpc-maximum-
potential-power

— Integer Specifies the maximum potential power consumption of a system
in watts (W). This value is based on the configuration of the
system and can be used for power and cooling planning.

zcpc-maximum-
potential-heat-load

— Integer Specifies the maximum potential heat load of a system in Btu/hr.
This value is based on the configuration of the system and can be
used for power and cooling planning.

List CPC Objects
The List CPC Objects operation returns a list of the zManager Web Services API capable CPCs managed
by an HMC.

HTTP method and URI
GET /api/cpcs

Query Parameters

Name Type Rqd/Opt Description

name String Optional A regular expression used to limit returned objects to those that have a
matching name property. If matches are found, the response will be an
array with all objects that match. If no match is found, the response
will be an empty array.

Chapter 14. Core System z resources 523

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

cpcs Array of
cpc-info
objects

Array of nested cpc-info objects (described in the next table). If no matching
CPC objects are found, an empty array is returned.

Each nested cpc-info object contains the following fields:

Field name Type Description

object-uri String/URI Canonical URI path of the CPC object

name String The name of the CPC object

status String
Enum

The current status of the CPC object

Description

This operation lists the zManager Web Services API capable CPC objects that are managed by this HMC.
The object URI, object ID and display name are provided for each CPC returned. CPCs that are not
zManager Web Services API capable are not returned.

If the name query parameter is specified, the returned list is limited to those CPC objects that have a
name property matching the specified filter pattern. If the name parameter is omitted, this filtering is not
done.

An object is only included in the list if the API user has object-access permission for that object.

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in the
Response Body Contents section.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to any CPC object to be included in the result.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

299 A query parameter has an invalid syntax.

524 HMC Web Services API

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

List Ensemble CPC Objects
The List Ensemble CPC Objects operation returns a list of the CPCs associated with an ensemble.

HTTP method and URI
GET /api/ensembles/{ensemble-id}/cpcs

In this request, the URI variable {cpc-id} is the object ID of the target CPC object.

Query parameters:

Name Type Rqd/Opt Description

name String Optional A regular expression used to limit returned objects to those that have a
matching name property. If matches are found, the response will be an
array with all objects that match. If no match is found, the response
will be an empty array.

GET /api/cpcs HTTP/1.1
x-api-session: 2jm2h7j25d1e1g5wbygmfriyjiit8tp4iqiw8h09j8kz68i0k6

Figure 261. List CPC Objects: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 07:18:42 GMT
content-type: application/json;charset=UTF-8
content-length: 492
{

"cpcs": [
{

"name": "P0LXSMOZ",
"object-uri": "/api/cpcs/e8753ff5-8ea6-35d9-b047-83c2624ba8da",
"status": "not-operating"

},
{

"name": "R32",
"object-uri": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340",
"status": "operating"

},
{

"name": "ICHABOD",
"object-uri": "/api/cpcs/ac15c987-90c6-3526-854e-4c612939260d",
"status": "not-operating"

}
]

}

Figure 262. List CPC Objects: Response

Chapter 14. Core System z resources 525

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

cpcs Array of
cpc-info
objects

Array of nested cpc-info objects (described in the next table). If no matching
CPC objects are found, an empty array is returned.

Each nested cpc-info object contains the following fields:

Field name Type Description

object-uri String/URI Canonical URI path of the CPC object

name String The name of the CPC object

status String
Enum

The current status of the CPC object

Description

This operation lists the CPC objects that are associated with the ensemble identified in the request URI.
The object URI, object ID and display name are provided for each CPC returned. In contrast, the List
Ensemble Nodes operation lists objects of any type that are associated with an ensemble.

If the name query parameter is specified, the returned list is limited to those CPC objects that have a
name property matching the specified filter pattern. If the name parameter is omitted, this filtering is not
done.

A CPC object is only included in the list if the API user has object-access permission for that CPC object.

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in the
Response Body Contents section.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the ensemble object designated by {ensemble-id}
v Object access permission to any CPC object to be included in the result.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

526 HMC Web Services API

HTTP error status
code

Reason
code Description

404 (Not Found) 1 The object ID in the URI ({ensemble-id}) does not designate an existing
ensemble object, or the API user does not have object access permission to
the object.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Get CPC Properties
The Get CPC Properties operation retrieves the properties of a single CPC object designated by {cpc-id}.

HTTP method and URI
GET /api/cpcs/{cpc-id}

In this request, the URI variable {cpc-id} is the object ID of the target CPC object.

Response body contents

On successful completion, the response body provides the current values of the properties for the CPC
object as defined in “Data model” on page 513.

GET /api/ensembles/f8fc3a9c-03f2-11e1-ba83-0010184c8334/cpcs HTTP/1.1
x-api-session: 2jm2h7j25d1e1g5wbygmfriyjiit8tp4iqiw8h09j8kz68i0k6

Figure 263. List Ensemble CPC Objects: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 07:18:42 GMT
content-type: application/json;charset=UTF-8
content-length: 214
{

"cpcs": [
{

"name": "R32",
"object-uri": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340",
"status": "operating"

},
{

"name": "ICHABOD",
"object-uri": "/api/cpcs/ac15c987-90c6-3526-854e-4c612939260d",
"status": "not-operating"

}
]

}

Figure 264. List Ensemble CPC Objects: Response

Chapter 14. Core System z resources 527

Description

Some CPC properties are only available if the HMC is communicating with the SE, and are returned as
null objects if the HMC is not communicating with the SE.

On successful execution, HTTP status code 200 (OK) is returned and the response body contains all of the
current properties as defined “Data model” on page 513.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the CPC object designated by {cpc-id}.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 527.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

409 (Conflict) 272 Unable to obtain Server Time Protocol (STP) configuration. Retry the request
later.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340 HTTP/1.1
x-api-session: 65aw2jahugn1wop51hsq0c6aldkkx773dz9ulirrvg2z853m4u

Figure 265. Get CPC Properties: Request

528 HMC Web Services API

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 16:58:36 GMT
content-type: application/json;charset=UTF-8
content-length: 9001
{

"acceptable-status": [
"operating"

],
"additional-status": "",
"cbu-activation-date": 0,
"cbu-expiration-date": 0,
"cbu-number-of-tests-left": 0,
"class": "cpc",
"cpc-node-descriptor": "00",
"cpc-power-cap-allowed": "allowed",
"cpc-power-cap-current": 90000,
"cpc-power-cap-maximum": 106936,
"cpc-power-cap-minimum": 16019,
"cpc-power-capping-state": "enabled",
"cpc-power-consumption": 8160,
"cpc-power-rating": 46522,
"cpc-power-save-allowed": "allowed",
"cpc-power-saving": "high-performance",
"cpc-serial-number": "000020076D25",
"degraded-status": [

"not-degraded"
],
"description": "Central Processing Complex (CPC)",
"does-wait-state-end-time-slice": null,
"ec-mcl-description": {

"action": [
{

"activation": "current",
"pending": false,
"type": "channel-config"

},
{

"activation": "current",
"pending": false,
"type": "coupling-facility-reactivation"

},
{

"activation": "current",
"pending": false,
"type": "power-on-reset-tracking"

},
{

"activation": "current",
"pending": true,
"type": "zhybrid-blades-activation"

},
{

"activation": "next",
"pending": false,
"type": "channel-config"

},
{

Figure 266. Get CPC Properties: Response (Part 1)

Chapter 14. Core System z resources 529

"activation": "next",
"pending": false,
"type": "coupling-facility-reactivation"

},
{

"activation": "next",
"pending": false,
"type": "power-on-reset-tracking"

},
{

"activation": "next",
"pending": false,
"type": "zhybrid-blades-activation"

}
],
"ec": [

{
"description": "SE Framework",
"mcl": [

{
"last-update": 1321019308748,
"level": "216",
"type": "retrieved"

},
{

"last-update": 1321019499749,
"level": "216",
"type": "activated"

},
{

"last-update": 1320675688749,
"level": "179",
"type": "accepted"

},
{

"last-update": 943938000748,
"level": "216",
"type": "installable-concurrent"

},
{

"last-update": 943938000749,
"level": "180",
"type": "removable-concurrent"

}
],
"number": "N48168",
"part-number": "45D8918",
"type": "Base EC"

},
{

"description": "IBM x86 Blade Concurrent Components",
"mcl": [

{
"last-update": 1321019296651,
"level": "022",
"type": "retrieved"

},
{

Figure 267. Get CPC Properties: Response (Part 2)

530 HMC Web Services API

"last-update": 1320675685652,
"level": "009",
"type": "accepted"

},
{

"last-update": 943938000652,
"level": "022",
"type": "installable-concurrent"

},
{

"last-update": 943938000652,
"level": "010",
"type": "removable-concurrent"

}
],
"number": "N48140",
"part-number": "41U8008",
"type": "Other Optional EC"

},
{

"description": "Embedded Operating System T5xx Series",
"mcl": [

{
"last-update": 1321018125779,
"level": "001",
"type": "retrieved"

},
{

"last-update": 1321018167779,
"level": "001",
"type": "activated"

},
{

"last-update": null,
"level": "000",
"type": "accepted"

},
{

"last-update": 943938000779,
"level": "001",
"type": "installable-concurrent"

},
{

"last-update": 943938000779,
"level": "001",
"type": "removable-concurrent"

}
],
"number": "N48197",
"part-number": "45D8919",
"type": "Base EC"

}
]

},

Figure 268. Get CPC Properties: Response (Part 3)

Chapter 14. Core System z resources 531

"has-automatic-se-switch-enabled": true,
"has-hardware-messages": true,
"has-temporary-capacity-change-allowed": false,
"has-unacceptable-status": false,
"iml-mode": "lpar",
"is-cbu-activated": false,
"is-cbu-enabled": true,
"is-cbu-installed": false,
"is-ensemble-member": true,
"is-locked": false,
"is-on-off-cod-activated": false,
"is-on-off-cod-enabled": true,
"is-on-off-cod-installed": false,
"is-real-cbu-available": false,
"is-service-required": false,
"lan-interface1-address": "f0def14b63af",
"lan-interface1-type": "ethernet",
"lan-interface2-address": "f0def14b63af",
"lan-interface2-type": "ethernet",
"last-used-activation-profile-name": "DEFAULT ",
"machine-model": "M15",
"machine-serial-number": "000020076D25",
"machine-type": "2817",
"msu-permanent": 1091,
"msu-permanent-plus-billable": 1091,
"msu-permanent-plus-temporary": 1091,
"name": "R32",
"network1-ipv4-alt-ipaddr": "9.60.15.6",
"network1-ipv4-mask": "255.255.255.0",
"network1-ipv4-pri-ipaddr": "9.60.15.5",
"network1-ipv6-info": [

{
"alt-ip-address": "fdd8:673b:d89b:1:f2de:f1ff:fe52:d359",
"prefix": 64,
"pri-ip-address": "fdd8:673b:d89b:1:f2de:f1ff:fe4b:63af",
"type": "auto"

},
{

"alt-ip-address": "fe80::f2de:f1ff:fe52:d359%eth0",
"prefix": 64,
"pri-ip-address": "fe80::f2de:f1ff:fe4b:63af%eth0",
"type": "link-local"

}
],
"network2-ipv4-alt-ipaddr": "9.60.14.6",
"network2-ipv4-mask": "255.255.255.0",
"network2-ipv4-pri-ipaddr": "9.60.14.5",
"network2-ipv6-info": [

{
"alt-ip-address": "fe80::f2de:f1ff:fe52:d359%eth1",
"prefix": 64,
"pri-ip-address": "fe80::f2de:f1ff:fe4b:63af%eth1",
"type": "link-local"

}
],

Figure 269. Get CPC Properties: Response (Part 4)

532 HMC Web Services API

Update CPC Properties
The Update CPC Properties operation updates one or more writeable properties of the CPC object
designated by {cpc-id}.

"next-activation-profile-name": "TESTCDU",
"object-id": "37c6f8a9-8d5e-3e5d-8466-be79e49dd340",
"object-uri": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340",
"on-off-cod-activation-date": 0,
"parent": "/api/ensembles/f8fc3a9c-03f2-11e1-ba83-0010184c8334",
"processor-count-aap": 1,
"processor-count-defective": 0,
"processor-count-general-purpose": 9,
"processor-count-icf": 2,
"processor-count-ifl": 2,
"processor-count-iip": 1,
"processor-count-pending": 0,
"processor-count-pending-aap": 0,
"processor-count-pending-general-purpose": 0,
"processor-count-pending-icf": 0,
"processor-count-pending-ifl": 0,
"processor-count-pending-iip": 0,
"processor-count-pending-service-assist": 0,
"processor-count-service-assist": 3,
"processor-count-spare": 0,
"processor-running-time": null,
"processor-running-time-type": "system-determined",
"se-version": "2.11.1",
"software-model-permanent": "709",
"software-model-permanent-plus-billable": "709",
"software-model-permanent-plus-temporary": "709",
"status": "operating",
"stp-configuration": {

"current-time-server": "preferred",
"etr-id": null,
"stp-id": "12345678"

},
"zcpc-ambient-temperature": 25.399999618530273,
"zcpc-dew-point": 2.4000000953674316,
"zcpc-exhaust-temperature": 34.0,
"zcpc-heat-load": 20293,
"zcpc-heat-load-forced-air": 20293,
"zcpc-heat-load-water": 0,
"zcpc-humidity": 22,
"zcpc-maximum-potential-heat-load": 26571,
"zcpc-maximum-potential-power": 7782,
"zcpc-power-cap-allowed": "under-group-control",
"zcpc-power-cap-current": 23745,
"zcpc-power-cap-maximum": 27400,
"zcpc-power-cap-minimum": 7782,
"zcpc-power-capping-state": "enabled",
"zcpc-power-consumption": 5943,
"zcpc-power-rating": 27400,
"zcpc-power-save-allowed": "under-group-control",
"zcpc-power-saving": "high-performance"

}

Figure 270. Get CPC Properties: Response (Part 5)

Chapter 14. Core System z resources 533

HTTP method and URI
POST /api/cpcs/{cpc-id}

In this request, the URI variable {cpc-id} is the object ID of the target CPC object.

Request body contents

The request body is expected to contain one or more field names representing writable CPC properties,
along with the new values for those fields.

The request body can and should omit fields for properties whose values are not to be changed by this
operation. Properties for which no input value is provided remain unchanged by this operation.

Description

The request body object is validated against the data model for the CPC object type to ensure that the
request body contains only writeable properties and the data types of those properties are as required. If
the request body is not valid, status code 400 (Bad Request) is returned with a reason code indicating the
validation error encountered.

On successful execution, the value of each corresponding property of the object is updated with the value
provided by the input field, and status code 204 (No Content) is returned.

When this operation changes the value of any property for which property-change notifications are due,
those notifications are emitted asynchronously to this operation.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the CPC object designated by {cpc-id}
v Action/task permission for the CPC Details task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

268 The requested update requires that the processor-running-time-type
property already contain "user-determined" or that the request body also
requests an update of the processor-running-time-type property to
"user-determined".

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

534 HMC Web Services API

Activate CPC
The Activate CPC operation activates the CPC object designated by {cpc-id}.

HTTP method and URI
POST /api/cpcs/{cpc-id}/operations/activate

In this request, the URI variable {cpc-id} is the object ID of the target CPC object.

Request body contents

The request body is expected to contain a JSON object with the following fields:

Field name Type Rqd/Opt Description

activation-profile-
name

String
(1-16)

Optional The name of the activation profile to be used for the request. If not
provided, the request uses the profile name specified in the
activation-profile-name property for the CPC object.

force Boolean Optional Whether this operation is permitted when the CPC is in "operating"
status (true) or not (false). The default is false.

Response body contents

Once the operation is accepted, the response body contains a JSON object with the following fields:

Field name Type Description

job-uri String/URI URI that may be queried to retrieve activation status updates.

Asynchronous result description

Once the operation has completed, a job-completion notification is sent and results are available for the
asynchronous portion of this operation. These results are retrieved using the Query Job Status operation
directed at the job URI provided in the response body.

The result document returned by the Query Job Status operation is specified in the description for the
Query Job Status operation. When the status of the job is "complete", the results include a job
completion status code and reason code (fields job-status-code and job-reason-code) which are set as
indicated in “Description.” The job-results field is null for this operation.

Description

Activation is a process that makes a CPC operational, which means either:
v The CPC is ready to have a control program or operating system loaded, or
v The CPC has loaded and is running a control program or operating system.

Activation makes a CPC operational by:
v Using predefined information, referred to as an activation profile, to set the operational capabilities and

characteristics of the CPC
v Checking the current status of the CPC, and then performing only the operations necessary to make it

operational as specified in the activation profile.

So, using activation is not limited to starting the system. Using activation is recommended whenever you
want to make the CPC or its logical partitions operational.

Chapter 14. Core System z resources 535

A complete activation activates the CPC and its logical partitions completely in a single step. The result
of a complete activation is an operational CPC with logical partitions loaded and running operating
systems. The current status of the CPC and its logical partitions determines which operations are
performed during activation to make them operational. Activation may include:
1. Turning CPC power on.
2. Performing a power-on reset, this includes allocating system resources to the CPC.
3. Then activating logical partitions to support multiple images. Activating each logical partition

includes:
a. Initializing it.
b. Allocating system resources to it.
c. Loading it with a control program or operating system.

Because the status of the CPC and its logical partitions determines which operations must be performed
during activation to make them operational, one or more operations listed above may not be performed
during activation. For example:
v Activating the CPC does not perform a power-on reset if the CPC has already been power-on reset and

the applicable settings in its assigned activation profile, such as the operating mode and active
input/output configuration data set (IOCDS), are already in effect.

v Activating the CPC does not perform any operations if the CPC is already operational and all settings
in its assigned activation profile are already in effect.

When the operation is initiated, a 202 (Accepted) status code is returned. The response body includes a
URI that may be queried to retrieve the status of the operation. See “Query Job Status” on page 44 for
information on how to query job status. When the operation has completed, an asynchronous result
message is sent, with Job Status and Reason Codes described in “Job status and reason codes” on page
537.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC object designated by {cpc-id}
v Action/task permission for the Activate task.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in “Response body contents” on page 535.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

500 (Server Error) 280 An IO exception occurred during the scheduling of the asynchronous
request.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

536 HMC Web Services API

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

Job status code
Job reason
code Description

204 (No Content) N/A Operation completed successfully.

500 (Server Error) 263 Operation failed or was rejected due to the current CPC status and use of
the force=false parameter. If rejected due to force=false, the CPC status is
unchanged. If the operation failed, the CPC status is unknown. Refer to the
message parameter in the error response body for details.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Deactivate CPC
The Deactivate CPC operation deactivates the CPC object designated by {cpc-id}.

HTTP method and URI
POST /api/cpcs/{cpc-id}/operations/deactivate

In this request, the URI variable {cpc-id} is the object ID of the target CPC object.

Request body contents

The request body is expected to contain a JSON object with the following fields:

Field name Type Rqd/Opt Description

force Boolean Optional Whether this operation is permitted when the CPC is in "operating"
status (true) or not (false). The default is false.

Response body contents

Once the operation is accepted, the response body contains a JSON object with the following fields:

Field name Type Description

job-uri String/URI URI that may be queried to retrieve activation status updates.

Asynchronous result description

Once the operation has completed, a job-completion notification is sent and results are available for the
asynchronous portion of this operation. These results are retrieved using the Query Job Status operation
directed at the job URI provided in the response body.

The result document returned by the Query Job Status operation is specified in the description for the
Query Job Status operation. When the status of the job is "complete", the results include a job
completion status code and reason code (fields job-status-code and job-reason-code) which are set as
indicated in “Job status and reason codes” on page 538. The job-results field is null for this operation.

Chapter 14. Core System z resources 537

Description

Deactivation is an orderly process for shutting down and turning off the CPC.

Shutting down and turning off the CPC, referred to also as deactivating the CPC, includes:
v Ending hardware and software activity
v Clearing, releasing, and de-allocating hardware resources
v Turning off power.

When the operation is initiated, a 202 (Accepted) status code is returned. The response body includes a
URI that may be queried to retrieve the status of the operation. See “Query Job Status” on page 44 for
information on how to query job status. When the operation has completed, an asynchronous result
message is sent, with Job Status and Reason Codes seen in “Job status and reason codes.”

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC object designated by {cpc-id}
v Action/task permission for the Deactivate task.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in “Response body contents” on page 537.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

500 (Server Error) 280 An IO exception occurred during the scheduling of the asynchronous
request.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

Job status code
Job reason
code Description

204 (No Content) N/A Operation completed successfully.

500 (Server Error) 263 Operation failed or was rejected due to the current CPC status and use of
the force=false parameter. If rejected due to force=false, the CPC status is
unchanged. If the operation failed, the CPC status is unknown. Refer to the
message parameter in the error response body for details.

538 HMC Web Services API

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Import Profiles
The Import Profiles operation imports activation profiles and/or system activity profiles for the CPC
from the SE hard drive into the CPC object designated by {cpc-id}.

HTTP method and URI
POST /api/cpcs/{cpc-id}/operations/import-profiles

In this request, the URI variable {cpc-id} is the object ID of the target CPC object.

Request body contents

The request body is expected to contain a JSON object with the following fields:

Field name Type Rqd/Opt Description

profile-area Integer
(1-4)

Required The numbered hard drive area from which the profiles are
imported. Use the profile-area value specified on the prior Export
Profiles operation.

Description

The Support Element provides four reusable areas on its hard drive from which the data save by a prior
Export Profiles can be read.

Exporting and importing profiles is necessary only when you intend to have your current system and
Support Element replaced with a new system and Support Element. Refer to the Support Element
Operations Guide for more details.

On success, HTTP status code 204 (No Content) is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC object designated by {cpc-id}
v Action/task permission to the CIM Actions ExportSettingsData task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

Chapter 14. Core System z resources 539

HTTP error status
code

Reason
code Description

500 (Server Error) 279 An unexpected error occurred during the operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Export Profiles
The Export Profiles operation exports activation profiles and/or system activity profiles from the CPC
object designated by {cpc-id} to the SE hard drive.

HTTP method and URI
POST /api/cpcs/{cpc-id}/operations/export-profiles

In this request, the URI variable {cpc-id} is the object ID of the target CPC object.

Request body contents

The request body is expected to contain a JSON object with the following fields:

Field name Type Rqd/Opt Description

profile-area Integer
(1-4)

Required The numbered hard drive area to which the profiles are exported.
Any existing data is overwritten.

Description

The Support Element provides four reusable areas on its hard drive that can be used as temporary save
areas. The choice of save area is up to the caller.

Exporting and importing profiles is necessary only when you intend to have your current system and
Support Element replaced with a new system and Support Element. Refer to the Support Element
Operations Guide for more details.

On success, HTTP status code 204 (No Content) is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC object designated by {cpc-id}
v Action/task permission to the CIM Actions ExportSettingsData task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

540 HMC Web Services API

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

500 (Server Error) 279 An unexpected error occurred during the operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Add Temporary Capacity
The Add Temporary Capacity operation adds temporary processors or increases temporary model
capacity to the CPC object designated by {cpc-id}.

HTTP method and URI
POST /api/cpcs/{cpc-id}/operations/add-temp-capacity

In this request, the URI variable {cpc-id} is the object ID of the target CPC object.

Request body contents

The request body is expected to contain a JSON object with the following fields:

Field name Type Rqd/Opt Description

record-id String
(1-8)

Required Identifies the capacity record to be used for this request

software-model String
(1-3)

Optional The target software model. This value must be one of the software
models defined within the capacity record. Implicit in this value is
the number of general processors added. If not provided, the
current software model is not changed.

processor-info Array of
processor-
info
objects

Optional A nested object that defines the number of specialty processors to be
added. If not provided, the number of specialty processors is not
changed.

force Boolean Optional Whether the operation proceeds if not enough processors are
available (true) or not (false). The default is false.

test Boolean Required Whether the request should activate the changes (false) or not (true)

processor-info object

Chapter 14. Core System z resources 541

Field name Type Rqd/Opt Description

processor-type String
Enum

Required Identifies the type of specialty processors to be affected. One of:
v "aap" - Application Assist Processor
v "ifl" - Integrated Facility for Linux processor
v "icf" - Internal Coupling Facility processor
v "iip" - Integrated Information Processors
v "sap" - System Assist Processor

num-processor-steps Integer Optional The delta to the current number of processors. If not provided, the
number of processors is not changed.

Description

Removal of these temporary resources can be performed manually via the Remove Temporary Capacity
operation or automatically upon expiration of the capacity record.

Refer to the Capacity on Demand User's Guide for details on temporary capacity changes.

On success, HTTP status code 204 (No Content) is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC object designated by {cpc-id}
v Action/task permission to the CIM Actions Activate task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

271 A duplicate processor-type entry was found in the processor-info array,
remove the duplicate entry.

275 The test value does not match the value stored in the capacity record.

276 Either the request specifies more resources than available or the requested
software model specifies fewer resources than the current software model.

277 A temporary capacity record is already active. It must be deactivated before
a new capacity record can be activated.

278 The software-model value was not found in the capacity record. Only
software models as defined in the target capacity record can be specified.

298 The operation parameters conflict with the capacity record type:
v force=true is permitted only for CBU, CPE and loaner capacity records.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

274 The requested capacity record does not exist.

542 HMC Web Services API

HTTP error status
code

Reason
code Description

409 (Conflict) 1 The operation is unavailable in the current CPC state:
v The SE is not configured to allow temporary capacity changes via an API
v The CPC status property is not "operating" or the CPC iml-mode property

is not "logical-partition"
v No physical processors are operating
v The CPC is IMLed in a test or debug mode
v An IML is required

2 The operation was rejected by the Support Element (SE), because the SE is
currently performing processing that requires exclusive control of the SE.
Retry the operation at a later time.

297 Some, but not all, of the requested resources were added.

500 (Server Error) 275 An unexpected error occurred during the operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Remove Temporary Capacity
The Remove Temporary Capacity operation removes temporary processors or decreases temporary
model capacity from the CPC object designated by {cpc-id}.

HTTP method and URI
POST /api/cpcs/{cpc-id}/operations/remove-temp-capacity

In this request, the URI variable {cpc-id} is the object ID of the target CPC object.

Request body contents

The request body is expected to contain a JSON object with the following fields:

Field name Type Rqd/Opt Description

record-id String
(1-8)

Required Identifies the capacity record to be used for this request

software-model String
(1-3)

Optional The target software model. This value must be one of the software
models defined within the capacity record. Implicit in this value is
the number of general processors removed. If not provided, the
current software model is not changed.

processor-info Array of
processor-
info
objects

Optional A nested object that defines the number of specialty processors to be
removed. If not provided, the number of specialty processors is not
changed. Refer to “Request body contents” on page 541 of the Add
Temporary Capacity operation for details.

Description

When you are finished using all or part of a capacity upgrade, you can remove processors or decrease
model capacity using this operation. You can only remove activated resources for the specific offering.
You cannot remove dedicated engines or the last processor of a processor type.

Chapter 14. Core System z resources 543

If you remove resources back to the base configuration, the capacity record activation is completed. That
is, if you remove the last temporary processor, your capacity record is deactivated. For a CBU and
On/Off CoD record, to add resources again, you must use another Add Temporary Capacity operation.
For an On/Off CoD test or CPE record, once the record is deactivated, it is no longer available for use.
You can then delete the record.

After removal of the resources, the capacity record remains as an installed record. If you want a record
deleted, you must manually select the record on the Installed Records page and click Delete.

Refer to the Capacity on Demand User's Guide for details on temporary capacity changes.

On success, HTTP status code 204 (No Content) is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC object designated by {cpc-id}
v Action/task permission to the CIM Actions Deactivate task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

271 A duplicate processor-type entry was found in the processor-info array,
remove the duplicate entry.

276 Either the request specifies more resources than are currently active or the
requested software model specifies more resources than the current software
model.

278 The software-model value was not found in the capacity record. Only
software models as defined in the target capacity record can be specified.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

274 The requested capacity record does not exist.

409 (Conflict) 1 The operation is unavailable in the current CPC state:
v The SE is not configured to allow temporary capacity changes via an API
v The CPC status property is not "operating" or the CPC iml-mode property

is not "logical-partition".

500 (Server Error) 275 An unexpected error occurred during the operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

544 HMC Web Services API

Swap Current Time Server
The Swap Current Time Server operation changes the role of the CPC object designated by {cpc-id} to the
Current Time Server (CTS).

HTTP method and URI
POST /api/cpcs/{cpc-id}/operations/swap-cts

In this request, the URI variable {cpc-id} is the object ID of the target CPC object.

Request body contents

The request body is expected to contain a JSON object with the following fields:

Field name Type Rqd/Opt Description

stp-id String
(1-8)

Required Identifies the STP. Can contain 0-9, a-z, A-Z, underline (_) and dash
(-).

Description

This operation changes the role of the CPC object designated by {cpc-id} to the Current Time Server (CTS).

On success, HTTP status code 204 (No Content) is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC object designated by {cpc-id}
v Action/task permission to the System (Sysplex) Time task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

285 The CPC targeted by this operation is already the Preferred Time Server.

286 The operation was rejected for one of the following reasons:
v The stp-id field value does not match the current CTN identifier
v The operation is not permitted for a mixed CTN.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

409 (Conflict) 1 The requested operation cannot be performed, due to the state of the object:
v Server Time Protocol is not enabled on this CPC
v an ETR reverse migration is in progress
v no alternate is active
v this CPC is not the backup time server

Chapter 14. Core System z resources 545

HTTP error status
code

Reason
code Description

500 (Server Error) 272 An unexpected error occurred during the operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Set STP Configuration
The Set STP Configuration operation updates the configuration for an STP-only Coordinated Timing
Network.

HTTP method and URI
POST /api/cpcs/{cpc-id}/operations/set-stp-config

In this request, the URI variable {cpc-id} is the object ID of the target CPC object.

Request body contents

The request body is expected to contain a JSON object with the following fields:

Field name Type Rqd/Opt Description

stp-id String
(1-8)

Required The current STP identifier for the CTN, used to verify that the CPC
is a member of the correct CTN. Can contain 0-9, a-z, A-Z, underline
(_) and dash (-).

new-stp-id String
(1-8)

Optional If provided, the new STP identifier for the CTN, Can contain 0-9,
a-z, A-Z, underline (_) and dash (-).

force Boolean Required Whether a disruptive operation is allowed (true) or rejected (false)

preferred-time-
server

stp-node
object

Required Identifies the CPC object to be the Preferred Time Server. Refer to
Table 119 on page 489 for details.

backup-time-server stp-node
object

Optional Identifies the CPC object to be the Backup Time Server. If not
provided, the STP has no Backup Time Server. Refer to Table 119 on
page 489 for details.

arbiter stp-node
object

Optional Identifies the CPC object to be the Arbiter for the CTN. If not
provided, the STP has no Arbiter. Refer to Table 119 on page 489 for
details.

current-time-server String
Enum

Required Identifies the role of the Current Time Server (CTS). One of:
v "preferred" - the Preferred Time Server is the CTS
v "backup" - the Backup Time Server is the CTS.

Description

The CPC object designated by {cpc-id} must be the system that becomes the Current Time Server (CTS).

On success, HTTP status code 204 (No Content) is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC object designated by {cpc-id}

546 HMC Web Services API

v Action/task permission to the System (Sysplex) Time task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

282 The operation was rejected, due to an incomplete preferred, backup or
arbiter nested object specification. Refer to Table 119 on page 489 for details.

284 This operation does not target the Current Time Server CPC.

285 The operation was rejected, due to one of the following configuration errors:
v A backup-time-server object is required when providing an arbiter object
v A backup-time-server object is required when current-time-server is

backup
v The preferred-time-server, backup-time-server and arbiter objects do not

reference different CPCs

286 The operation was rejected for one of the following reasons:
v The stp-id field value does not match the current CTN identifier
v The operation is not permitted for a mixed CTN

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

2 An object URI in one of the stp-node objects in the request body does not
designate an existing CPC object, or the API user does not have object access
permission to the object.

409 (Conflict) 1 The requested operation cannot be performed, due to the state of the object:
v Server Time Protocol is not enabled on this CPC
v an ETR reverse migration is in progress
v no alternate is active
v the operation is not permitted for a mixed-CTN.

287 The provided configuration can only be set by specifying force=true.

288 No communication path between preferred-time-server and
backup-time-server.

289 No communication path to the arbiter.

500 (Server Error) 272 An unexpected error occurred during the operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Change STP-only Coordinated Timing Network
The Change STP-only Coordinated Timing Network operation, sent to the CPC object designated by
{cpc-id} with the role of Current Time Server (CTS) in an STP-only Coordinated Timing Network (CTN),
changes the STP ID portion of the CTN ID for the entire STP-only CTN.

Chapter 14. Core System z resources 547

HTTP method and URI
POST /api/cpcs/{cpc-id}/operations/change-stponly-ctn

In this request, the URI variable {cpc-id} is the object ID of the target CPC object.

Request body contents

The request body is expected to contain a JSON object with the following fields:

Field name Type Rqd/Opt Description

stp-id String
(1-8)

Required The new STP identifier. Can contain 0-9, a-z, A-Z, underline (_) and
dash (-).

Description

This operation, sent to the CPC object designated by {cpc-id} with the role of Current Time Server (CTS)
in an STP-only Coordinated Timing Network (CTN), changes the STP ID portion of the CTN ID for the
entire STP-only CTN.

On success, HTTP status code 204 (No Content) is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC object designated by {cpc-id}
v Action/task permission to the System (Sysplex) Time task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

284 The CPC targeted by the operation is not the Current Time Server. Retry the
operation using the object-uri for the Current Time Server CPC.

286 The operation is not permitted for a mixed CTN.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

409 (Conflict) 1 The requested operation cannot be performed, due to the state of the object:
v Server Time Protocol is not enabled on this CPC
v an ETR reverse migration is in progress

500 (Server Error) 272 An unexpected error occurred during processing of the Server Time Protocol
operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

548 HMC Web Services API

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Join STP-only Coordinated Timing Network
The Join STP-only Coordinated Timing Network operation allows a CPC object designated by {cpc-id} to
join an STP-only Coordinated Timing Network (CTN).

HTTP method and URI
POST /api/cpcs/{cpc-id}/operations/join-stponly-ctn

In this request, the URI variable {cpc-id} is the object ID of the target CPC object.

Request body contents

The request body is expected to contain a JSON object with the following fields:

Field name Type Rqd/Opt Description

stp-id String
(1-8)

Required Identifies the STP to be joined. Can contain 0-9, a-z, A-Z, underline
(_) and dash (-).

Description

If the CPC object is already participating in a different STP-only CTN and is the Current Time Server
(CTS), the operation is rejected. Otherwise, the CPC object is removed from its current CTN and joins the
specified CTN.

If the CPC object has an ETR ID, the ETR ID is removed.

On success, HTTP status code 204 (No Content) is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC object designated by {cpc-id}
v Action/task permission to the System (Sysplex) Time task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

409 (Conflict) 1 The requested operation cannot be performed, due to the state of the object:
v Server Time Protocol is not enabled on this CPC

Chapter 14. Core System z resources 549

HTTP error status
code

Reason
code Description

500 (Server Error) 272 An unexpected error occurred during processing of the Server Time Protocol
operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Leave STP-only Coordinated Timing Network
The Leave STP-only Coordinated Timing Network operation allows a CPC object designated by {cpc-id}
to leave the STP-only Coordinated Timing Network (CTN) in which it currently participates.

HTTP method and URI
POST /api/cpcs/{cpc-id}/operations/leave-stponly-ctn

In this request, the URI variable {cpc-id} is the object ID of the target CPC object.

Description

The CPC object cannot be the Current Time Server (CTS) in the CTN in which it is currently
participating.

On success, HTTP status code 204 (No Content) is returned.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC object designated by {cpc-id}
v Action/task permission to the System (Sysplex) Time task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

286 The operation is not permitted for a mixed CTN.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

409 (Conflict) 1 The requested operation cannot be performed, due to the state of the object:
v Server Time Protocol is not enabled on this CPC
v this CPC is not a member of a CTN
v this CPC is the Current Time Server.

550 HMC Web Services API

HTTP error status
code

Reason
code Description

500 (Server Error) 272 An unexpected error occurred during processing of the Server Time Protocol
operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Logical partition object
The Processor Resource/Systems Manager™ (PR/SM) is a feature of IBM mainframes that enables logical
partitioning of the CEC. A logical partition (LPAR) is a virtual machine at the hardware level. Each LPAR
operates as an independent server running its own operating environment. Each LPAR runs its own
operating system, which can be any mainframe operating system.

Data model
For definitions of the qualifier abbreviations in the following tables, see “Property characteristics” on
page 32.

This object includes the properties defined in “Base managed object properties schema” on page 33, with
the following class-specific specialization:

Table 139. Logical Partition object: base managed object properties specializations

Name Qualifier Type Description of specialization

object-uri — String/
URI

The canonical URI path of the Logical Partition object, of the form
/api/logical-partitions/{logical-partition-id} where
{logical-partition-id} is the value of the object-id property of the Logical
Partition object.

parent — String/
URI

The canonical URI path of the associated CPC object.

class — String The class of a Logical Partition object is "logical-partition".

name (ro) String (1-8) The name of the logical partition

description (ro) String
(0-1024)

The descriptive text associated with this object.

status (sc) String
Enum

One of the following values:
v "operating" - the logical partition has a active control program
v "not-operating" - the logical partition's CPC is non operational
v "not-activated" - the logical partition does not have an active

control program
v "exceptions" - the logical partition's CPC has one or more unusual

conditions

acceptable-status (w)(pc) Array of
String
Enum

An array of one or more status strings that determine an acceptable
status for a logical partition. When a logical partition's status property
contains one of the specified acceptable-status values, the
has-unacceptable-status property contains false.

Class specific additional properties
In addition to the properties defined via included schemas, this object includes the following additional
class-specific properties. Refer to the Processor Resource/Systems Manager Planning Guide for more detailed
explanations of the various properties.

Chapter 14. Core System z resources 551

There are additional notes throughout the table. Please refer to the note list at the end of the table.

Table 140. Logical Partition object: class specific additional properties

Name Qualifier Type Description

os-name1 (pc) String (0-8) An operating system provided value, used to identify the
operating system instance. The format of the value is
operating system dependant. If not provided by the operating
system, an empty string is returned.

os-type1 (pc) String (0-8) A human readable form of the operating system provided
value for the type of the operating system active in this
logical partition. If not provided, an empty string is returned.

os-level1 (pc) String (0-32) A human readable form of the operating system provided
value for the level of the operating system active in this
logical partition. If not provided, an empty string is returned.

sysplex-name1 (pc) String (1-8) Applicable only for z/OS, the name of the sysplex to which
this logical partition is a member. Otherwise a null object is
returned.

has-operating-system-
messages1

— Boolean If true, object has operating system messages. If false, object
does not have operating system messages.

activation-mode1 — String Enum One of the following values:
v "esa390" - the logical partition is in ESA/390 mode
v "esa390tpf" - the logical partition is in ESA/390 TPF mode
v "coupling-facility" - the logical partition is running as a

coupling facility
v "linux" - the logical partition is in Linux mode
v "zvm" - the logical partition is in z/VM mode
v "zaware" - the logical partition is in IBM zAware mode.

next-activation-profile-
name

(w)(pc) String (1-16) Image activation profile name or load activation profile name
to be used on the next activate.

last-used-activation-
profile

(pc) String (0-16) The last used activation profile name or a null string.

initial-processing-
weight1, 2, 3

(w) Integer The relative amount of shared general purpose processor
resources allocated to the logical partition:

Get:

0 The object-id does not represent a logical partition with
at least one shared general purpose processor.

1-999
Represents the relative amount of shared general purpose
processor resources allocated to the logical partition.

Update:

1-999
Defines the relative amount of shared general purpose
processor resources allocated to the logical partition.

552 HMC Web Services API

Table 140. Logical Partition object: class specific additional properties (continued)

Name Qualifier Type Description

initial-processing-
weight-capped1, 2, 3, 4

(w) Boolean Whether the initial processing weight for general purpose
processors is a limit or a target.

True
Indicates that the initial general purpose processor
processing weight for the logical partition is capped. It
represents the logical partition's maximum share of
general purpose processor resources.

False
Indicates that the initial general purpose processor
processing weight for the logical partition is not capped.
It represents the share of general purpose processor
resources guaranteed to a logical partition when all
general purpose processor resources are in use.
Otherwise, when excess general purpose processor
resources are available, the logical partition can use them
if necessary.

minimum-processing-
weight1, 2, 3

(w) Integer The minimum relative amount of shared general purpose
processor resources allocated to the logical partition.

Get:

0 The object-id does not represent a logical partition with
at least one shared general purpose processor.

1-999
Represents the minimum relative amount of shared
general purpose processor resources allocated to the
logical partition.

Update:

0 There is no minimum value for the processing weight.

1-999
Define the minimum relative amount of shared general
purpose processor resources allocated to the logical
partition. The value must be less than or equal to the
initial-processing-weight property.

maximum-processing-
weight1, 2, 3

(w) Integer The maximum relative amount of shared general purpose
processor resources allocated to the logical partition.

Get:

0 The object-id does not represent a logical partition with
at least one shared general purpose processor.

1-999
Represents the maximum relative amount of shared
general purpose processor resources allocated to the
logical partition.

Update:

1-999
Defines the maximum relative amount of shared general
purpose processor resources allocated to the logical
partition. The value must be greater than or equal to the
initial-processing-weight property.

Chapter 14. Core System z resources 553

Table 140. Logical Partition object: class specific additional properties (continued)

Name Qualifier Type Description

current-processing-
weight1, 3

— Integer The relative amount of shared general purpose processor
resources currently allocated to the logical partition.

0 The object-id does not represent a logical partition with
at least one shared general purpose processor.

1-999
Represents the relative amount of shared general purpose
processor resources currently allocated to the logical
partition.

current-processing-
weight-capped1, 2, 3

— Boolean Whether the current general purpose processing weight is a
limit or a target.

True
Indicates that the current general purpose processing
weight for the logical partition is capped. It represents
the logical partition's maximum share of resources,
regardless of the availability of excess processor
resources.

False
Indicates that the current general purpose processing
weight for the logical partition is not capped. It
represents the share of resources guaranteed to a logical
partition when all processor resources are in use.
Otherwise, when excess processor resources are available,
the logical partition can use them if necessary.

workload-manager-
enabled1, 5

(w) Boolean Whether or not z/OS Workload Manager is allowed to
change processing weight related properties.

True
Indicates that z/OS Workload Manager is allowed to
change processing weight related properties for this
logical partition.

False
Indicates that z/OS Workload Manager is not allowed to
change processing weight related properties for this
logical partition.

defined-capacity1 (w) Integer The defined capacity expressed in terms of Millions of Service
Units (MSU)s per hour. MSU is a measure of processor
resource consumption. The amount of MSUs a logical
partition consumes is dependent on the model, the number of
logical processors available to the partition, and the amount
of time the logical partition is dispatched. The defined
capacity value specifies how much capacity the logical
partition is to be managed to by z/OS Workload Manager for
the purpose of software pricing.

0 No defined capacity is specified for this logical partition.

1-nnnn
Represents the amount of defined capacity specified for
this logical partition.

cluster-name1 (pc) String (0-8) LPAR cluster name, which identifies membership in a group
of logical partitions that are members of the same z/OS
Parallel Sysplex®.

partition-number1 (pc) String (2) The partition number for the logical partition, in hexadecimal.

554 HMC Web Services API

Table 140. Logical Partition object: class specific additional properties (continued)

Name Qualifier Type Description

initial-aap-processing-
weight1, 3, 6

(w) Integer The relative amount of shared Application Assist Processor
(zAAP) processor resources allocated to the logical partition.

Get:

0 The object-id does not represent a logical partition with
at least one shared Application Assist Processor (zAAP)
processor.

1-999
Represents the relative amount of shared Application
Assist Processor (zAAP) processor resources allocated to
the logical partition.

Update:

1-999
Define the relative amount of shared Application Assist
Processor (zAAP) processor resources allocated to the
logical partition.

initial-aap-processing-
weight-capped1, 3, 4, 6, 7

(w) Boolean Whether the initial processing weight for Application Assist
Processor (zAAP) processors is a limit or a target.

True
Indicates that the initial Application Assist Processor
(zAAP) processor processing weight for the logical
partition is capped. It represents the logical partition's
maximum share of Application Assist Processor (zAAP)
processor resources, regardless of the availability of
excess Application Assist Processor (zAAP) processor
resources.

False
Indicates that the initial Application Assist Processor
(zAAP) processor processing weight for the logical
partition is not capped. It represents the share of
Application Assist Processor (zAAP) processor resources
guaranteed to a logical partition when all Application
Assist Processor (zAAP) processor resources are in use.
Otherwise, when excess Application Assist Processor
(zAAP) processor resources are available, the logical
partition can use them if necessary.

Chapter 14. Core System z resources 555

Table 140. Logical Partition object: class specific additional properties (continued)

Name Qualifier Type Description

minimum-aap-
processing-weight1, 3, 6

(w) Integer The minimum relative amount of shared Application Assist
Processor (zAAP) processor resources allocated to the logical
partition.

Get:

0 The object-id does not represent a logical partition with
at least one shared Application Assist Processor (zAAP)
processor.

1-999
Represents the minimum relative amount of shared
Application Assist Processor (zAAP) processor resources
allocated to the logical partition.

Update:

0 No minimum value for the processing weight.

1-999
Define the minimum relative amount of shared
Application Assist Processor (zAAP) processor resources
allocated to the logical partition.

maximum-aap-
processing-weight1, 3, 6

(w) Integer The maximum relative amount of shared Application Assist
Processor (zAAP) processor resources allocated to the logical
partition.

Get:

0 The object-id does not represent a logical partition with
at least one shared Application Assist Processor (zAAP)
processor.

1-999
Represents the maximum relative amount of shared
Application Assist Processor (zAAP) processor resources
initially allocated to the logical partition.

Update:

1-999
Define the maximum relative amount of shared
Application Assist Processor (zAAP) processor resources
allocated to the logical partition.

current-aap-processing-
weight1, 3

— Integer The current relative amount of shared Application Assist
Processor (zAAP) processor resources allocated to the logical
partition.

0 The object-id does not represent a logical partition with
at least one shared Application Assist Processor (zAAP)
processor.

1-999
Represents the current relative amount of shared
Application Assist Processor (zAAP) processor resources
initially allocated to the logical partition.

556 HMC Web Services API

Table 140. Logical Partition object: class specific additional properties (continued)

Name Qualifier Type Description

current-aap-processing-
weight-capped1, 3, 6, 7

— Boolean Whether the current Application Assist Processor (zAAP)
processing weight is a limit or a target.

True
Indicates that the current Application Assist Processor
(zAAP) processing weight for the logical partition is
capped. It represents the logical partition's maximum
share of resources, regardless of the availability of excess
processor resources.

False
Indicates that the current Application Assist Processor
(zAAP) processing weight for the logical partition is not
capped. It represents the share of resources guaranteed to
a logical partition when all processor resources are in
use. Otherwise, when excess processor resources are
available, the logical partition can use them if necessary.

initial-ifl-processing-
weight1, 3, 8

(w) Integer The relative amount of shared Integrated Facility for Linux
(IFL) processor resources allocated to the logical partition.

Get:

0 The object-id does not represent a logical partition with
at least one shared Integrated Facility for Linux (IFL)
processor.

1-999
Represents the relative amount of shared Integrated
Facility for Linux (IFL) processor resources allocated to
the logical partition.

Update:

1-999
Define the relative amount of shared Integrated Facility
for Linux (IFL) processor resources allocated to the
logical partition.

initial-ifl-processing-
weight-capped1, 3, 4, 8, 9

(w) Boolean Whether the initial processing weight for Integrated Facility
for Linux (IFL) processors is a limit or a target.

True
Indicates that the initial Integrated Facility for Linux
(IFL) processor processing weight for the logical partition
is capped. It represents the logical partition's maximum
share of Integrated Facility for Linux (IFL) processor
resources, regardless of the availability of excess
Integrated Facility for Linux (IFL) processor resources

False
Indicates that the initial Integrated Facility for Linux
(IFL) processor processing weight for the logical partition
is not capped. It represents the share of Integrated
Facility for Linux (IFL) processor resources guaranteed to
a logical partition when all Integrated Facility for Linux
(IFL) processor resources are in use. Otherwise, when
excess Integrated Facility for Linux (IFL) processor
resources are available, the logical partition can use them
if necessary.

Chapter 14. Core System z resources 557

Table 140. Logical Partition object: class specific additional properties (continued)

Name Qualifier Type Description

minimum-ifl-
processing-weight1, 3, 8

(w) Integer The minimum relative amount of shared Integrated Facility
for Linux (IFL) processor resources allocated to the logical
partition.

Get:

0 The object-id does not represent a logical partition with
at least one shared Integrated Facility for Linux (IFL)
processor.

1-999
Represents the minimum relative amount of shared
Integrated Facility for Linux (IFL) processor resources
allocated to the logical partition.

Update:

0 There is no minimum value for the processing weight.

1-999
Define the minimum relative amount of shared
Integrated Facility for Linux (IFL) processor resources
allocated to the logical partition.

maximum-ifl-
processing-weight1, 3, 8

(w) Integer The maximum relative amount of shared Integrated Facility
for Linux (IFL) processor resources allocated to the logical
partition.

Get:

0 The object-id does not represent a logical partition with
at least one shared Integrated Facility for Linux (IFL)
processor.

1-999
Represents the maximum relative amount of shared
Integrated Facility for Linux (IFL) processor resources
initially allocated to the logical partition.

Update:

1-999
Define the maximum relative amount of shared
Integrated Facility for Linux (IFL) processor resources
allocated to the logical partition.

current-ifl-processing-
weight1, 3

— Integer The current relative amount of shared Integrated Facility for
Linux (IFL) processor resources allocated to the logical
partition.

0 The object-id does not represent a logical partition with
at least one shared Integrated Facility for Linux (IFL)
processor.

1-999
Represents the current relative amount of shared
Integrated Facility for Linux (IFL) processor resources
initially allocated to the logical partition.

558 HMC Web Services API

Table 140. Logical Partition object: class specific additional properties (continued)

Name Qualifier Type Description

current-ifl-processing-
weight-capped1, 3, 8, 9

— Boolean Whether the current Integrated Facility for Linux (IFL)
processing weight is a limit or a target.

True
Indicates that the current Integrated Facility for Linux
(IFL) processing weight for the logical partition is
capped. It represents the logical partition's maximum
share of resources, regardless of the availability of excess
processor resources.

False
Indicates that the current Integrated Facility for Linux
(IFL) processing weight for the logical partition is not
capped. It represents the share of resources guaranteed to
a logical partition when all processor resources are in
use. Otherwise, when excess processor resources are
available, the logical partition can use them if necessary.

initial-ziip-processing-
weight1, 3, 10

(w) Integer The relative amount of shared Integrated Information
Processors (zIIP) processor resources allocated to the logical
partition.

Get:

0 The object-id does not represent a logical partition with
at least one shared Integrated Information Processors
(zIIP) processor.

1-999
Represents the relative amount of shared Integrated
Information Processors (zIIP) processor resources
allocated to the logical partition.

Update:

1-999
Define the relative amount of shared Integrated
Information Processors (zIIP) processor resources
allocated to the logical partition.

initial-ziip-processing-
weight-capped1, 3, 4, 10, 11

(w) Boolean Whether the initial processing weight for Integrated
Information Processors (zIIP) processors is a limit or a target.

True
Indicates that the initial Integrated Information
Processors (zIIP) processor processing weight for the
logical partition is capped. It represents the logical
partition's maximum share of Integrated Information
Processors (zIIP) processor resources, regardless of the
availability of excess Integrated Information Processors
(zIIP) processor resources.

False
Indicates that the initial Integrated Information
Processors (zIIP) processor processing weight for the
logical partition is not capped. It represents the share of
Integrated Information Processors (zIIP) processor
resources guaranteed to a logical partition when all
Integrated Information Processors (zIIP) processor
resources are in use. Otherwise, when excess Integrated
Information Processors (zIIP) processor resources are
available, the logical partition can use them if necessary.

Chapter 14. Core System z resources 559

Table 140. Logical Partition object: class specific additional properties (continued)

Name Qualifier Type Description

minimum-ziip-
processing-weight1, 3, 10

(w) Integer The minimum relative amount of shared Integrated
Information Processors (zIIP) processor resources allocated to
the logical partition.

Get:

0 The object-id does not represent a logical partition with
at least one shared Integrated Information Processors
(zIIP) processor.

1-999
Represents the minimum relative amount of shared
Integrated Information Processors (zIIP) processor
resources allocated to the logical partition.

Update:

0 There is no minimum value for the processing weight.

1-999
Define the minimum relative amount of shared
Integrated Information Processors (zIIP) processor
resources allocated to the logical partition.

maximum-ziip-
processing-weight1, 3, 10

(w) Integer The maximum relative amount of shared Integrated
Information Processors (zIIP) processor resources allocated to
the logical partition.

Get:

0 The object-id does not represent a logical partition with
at least one shared Integrated Information Processors
(zIIP) processor.

1-999
Represents the maximum relative amount of shared
Integrated Information Processors (zIIP) processor
resources allocated to the logical partition.

Update:

1-999
Define the maximum relative amount of shared
Integrated Information Processors (zIIP) processor
resources allocated to the logical partition.

current-ziip-
processing-weight1, 3

— Integer The current relative amount of shared Integrated Information
Processors (zIIP) processor resources allocated to the logical
partition.

0 The object-id does not represent a logical partition with
at least one shared Integrated Information Processors
(zIIP) processor.

1-999
Represents the current relative amount of shared
Integrated Information Processors (zIIP) processor
resources initially allocated to the logical partition.

560 HMC Web Services API

Table 140. Logical Partition object: class specific additional properties (continued)

Name Qualifier Type Description

current-ziip-
processing-weight-
capped1, 3, 10, 11

— Boolean Whether the current Integrated Information Processors (zIIP)
processing weight is a limit or a target.

True
Indicates that the current Integrated Information
Processors (zIIP) processing weight for the logical
partition is capped. It represents the logical partition's
maximum share of resources, regardless of the
availability of excess processor resources.

False
Indicates that the current Integrated Information
Processors (zIIP) processing weight for the logical
partition is not capped. It represents the share of
resources guaranteed to a logical partition when all
processor resources are in use. Otherwise, when excess
processor resources are available, the logical partition can
use them if necessary.

initial-cf-processing-
weight1, 3, 12

(w) Integer The relative amount of shared Internal Coupling Facility (ICF)
processor resources allocated to the Logical Partition object.

Get:

0 The object-id does not represent a logical partition with
at least one shared Internal Coupling Facility (ICF)
processor.

1-999
Represents the relative amount of shared Internal
Coupling Facility (ICF) processor resources allocated to
the Logical Partition object.

Update:

1-999
The relative amount of shared Internal Coupling Facility
(ICF) processor resources allocated to the Logical
Partition object.

initial-cf-processing-
weight-capped1, 3, 4, 12, 13

(w) Boolean Indicates whether the initial processing weight for Internal
Coupling Facility (ICF) processors is a limit or a target.

True
Indicates that the initial Internal Coupling Facility (ICF)
processor processing weight for the Logical Partition
object is capped. It represents the logical partition's
maximum share of Internal Coupling Facility (ICF)
processor resources, regardless of the availability of
excess Internal Coupling Facility (ICF) processor
resources.

False
Indicates that the initial Internal Coupling Facility (ICF)
processor processing weight for the Logical Partition is
not capped. It represents the share of Internal Coupling
Facility (ICF) processor resources guaranteed to a logical
partition when all Internal Coupling Facility (ICF)
processor resources are in use. Otherwise, when excess
Internal Coupling Facility (ICF) processor resources are
available, the logical partition can use them if necessary.

Chapter 14. Core System z resources 561

Table 140. Logical Partition object: class specific additional properties (continued)

Name Qualifier Type Description

minimum-cf-
processing-weight1, 3, 12

(w) Integer The minimum relative amount of shared Internal Coupling
Facility (ICF) processor resources allocated to the Logical
Partition object.

Get:

0 The object-id does not represent a logical partition with
at least one shared Internal Coupling Facility (ICF)
processor.

1-999
Represents the minimum relative amount of shared
Internal Coupling Facility (ICF) processor resources
allocated to the Logical Partition object.

Update:

1-999
The minimum relative amount of shared Internal
Coupling Facility (ICF) processor resources allocated to
the Logical Partition object.

maximum-cf-
processing-weight1, 3, 12

(w) Integer The maximum relative amount of shared Internal Coupling
Facility (ICF) processor resources allocated to the Logical
Partition object.

Get:

0 The object-id does not represent a logical partition with
at least one shared Internal Coupling Facility (ICF)
processor.

1-999
Represents the maximum relative amount of shared
Internal Coupling Facility (ICF) processor resources
allocated to the Logical Partition object.

Update:

1-999
Define the maximum relative amount of shared Internal
Coupling Facility (ICF) processor resources allocated to
the Logical Partition object.

current-cf-processing-
weight1, 3

— Integer The current relative amount of shared Internal Coupling
Facility (ICF) processor resources allocated to the Logical
Partition object.

0 The object-id does not represent a logical partition with
at least one shared Internal Coupling Facility (ICF)
processor.

1-999
Represents the current relative amount of shared Internal
Coupling Facility (ICF) processor resources allocated to
the Logical Partition object.

562 HMC Web Services API

Table 140. Logical Partition object: class specific additional properties (continued)

Name Qualifier Type Description

current-cf-processing-
weight-capped1, 3, 12, 13

— Boolean Indicates whether the current Internal Coupling Facility (ICF)
processing weight is a limit or a target.

True
Indicates that the current Internal Coupling Facility (ICF)
processing weight for the Logical Partition object is
capped. It represents the logical partition's maximum
share of resources, regardless of the availability of excess
processor resources.

False
Indicates that the current Internal Coupling Facility (ICF)
processing weight for the Logical Partition is not capped.
It represents the share of resources guaranteed to a
logical partition when all processor resources are in use.
Otherwise, when excess processor resources are available,
the logical partition can use them if necessary.

program-status-word-
information1

— Array of
psw-
description
objects

Describes the current PSW information for each CP associated
with the logical partition. The information is obtained on each
Get Logical Partition Properties request and is not cached.
Refer to the description of the psw-description object for
details.

os-ipl-token1 (pc) String (1-16) Applicable only to z/OS, a value provided when z/OS is
IPLed that uniquely identifies the instance of the operating
system. Used by z/OS to obtain knowledge about the status
of another system in the sysplex, and upon the demise of the
system, potentially partition the system out of the sysplex
immediately and reset the demised system. The value is a
string of hexadecimal characters (0-9,A-Z), left justified.

group-profile-capacity1 (w) Integer The current capacity value of the Group Profile with which
the logical partition is associated. A null object is returned if
the logical partition is not assigned to an LPAR group.

group-profile-uri1 — String/URI The canonical URI of the Group Profile associated with the
logical partition. A null object is returned if the logical
partition is not assigned to an LPAR group.

zaware-host-name14 (w) String (1-64) The IBM zAware host name. Valid characters are: a-z,A-Z,0-9,
period(.), minus(-) and colon(:)

zaware-master-userid14 (w) String (1-32) The IBM zAware master userid. Valid characters are:
a-z,A-Z,0-9, period(.), minus(-) and underscore (_)

zaware-master-pw14 (w) String
98-256)

The IBM zAware master password. Valid characters are:
a-z,A-Z,0-9 and !@#$%^&*()_+{}|<>?-=

This property is not returned on a Get request, it can only be
specified on an Update request.

zaware-network-info14 (w) Array of
zaware-
network
objects

The set of networks available to IBM zAware. A minimum of
1 network and a maximum of 100 networks are permitted.

On an Update request, this property fully replaces the
existing set.

zaware-gateway-info14 (w) ip-info
object

The default gateway IP address information.

Chapter 14. Core System z resources 563

Table 140. Logical Partition object: class specific additional properties (continued)

Name Qualifier Type Description

zaware-dns-info14 (w) Array of
ip-info
objects

The DNS IP address information. A minimum of 0 entries and
a maximum of 2 entries are permitted.

On an Update request, this property fully replaces the
existing set.

Notes:
1. If the logical partition status property is "not-activated", a null object is returned instead of the documented

field type.
2. An Update of this property is only valid for an object-id that represents a logical partition with at least one not

dedicated general purpose processor.
3. The value returned from a Get request is a null object for an object-id that does not represent a logical

partition with at least one not dedicated general purpose processor.
4. This property and the workload-manager-enabled property are mutually exclusive and cannot both be enabled

at the same time. Therefore in order to enable this property it might be necessary to first disable the
workload-manager-enabled property.

5. This property and the various capping properties are mutually exclusive and cannot be enabled at the same
time. Therefore in order to enable this property it may be necessary to first disable any capping property that is
currently enabled.

6. An Update of this property is only valid for an object-id that represents a logical partition with at least one not
dedicated Application Assist Processor (zAAP) processor.

7. The value returned from a Get request is always false for an object-id that does not represent a logical partition
with at least one not dedicated Application Assist Processor (zAAP) processor.

8. An Update of this property is only valid for an object-id that represents a logical partition with at least one not
dedicated Integrated Facility for Linux (IFL) processor.

9. The value returned from a Get request is always false for an object-id that does not represent a logical partition
with at least one not dedicated Integrated Facility for Linux (IFL) processor.

10. An Update of this property is only valid for an object-id that represents a logical partition with at least one not
dedicated Integrated Information Processors (zIIP) processor.

11. The value returned from a Get request is always false for an object-id that does not represent a logical partition
with at least one not dedicated Integrated Information Processors (zIIP) processor.

12. An Update of this property is only valid for an object-id that represents a logical partition with at least one not
dedicated Internal Coupling Facility (ICF) processor.

13. The value returned for a Get request is always false when the object-id does not represent a logical partition
with at least one not dedicated Internal Coupling Facility (ICF) processor.

14. On a Get request, this property is returned only when activation-mode is "zaware". On an Update request, this
property can be updated only when activation-mode is "zaware".

List Logical Partitions of CPC
The List Logical Partitions of CPC operation lists the logical partitions of a CPC.

HTTP method and URI
GET /api/cpcs/{cpc-id}/logical-partitions

In this request, the URI variable {cpc-id} is the object ID of the target CPC.

Query Parameters

Name Type Rqd/Opt Description

name String Optional A regular expression used to limit returned objects to those that have a
matching name property. If matches are found, the response will be an
array with all objects that match. If no match is found, the response
will be an empty array.

564 HMC Web Services API

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

logical-partition Array of
logical-
partition-
info objects

Array of nested logical-partition-info objects (described in the next table)

Each nested logical-partition-info object contains the following fields:

Field name Type Description

object-uri String/URI Canonical URI path of the Logical Partition object

name String The name of the Logical Partition object

status String
Enum

The current status of the Logical Partition object

Description

This operation lists the logical partition objects that belong to a CPC. The object URI, object ID and
display name are provided for each.

If the name query parameter is specified, the returned list is limited to those logical partition objects that
have a name property matching the specified filter pattern. If the name parameter is omitted, this
filtering is not done.

An object is only included in the list if the API user has object-access permission for that object.

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC object designated by {cpc-id}
v Object access permission to any Logical Partition object to be included in the result.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

299 A query parameter has an invalid syntax.

Chapter 14. Core System z resources 565

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Get Logical Partition Properties
The Get Logical Partition Properties operation retrieves the properties of a single Logical Partition object
designated by {logical-partition-id}.

HTTP method and URI
GET /api/logical-partitions/{logical-partition-id}

In this request, the URI variable {logical-partition-id} is the object ID of the target Logical Partition object.

Response body contents

On successful completion, HTTP status code 200 (OK) is returned and the response body provides the
current values of the properties for the Logical Partition object as defined in “Data model” on page 551.

Description

The URI path must designate an existing Logical Partition object and the API user must have
object-access permission to it. If either of these conditions is not met, status code 404 (Not Found) is
returned.

On successful execution, HTTP status code 200 (OK) is returned and the response body contains all of the
current properties as defined in “Data model” on page 551.

GET /api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/logical-partitions HTTP/1.1
x-api-session: 65aw2jahugn1wop51hsq0c6aldkkx773dz9ulirrvg2z853m4u

Figure 271. List Logical Partitions of CPC: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 16:58:36 GMT
content-type: application/json;charset=UTF-8
content-length: 374
{

"logical-partitions": [
{

"name": "APIVM1",
"object-uri": "/api/logical-partitions/c7eb8134-826e-3a71-8d1a-00d706c874e9",
"status": "operating"

},
{

"name": "ZOS",
"object-uri": "/api/logical-partitions/458e44e1-b0c2-391b-83ff-ecfd847295bd",
"status": "not-operating"

}
]

}

Figure 272. List Logical Partitions of CPC: Response

566 HMC Web Services API

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the Logical Partition object designated by {logical-partition-id}.
v Object access permission to the logical partition's parent CPC object.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 566.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID in the URI ({logical-partition-id}) does not designate an existing
Logical Partition object, or the API user does not have object access
permission to the object.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/logical-partitions/c7eb8134-826e-3a71-8d1a-00d706c874e9 HTTP/1.1
x-api-session: 5obf0hwsfv1sg9kr5f93cph3zt6o5cptb6lcl538wuyebdyzu4

Figure 273. Get Logical Partition Properties: Request

Chapter 14. Core System z resources 567

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 17:16:16 GMT
content-type: application/json;charset=UTF-8
content-length: 2366
{

"acceptable-status": [
"operating"

],
"activation-mode": "esa390",
"additional-status": "",
"class": "logical-partition",
"cluster-name": "",
"current-aap-processing-weight": null,
"current-aap-processing-weight-capped": null,
"current-cf-processing-weight": null,
"current-cf-processing-weight-capped": null,
"current-ifl-processing-weight": null,
"current-ifl-processing-weight-capped": null,
"current-processing-weight": 100,
"current-processing-weight-capped": false,
"current-ziip-processing-weight": null,
"current-ziip-processing-weight-capped": null,
"defined-capacity": 0,
"description": "LPAR Image",
"group-profile-capacity": null,
"group-profile-uri": null,
"has-operating-system-messages": false,
"has-unacceptable-status": false,
"initial-aap-processing-weight": null,
"initial-aap-processing-weight-capped": null,
"initial-cf-processing-weight": null,
"initial-cf-processing-weight-capped": null,
"initial-ifl-processing-weight": null,
"initial-ifl-processing-weight-capped": null,
"initial-processing-weight": 100,
"initial-processing-weight-capped": false,
"initial-ziip-processing-weight": null,
"initial-ziip-processing-weight-capped": null,
"is-locked": false,
"last-used-activation-profile": "APIVM1",
"maximum-aap-processing-weight": null,
"maximum-cf-processing-weight": null,
"maximum-ifl-processing-weight": null,
"maximum-processing-weight": 200,
"maximum-ziip-processing-weight": null,

Figure 274. Get Logical Partition Properties: Response (Part 1)

568 HMC Web Services API

Update Logical Partition Properties
The Update Logical Partition Properties operation updates one or more writeable properties of the
Logical Partition object designated by {logical-partition-id}.

HTTP method and URI
POST /api/logical-partitions/{logical-partition-id}

In this request, the URI variable {logical-partition-id} is the object ID of the target Logical Partition object.

Response body contents

The request body is expected to contain one or more field names representing writable logical partition
properties, along with the new values for those fields.

The response body can and should omit fields for properties whose values are not to be changed by this
operation. Properties for which no input value is provided remain unchanged by this operation.

Description

The request body object is validated against the data model for the Logical Partition object type to ensure
that the request body contains only writeable properties and the data types of those properties are as
required. If the request body is not valid, status code 400 (Bad Request) is returned with a reason code
indicating the validation error encountered.

"minimum-aap-processing-weight": null,
"minimum-cf-processing-weight": null,
"minimum-ifl-processing-weight": null,
"minimum-processing-weight": 50,
"minimum-ziip-processing-weight": null,
"name": "APIVM1",
"next-activation-profile-name": "APIVM1",
"object-id": "c7eb8134-826e-3a71-8d1a-00d706c874e9",
"object-uri": "/api/logical-partitions/c7eb8134-826e-3a71-8d1a-00d706c874e9",
"os-ipl-token": "0000000000000000",
"os-level": "6.2.0",
"os-name": "APIVM1",
"os-type": "z/VM",
"parent": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340",
"partition-number": 1,
"program-status-word-information": [

{
"cpid": "00",
"psw": "07064000800000000000000000000000"

},
{

"cpid": "01",
"psw": "07064000800000000000000000000000"

}
],
"status": "operating",
"sysplex-name": "SSICAPI1",
"workload-manager-enabled": true

}

Figure 275. Get Logical Partition Properties: Response (Part 2)

Chapter 14. Core System z resources 569

On successful execution, the value of each corresponding property of the object is updated with the value
provided by the input field, and status code 204 (No Content) is returned.

When this operation changes the value of any property for which property-change notifications are due,
those notifications are emitted asynchronously to this operation.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the Logical Partition object designated by {logical-partition-id}
v Action/task permission for the Change Object Definition task.
v Object access permission to the logical partition's parent CPC object.
v For a logical partition whose activation-mode is "zaware", action/task permission for the Firmware

Details task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

403 (Forbidden) 1 The API user does not have the required permission for this operation.

404 (Not Found) 1 The object ID in the URI ({logical-partition-id}) does not designate an existing
Logical Partition object, or the API user does not have object access
permission to the object.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Activate Logical Partition
The Activate Logical Partition operation activates the Logical Partition object designated by
{logical-partition-id}.

HTTP method and URI
POST /api/logical-partitions/{logical-partition-id}/operations/activate

In this request, the URI variable {logical-partition-id} is the object ID of the target Logical Partition object.

Request body contents

The request body is expected to contain a JSON object with the following fields:

Field name Type Rqd/Opt Description

activation-profile-
name

String
(1-16)

Optional The name of the activation profile to be used for the request. If not
provided, the request uses the profile name specified in the
next-activation-profile-name property for the Logical Partition
object.

570 HMC Web Services API

Field name Type Rqd/Opt Description

force Boolean Optional Whether this operation is permitted when the logical partition is in
"operating" status (true) or not (false). The default is false.

Response body contents

Once the operation is accepted, the response body contains a JSON object with the following fields:

Field name Type Description

job-uri String/URI URI that may be queried to retrieve status updates.

Asynchronous result description

Once the operation has completed, a job-completion notification is sent and results are available for the
asynchronous portion of this operation. These results are retrieved using the Query Job Status operation
directed at the job URI provided in the response body.

The result document returned by the Query Job Status operation is specified in the description for the
Query Job Status operation. When the status of the job is "complete", the results include a job
completion status code and reason code (fields job-status-code and job-reason-code) which are set as
indicated in operation description. The job-results field is null for this operation.

Description

Activation is a process that makes a logical partition operational, which means either:
v The logical partition is ready to have a control program or operating system loaded, or
v The logical partition has loaded and is running a control program or operating system.

Activating a logical partition includes:
v Initializing the logical partition
v Allocating system resources to the logical partition
v Loading the logical partition with a control program or operating system.

Since the status of the logical partition determines which operations must be performed during activation
to make the logical partition operational, one or more operations listed above may not be performed
during activation.

If planning to load the z/VM operating system in this logical partition, refer to Chapter 10,
“Virtualization management,” on page 161 for details on the activation of virtual servers.

When the operation is initiated, a 202 (Accepted) status code is returned. The response body includes a
URI that may be queried to retrieve the status of the operation. See “Query Job Status” on page 44 for
information on how to query job status. When the operation has completed, an asynchronous result
message is sent. See “Job status and reason codes” on page 572.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the Logical Partition object designated by {logical-partition-id}
v Action/task permission for the Activate task.
v Object access permission to the logical partition's parent CPC object.

Chapter 14. Core System z resources 571

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in “Response body contents” on page 571.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID in the URI ({logical-partition-id}) does not designate an existing
Logical Partition object, or the API user does not have object access
permission to the object.

500 (Server Error) 280 An IO exception occurred during the scheduling of the asynchronous
request.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

HTTP error status
code

Reason
code Description

204 (No Content) N/A Operation completed successfully.

500 (Server Error) 263 Operation failed or was rejected due to the current logical partition status
and use of the force=false parameter. If rejected due to force=false, the
logical partition status is unchanged. If the operation failed, the logical
partition status is unknown. Refer to the message parameter in the error
response body for details.

Deactivate Logical Partition
The Deactivate Logical Partition operation deactivates the Logical Partition object designated by
{logical-partition-id}.

HTTP method and URI
POST /api/logical-partitions/{logical-partition-id}/operations/deactivate

In this request, the URI variable {logical-partition-id} is the object ID of the target Logical Partition object.

Request body contents

The request body is expected to contain a JSON object with the following fields:

Field name Type Rqd/Opt Description

force Boolean Optional Whether this operation is permitted when the logical partition is in
"operating" status (true) or not (false). The default is false.

572 HMC Web Services API

Response body contents

Once the operation is accepted, the response body contains a JSON object with the following fields:

Field name Type Description

job-uri String/URI URI that may be queried to retrieve status updates.

Asynchronous result description

Once the operation has completed, a job-completion notification is sent and results are available for the
asynchronous portion of this operation. These results are retrieved using the Query Job Status operation
directed at the job URI provided in the response body.

The result document returned by the Query Job Status operation is specified in the description for the
Query Job Status operation. When the status of the job is "complete", the results include a job
completion status code and reason code (fields job-status-code and job-reason-code) which are set as
indicated in operation description. The job-results field is null for this operation.

Description

Deactivation is an orderly process for terminating a logical partition.

Deactivating a logical partition includes:
v Unloading the logical partition's control program or operating system
v Freeing system resources allocated to the logical partition.

After the logical partition is deactivated, the logical partition is no longer operational

If this logical partition currently has the z/VM operating system loaded, refer to Chapter 10,
“Virtualization management,” on page 161 for the details on deactivation of virtual servers.

When the operation is initiated, a 202 (Accepted) status code is returned. The response body includes a
URI that may be queried to retrieve the status of the operation. See “Query Job Status” on page 44 for
information on how to query job status. When the operation has completed, an asynchronous result
message is sent. See “Job status and reason codes” on page 574.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the Logical Partition object designated by {logical-partition-id}
v Action/task permission for the Deactivate task.
v Object access permission to the logical partition's parent CPC object.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in “Response body contents.”

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

Chapter 14. Core System z resources 573

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID in the URI ({logical-partition-id}) does not designate an existing
Logical Partition object, or the API user does not have object access
permission to the object.

500 (Server Error) 280 An IO exception occurred during the scheduling of the asynchronous
request.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

HTTP error status
code

Reason
code Description

204 (No Content) N/A Operation completed successfully.

500 (Server Error) 263 Operation failed or was rejected due to the current logical partition status
and use of the force=false parameter. If rejected due to force=false, the
logical partition status is unchanged. If the operation failed, the logical
partition status is unknown. Refer to the message parameter in the error
response body for details.

Reset Normal
The Reset Normal operation initializes a system or logical partition by clearing its pending interruptions,
resetting its channel subsystem and resetting its processors. A reset prepares a system or logical partition
for loading it with an operating system.

HTTP method and URI
POST /api/logical-partitions/{logical-partition-id}/operations/reset-normal

In this request, the URI variable {logical-partition-id} is the object ID of the target Logical Partition object.

Request body contents

The request body is expected to contain a JSON object with the following fields:

Field name Type Rqd/Opt Description

force Boolean Optional Whether this operation is permitted when the logical partition is in
"operating" status (true) or not (false). The default is false.

os-ipl-token String
(1-16)

Optional Applicable only to z/OS, this parameter requests that this operation
only be performed if the provided value matches the current value
of the os-ipl-token property. This ensures that this operation is
targeting the same IPL instance as when the os-ipl-token property
was retrieved. IBM recommends that this parameter only be
provided by callers that fully understand how the os-ipl-token
parameter is managed by z/OS. The value is a string of
hexadecimal characters (0-9, A-Z), left justified.

574 HMC Web Services API

Response body contents

Once the operation is accepted, the response body contains a JSON object with the following fields:

Field name Type Description

job-uri String/URI URI that may be queried to retrieve status updates.

Asynchronous result description

Once the operation has completed, a job-completion notification is sent and results are available for the
asynchronous portion of this operation. These results are retrieved using the Query Job Status operation
directed at the job URI provided in the response body.

The result document returned by the Query Job Status operation is specified in the description for the
Query Job Status operation. When the status of the job is "complete", the results include a job
completion status code and reason code (fields job-status-code and job-reason-code) which are set as
indicated in operation description. The job-results field is null for this operation.

Description

When the operation is initiated, a 202 (Accepted) status code is returned. The response body includes a
URI that may be queried to retrieve the status of the operation. See “Query Job Status” on page 44 for
information on how to query job status. When the operation has completed, an asynchronous result
message is sent. See “Job status and reason codes” on page 576.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the Logical Partition object designated by {logical-partition-id}
v Action/task permission for the Reset Normal task.
v Object access permission to the logical partition's parent CPC object.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in “Response body contents.”

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

264 The specified IPL Token value does not match the current IPL Token value.

404 (Not Found) 1 The object ID in the URI ({logical-partition-id}) does not designate an existing
Logical Partition object, or the API user does not have object access
permission to the object.

500 (Server Error) 280 An IO exception occurred during the scheduling of the asynchronous
request.

Chapter 14. Core System z resources 575

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

HTTP error status
code

Reason
code Description

204 (No Content) N/A Operation completed successfully.

500 (Server Error) 263 Operation failed or was rejected due to the current logical partition status
and use of the force=false parameter. If rejected due to force=false, the
logical partition status is unchanged. If the operation failed, the logical
partition status is unknown. Refer to the message parameter in the error
response body for details.

Reset Clear
The Reset Clear operation initializes system or logical partition by clearing its pending interruptions,
resetting its channel subsystem and resetting its processors. A reset prepares a system or logical partition
for loading it with an operating system and clears main memory of the system or logical partition.

HTTP method and URI
POST /api/logical-partitions/{logical-partition-id}/operations/reset-clear

In this request, the URI variable {logical-partition-id} is the object ID of the target Logical Partition object.

Request body contents

The request body is expected to contain a JSON object with the following fields:

Field name Type Rqd/Opt Description

force Boolean Optional Whether this operation is permitted when the logical partition is in
"operating" status (true) or not (false). The default is false.

os-ipl-token String
(1-16)

Optional Applicable only to z/OS, this parameter requests that this operation
only be performed if the provided value matches the current value
of the os-ipl-token property. This ensures that this operation is
targeting the same IPL instance as when the os-ipl-token property
was retrieved. IBM recommends that this parameter only be
provided by callers that fully understand how the os-ipl-token
parameter is managed by z/OS. The value is a string of
hexadecimal characters (0-9,A-Z), left justified.

Response body contents

Once the operation is accepted, the response body contains a JSON object with the following fields:

Field name Type Description

job-uri String/URI URI that may be queried to retrieve status updates.

Asynchronous result description

Once the operation has completed, a job-completion notification is sent and results are available for the
asynchronous portion of this operation. These results are retrieved using the Query Job Status operation
directed at the job URI provided in the response body.

576 HMC Web Services API

The result document returned by the Query Job Status operation is specified in the description for the
Query Job Status operation. When the status of the job is "complete", the results include a job
completion status code and reason code (fields job-status-code and job-reason-code) which are set as
indicated in operation description. The job-results field is null for this operation.

Description

When the operation is initiated, a 202 (Accepted) status code is returned. The response body includes a
URI that may be queried to retrieve the status of the operation. See “Query Job Status” on page 44 for
information on how to query job status. When the operation has completed, an asynchronous result
message is sent. See “Job status and reason codes.”

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the Logical Partition object designated by {logical-partition-id}
v Action/task permission for the Reset Clear task.
v Object access permission to the logical partition's parent CPC object.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in “Response body contents” on page 576.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

264 The specified IPL Token value does not match the current IPL Token value.

404 (Not Found) 1 The object ID in the URI ({logical-partition-id}) does not designate an existing
Logical Partition object, or the API user does not have object access
permission to the object.

500 (Server Error) 280 An IO exception occurred during the scheduling of the asynchronous
request.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

HTTP error status
code

Reason
code Description

204 (No Content) N/A Operation completed successfully.

500 (Server Error) 263 Operation failed or was rejected due to the current logical partition status
and use of the force=false parameter. If rejected due to force=false, the
logical partition status is unchanged. If the operation failed, the logical
partition status is unknown. Refer to the message parameter in the error
response body for details.

Chapter 14. Core System z resources 577

Load Logical Partition
The Load Logical Partition operation resets a logical partition, to prepare it for loading an operating
system, and loads the operating system.

HTTP method and URI
POST /api/logical-partitions/{logical-partition-id}/operations/load

In this request, the URI variable {logical-partition-id} is the object ID of the target Logical Partition object.

Request body contents

The request body is expected to contain a JSON object with the following fields:

Field name Type Rqd/Opt Description

load-address String
(1-5)

Required The hexadecimal address of an I/O device that provides access to
the control program to be loaded. The input value is right justified
and padded with zeros to 5 characters.

Valid values are in the range "00000" to "nFFFF" where "n" is the
number of subchannel sets provided by the CPC minus 1. So, for
example, on a CPC that provides 3 subchannel sets, the valid range
is "00000" to "2FFFF".

load-parameter String
(1-8)

Optional Some control programs support the use of this property to provide
additional control over the outcome of a Load operation. Refer to
the configuration documentation for the control program to be
loaded to see if this parameter is supported and if so, what values
and format is supported. Omitting this field indicates that the value
for this field is to be retrieved from the current IOCDS. Valid
characters are 0-9, A-Z, blank and period.

clear-indicator Boolean Optional Whether memory should be cleared before performing the Load
(true) or not cleared (false). The default value is true.

timeout Integer
(60-600)

Optional Amount of time, in seconds, to wait for the Load to complete. The
default timeout value is 60 seconds.

store-status-
indicator

Boolean Optional Whether status should be stored before performing the Load (true)
or not stored (false). The default is false.

force Boolean Optional Whether this operation is permitted when the logical partition is in
"operating" status (true) or not (false). The default is false.

os-ipl-token String
(1-16)

Optional Applicable only to z/OS, this parameter requests that this operation
only be performed if the provided value matches the current value
of the os-ipl-token property. This ensures that this operation is
targeting the same IPL instance as when the os-ipl-token property
was retrieved. IBM recommends that this parameter only be
provided by callers that fully understand how the os-ipl-token
parameter is managed by z/OS. The value is a string of
hexadecimal characters (0-9, A-Z), left justified.

Response body contents

Once the operation is accepted, the response body contains a JSON object with the following fields:

Field name Type Description

job-uri String/URI URI that may be queried to retrieve status updates.

578 HMC Web Services API

Asynchronous result description

Once the operation has completed, a job-completion notification is sent and results are available for the
asynchronous portion of this operation. These results are retrieved using the Query Job Status operation
directed at the job URI provided in the response body.

The result document returned by the Query Job Status operation is specified in the description for the
Query Job Status operation. When the status of the job is "complete", the results include a job
completion status code and reason code (fields job-status-code and job-reason-code) which are set as
indicated in operation description. The job-results field is null for this operation.

Description

This operation is not permitted for a logical partition whose activation-mode property is "zaware".

When the operation is initiated, a 202 (Accepted) status code is returned. The response body includes a
URI that may be queried to retrieve the status of the operation. See “Query Job Status” on page 44 for
information on how to query job status. When the operation has completed, an asynchronous result
message is sent. See “Job status and reason codes” on page 580.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the Logical Partition object designated by {logical-partition-id}
v Action/task permission for the Load task.
v Object access permission to the logical partition's parent CPC object.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in “Response body contents” on page 578.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

264 The specified IPL Token value does not match the current IPL Token value.

306 This operation is not valid in the current activation mode.

404 (Not Found) 1 The object ID in the URI ({logical-partition-id}) does not designate an existing
Logical Partition object, or the API user does not have object access
permission to the object.

500 (Server Error) 280 An IO exception occurred during the scheduling of the asynchronous
request.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Chapter 14. Core System z resources 579

Job status and reason codes

HTTP error status
code

Reason
code Description

204 (No Content) N/A Operation completed successfully.

500 (Server Error) 263 Operation failed or was rejected due to the current logical partition status
and use of the force=false parameter. If rejected due to force=false, the
logical partition status is unchanged. If the operation failed, the logical
partition status is unknown. Refer to the message parameter in the error
response body for details.

PSW Restart
The PSW Restart operation restarts the first available processor of the Logical Partition object designated
by {logical-partition-id}.

HTTP method and URI
POST /api/logical-partitions/{logical-partition-id}/operations/psw-restart

In this request, the URI variable {logical-partition-id} is the object ID of the target Logical Partition object.

Response body contents

Once the operation is accepted, the response body contains a JSON object with the following fields:

Field name Type Description

job-uri String/URI URI that may be queried to retrieve status updates.

Asynchronous result description

Once the operation has completed, a job-completion notification is sent and results are available for the
asynchronous portion of this operation. These results are retrieved using the Query Job Status operation
directed at the job URI provided in the response body.

The result document returned by the Query Job Status operation is specified in the description for the
Query Job Status operation. When the status of the job is "complete", the results include a job
completion status code and reason code (fields job-status-code and job-reason-code) which are set as
indicated in operation description. The job-results field is null for this operation.

Description

This operation is not permitted for a logical partition whose activation-mode property is "zaware".

When the operation is initiated, a 202 (Accepted) status code is returned. The response body includes a
URI that may be queried to retrieve the status of the operation. See “Query Job Status” on page 44 for
information on how to query job status. When the operation has completed, an asynchronous result
message is sent. See “Job status and reason codes” on page 581.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the Logical Partition object designated by {logical-partition-id}
v Action/task permission for the PSW Restart task.
v Object access permission to the logical partition's parent CPC object.

580 HMC Web Services API

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in “Response body contents” on page 580.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

306 This operation is not valid in the current activation mode.

404 (Not Found) 1 The object ID in the URI ({logical-partition-id}) does not designate an existing
Logical Partition object, or the API user does not have object access
permission to the object.

500 (Server Error) 280 An IO exception occurred during the scheduling of the asynchronous
request.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

HTTP error status
code

Reason
code Description

204 (No Content) N/A Operation completed successfully.

500 (Server Error) 263 Operation failed.

Start Logical Partition
The Start Logical Partition operation starts the processors to process instructions of the Logical Partition
object designated by {logical-partition-id}.

HTTP method and URI
POST /api/logical-partitions/{logical-partition-id}/operations/start

In this request, the URI variable {logical-partition-id} is the object ID of the target Logical Partition object.

Response body contents

Once the operation is accepted, the response body contains a JSON object with the following fields:

Field name Type Description

job-uri String/URI URI that may be queried to retrieve status updates.

Asynchronous result description

Once the operation has completed, a job-completion notification is sent and results are available for the
asynchronous portion of this operation. These results are retrieved using the Query Job Status operation
directed at the job URI provided in the response body.

Chapter 14. Core System z resources 581

The result document returned by the Query Job Status operation is specified in the description for the
Query Job Status operation. When the status of the job is "complete", the results include a job
completion status code and reason code (fields job-status-code and job-reason-code) which are set as
indicated in operation description. The job-results field is null for this operation.

Description

This operation is not permitted for a logical partition whose activation-mode property is "zaware".

When the operation is initiated, a 202 (Accepted) status code is returned. The response body includes a
URI that may be queried to retrieve the status of the operation. See “Query Job Status” on page 44 for
information on how to query job status. When the operation has completed, an asynchronous result
message is sent. See “Job status and reason codes.”

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the Logical Partition object designated by {logical-partition-id}
v Action/task permission for the Start task.
v Object access permission to the logical partition's parent CPC object.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in “Response body contents” on page 581.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

306 This operation is not valid in the current activation mode.

404 (Not Found) 1 The object ID in the URI ({logical-partition-id}) does not designate an existing
Logical Partition object, or the API user does not have object access
permission to the object.

500 (Server Error) 280 An IO exception occurred during the scheduling of the asynchronous
request.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

HTTP error status
code

Reason
code Description

204 (No Content) N/A Operation completed successfully.

500 (Server Error) 263 Operation failed.

582 HMC Web Services API

Stop Logical Partition
The Stop Logical Partition operation stops the processors from processing instructions of the Logical
Partition object designated by {logical-partition-id}.

HTTP method and URI
POST /api/logical-partitions/{logical-partition-id}/operations/stop

In this request, the URI variable {logical-partition-id} is the object ID of the target Logical Partition object.

Response body contents

Once the operation is accepted, the response body contains a JSON object with the following fields:

Field name Type Description

job-uri String/URI URI that may be queried to retrieve status updates.

Asynchronous result description

Once the operation has completed, a job-completion notification is sent and results are available for the
asynchronous portion of this operation. These results are retrieved using the Query Job Status operation
directed at the job URI provided in the response body.

The result document returned by the Query Job Status operation is specified in the description for the
Query Job Status operation. When the status of the job is "complete", the results include a job
completion status code and reason code (fields job-status-code and job-reason-code) which are set as
indicated in operation description. The job-results field is null for this operation.

Description

This operation is not permitted for a logical partition whose activation-mode property is "zaware".

When the operation is initiated, a 202 (Accepted) status code is returned. The response body includes a
URI that may be queried to retrieve the status of the operation. See “Query Job Status” on page 44 for
information on how to query job status. When the operation has completed, an asynchronous result
message is sent. See “Job status and reason codes” on page 584.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the Logical Partition object designated by {logical-partition-id}
v Action/task permission for the Stop task.
v Object access permission to the logical partition's parent CPC object.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in “Response body contents.”

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

Chapter 14. Core System z resources 583

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

306 This operation is not valid in the current activation mode.

404 (Not Found) 1 The object ID in the URI ({logical-partition-id}) does not designate an existing
Logical Partition object, or the API user does not have object access
permission to the object.

500 (Server Error) 280 An IO exception occurred during the scheduling of the asynchronous
request.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

HTTP error status
code

Reason
code Description

204 (No Content) N/A Operation completed successfully.

500 (Server Error) 263 Operation failed.

SCSI Load
The SCSI Load operation clears main storage, to prepare the logical partition for loading an operating
system, and loads the operating system from the designated SCSI device.

HTTP method and URI
POST /api/logical-partitions/{logical-partition-id}/operations/scsi-load

In this request, the URI variable {logical-partition-id} is the object ID of the target Logical Partition object.

Request body contents

The request body is expected to contain a JSON object with the following fields:

Field name Type Rqd/Opt Description

load-address String
(1-5)

Required The hexadecimal address of an I/O device that provides access to
the control program to be loaded. The input value is right justified
and padded with zeros to 5 characters.

Valid values are in the range "00000" to "nFFFF" where "n" is the
number of subchannel sets provided by the CPC minus 1. So, for
example, on a CPC that provides 3 subchannel sets, the valid range
is "00000" to "2FFFF".

load-parameter String
(1-8)

Optional Some control programs support the use of this property to provide
additional control over the outcome of a Load operation. Refer to
the configuration documentation for the control program to be
loaded to see if this parameter is supported and if so, what values
and format is supported. Omitting this field indicates that the value
for this field is to be retrieved from the current IOCDS. Valid
characters are 0-9, A-Z, blank and period

584 HMC Web Services API

Field name Type Rqd/Opt Description

world-wide-port-
name

String
(1-16)

Required The worldwide port name (WWPN) of the target SCSI device to be
used for this operation, in hexadecimal.

logical-unit-number String
(1-16)

Required The hexadecimal logical unit number (LUN) to be used for the SCSI
Load.

disk-partition-id Integer
(0-30)

Optional The disk-partition-id (also called the boot program selector) to be
used for the SCSI Load. The default value is 0.

operating-system-
specific-load-
parameters

String
(1-256)

Optional The operating system specific load parameters to be used for the
SCSI Load. The default value is an empty string.

boot-record-
logical-block-
address

String
(1-16)

Optional The hexadecimal boot record logical block address to be used for
the SCSI Load. The default value is hex zeros.

force Boolean Optional Whether this operation is permitted when the logical partition is in
"operating" status (true) or not (false). The default is false.

os-ipl-token String
(1-16)

Optional Applicable only to z/OS, this parameter requests that this operation
only be performed if the provided value matches the current value
of the os-ipl-token property. This ensures that this operation is
targeting the same IPL instance as when the os-ipl-token property
was retrieved. IBM recommends that this parameter only be
provided by callers that fully understand how the os-ipl-token
parameter is managed by z/OS. The value is a string of
hexadecimal characters (0-9, A-Z), left justified.

Response body contents

Once the operation is accepted, the response body contains a JSON object with the following fields:

Field name Type Description

job-uri String/URI URI that may be queried to retrieve status updates.

Asynchronous result description

Once the operation has completed, a job-completion notification is sent and results are available for the
asynchronous portion of this operation. These results are retrieved using the Query Job Status operation
directed at the job URI provided in the response body.

The result document returned by the Query Job Status operation is specified in the description for the
Query Job Status operation. When the status of the job is "complete", the results include a job
completion status code and reason code (fields job-status-code and job-reason-code) which are set as
indicated in operation description. The job-results field is null for this operation.

Description

When the operation is initiated, a 202 (Accepted) status code is returned. The response body includes a
URI that may be queried to retrieve the status of the operation. See “Query Job Status” on page 44 for
information on how to query job status. When the operation has completed, an asynchronous result
message is sent. See “Job status and reason codes” on page 586.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the Logical Partition object designated by {logical-partition-id}

Chapter 14. Core System z resources 585

v Action/task permission for the Load task.
v Object access permission to the logical partition's parent CPC object.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in “Response body contents” on page 585.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID in the URI ({logical-partition-id}) does not designate an existing
Logical Partition object, or the API user does not have object access
permission to the object.

500 (Server Error) 280 An IO exception occurred during the scheduling of the asynchronous
request.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

HTTP error status
code

Reason
code Description

204 (No Content) N/A Operation completed successfully.

500 (Server Error) 263 Operation failed.

SCSI Dump
The SCSI Dump operation loads a standalone dump program from a designated SCSI device.

HTTP method and URI
POST /api/logical-partitions/{logical-partition-id}/operations/scsi-dump

In this request, the URI variable {logical-partition-id} is the object ID of the target Logical Partition object.

Request body contents

The request body is expected to contain a JSON object with the following fields:

Field name Type Rqd/Opt Description

load-address String
(1-5)

Required The hexadecimal address of an I/O device that provides access to
the control program to be loaded. The input value is right justified
and padded with zeros to 5 characters.

Valid values are in the range "00000" to "nFFFF" where "n" is the
number of subchannel sets provided by the CPC minus 1. So, for
example, on a CPC that provides 3 subchannel sets, the valid range
is "00000" to "2FFFF".

586 HMC Web Services API

Field name Type Rqd/Opt Description

load-parameter String
(1-8)

Optional Some control programs support the use of this property to provide
additional control over the outcome of a Load operation. Refer to
the configuration documentation for the control program to be
loaded to see if this parameter is supported and if so, what values
and format is supported. Omitting this field indicates that the value
for this field is to be retrieved from the current IOCDS. Valid
characters are 0-9, A-Z, blank and period.

world-wide-port-
name

String
(1-16)

Required The worldwide port name (WWPN) of the target SCSI device to be
used for this operation, in hexadecimal.

logical-unit-number String
(1-16)

Required The hexadecimal logical unit number (LUN) to be used for the SCSI
Load.

disk-partition-id Integer
(0-30)

Optional The disk-partition-id (also called the boot program selector) to be
used for the SCSI Load. The default value is 0.

operating-system-
specific-load-
parameters

String
(1-256)

Optional The operating system specific load parameters to be used for the
SCSI Load. The default value is an empty string.

boot-record-
logical-block-
address

String
(1-16)

Optional The hexadecimal boot record logical block address to be used for
the SCSI Load. The default value is hex zeros.

os-ipl-token String
(1-16)

Optional Applicable only to z/OS, this parameter requests that this operation
only be performed if the provided value matches the current value
of the os-ipl-token property. This ensures that this operation is
targeting the same IPL instance as when the os-ipl-token property
was retrieved. IBM recommends that this parameter only be
provided by callers that fully understand how the os-ipl-token
parameter is managed by z/OS. The value is a string of
hexadecimal characters (0-9, A-Z), left justified.

Response body contents

Once the operation is accepted, the response body contains a JSON object with the following fields:

Field name Type Description

job-uri String/URI URI that may be queried to retrieve status updates.

Asynchronous result description

Once the operation has completed, a job-completion notification is sent and results are available for the
asynchronous portion of this operation. These results are retrieved using the Query Job Status operation
directed at the job URI provided in the response body.

The result document returned by the Query Job Status operation is specified in the description for the
Query Job Status operation. When the status of the job is "complete", the results include a job
completion status code and reason code (fields job-status-code and job-reason-code) which are set as
indicated in operation description. The job-results field is null for this operation.

Description

When the operation is initiated, a 202 (Accepted) status code is returned. The response body includes a
URI that may be queried to retrieve the status of the operation. See “Query Job Status” on page 44 for
information on how to query job status. When the operation has completed, an asynchronous result
message is sent. See “Job status and reason codes” on page 588.

Chapter 14. Core System z resources 587

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the Logical Partition object designated by {logical-partition-id}
v Action/task permission for the SCSI Dump task.
v Object access permission to the logical partition's parent CPC object.

HTTP status and reason codes

On success, HTTP status code 202 (Accepted) is returned and the response body is provided as described
in “Response body contents” on page 587.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID in the URI ({logical-partition-id}) does not designate an existing
Logical Partition object, or the API user does not have object access
permission to the object.

500 (Server Error) 280 An IO exception occurred during the scheduling of the asynchronous
request.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Job status and reason codes

HTTP error status
code

Reason
code Description

204 (No Content) N/A Operation completed successfully.

500 (Server Error) 263 Operation failed.

Reset activation profile
A Reset activation profile is used by a CPC Activate operation to control the activation of a CPC and, if
properly configured with one or more image activation profiles, a set of Logical Partition(s).

An activation profile can only be created or deleted from the Hardware Management Console or the
Support Element.

Refer to the Support Element Operations Guide for details on customizing activation profiles.

Data model
For definitions of the qualifier abbreviations in the following tables, see “Property characteristics” on
page 32.

This element includes the following type-specific properties.

588 HMC Web Services API

Table 141. Reset activation profile: type-specific properties

Name Qualifier Type Description of specialization

element-uri — String/
URI

The canonical URI path of the Reset Activation Profile object, of the
form /api/cpcs/{cpc-id}/reset-activation-profiles/{reset-
activation-profile-name} where {reset-activation-profile-name} is the
value of the name property (Reset Activation Profile name).

parent — String/
URI

The canonical URI path of the associated CPC object.

class — String The class of a Reset Activation Profile object is "reset-activation-
profile".

name — String
(1-16)

The activation profile name, which uniquely identifies this profile
within the set of activation profiles for the CPC object designated by
{cpc-id}.

description (w) String
(1-50)

The reset profile description

iocds-name (w) String (0-2) The Input/Output Configuration Data Set name, in hexadecimal. An
empty string indicates that the currently active IOCDS will be used.
The active IOCDS is the one from the most recent power-on-reset of
the CPC or, if using dynamic I/O configuration, the one last activated.

processor-
running-time-type

(w) String
Enum

Defines whether the processor running time is determined
dynamically or set manually for the CPC (see processor-running-time
in this table). One of:
v "system-determined"
v "user-determined"

processor-
running-time

(w) Integer
(0-100)

Amount of continuous time, in milliseconds, for logical processors to
perform jobs on shared processors for the CPC, if
processor-running-time-type is set to "user-determined". If
processor-running-time-type is "system-determined", this property's
value will always be returned as 0.

end-timeslice-on-
wait

(w) Boolean If true and if processor-running-time-type is set to "user-determined",
CPC Logical Partitions lose their share of running time when they
enter a wait state. If processor-running-time-type is
"system-determined", this property's value will always be returned as
false.

List Reset Activation Profiles
The List Reset Activation Profiles operation lists the Reset Activation Profiles associated with a
particular CPC.

HTTP method and URI
GET /api/cpcs/{cpc-id}/reset-activation-profiles

In this request, the URI variable {cpc-id} is the object ID of the target CPC object.

Query parameters:

Name Type Rqd/Opt Description

name String Optional A regular expression used to limit returned objects to those that
have a matching name property. If matches are found, the response
will be an array with all objects that match. If no match is found,
the response will be an empty array.

Chapter 14. Core System z resources 589

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

reset-activation-
profiles

Array of
reset-
actprof-info
objects

Array of nested objects (described in the following table).

Each reset-actprof-info object contains the following fields:

Field name Type Description

element-uri String/URI Canonical URI path of the Reset Activation Profile object.

name String The name of the Reset Activation Profile.

Description

This operation lists the Reset Activation Profiles associated with a particular CPC.

If the name query parameter is specified, the returned list is limited to those Reset Activation Profiles
that have a name property matching the specified filter pattern. If the name parameter is omitted, this
filtering is not done.

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the CPC object designated by {cpc-id}.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

299 A query parameter has an invalid syntax.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

500 (Server Error) 281 An unexpected error occurred during the collection of the list of activation
profiles.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

590 HMC Web Services API

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Get Reset Activation Profile Properties
The Get Reset Activation Profile Properties operation retrieves the properties of a single Reset
Activation Profile designated by {reset-activation-profile-name}.

HTTP method and URI
GET /api/cpcs/{cpc-id}/reset-activation-profiles/{reset-activation-profile-name}

URI variables:

Variable Description

{cpc-id} Object ID of the target CPC object.

{reset-activation-profile-name} Reset Activation Profile name

Response body contents

On successful completion, the response body provides the current values of the properties for the Reset
Activation Profile as defined in the “Data model” on page 588.

GET /api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/reset-activation-profiles HTTP/1.1
x-api-session: 5obf0hwsfv1sg9kr5f93cph3zt6o5cptb6lcl538wuyebdyzu4

Figure 276. List Reset Activation Profiles: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 17:16:16 GMT
content-type: application/json;charset=UTF-8
content-length: 372
{

"reset-activation-profiles": [
{

"element-uri": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/reset-activation-profiles/
DEFAULT",

"name": "DEFAULT"
},
{

"element-uri": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/reset-activation-profiles/
POWER_ON_RESET",
"name": "POWER_ON_RESET"

}
]

}

Figure 277. List Reset Activation Profiles: Response

Chapter 14. Core System z resources 591

Description

The URI path must designate an existing Reset Activation Profile and the API user must have
object-access permission to the CPC. If either of these conditions is not met, status code 404 (Not Found)
is returned.

On successful execution, HTTP status code 200 (OK) is returned and the response body contains all of the
current properties as defined by the Data Model for the Reset Activation Profile object.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the CPC object designated by {cpc-id}.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 591.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

260 The activation profile name in the URI ({reset-activation-profile-name}) does not
designate an existing activation profile.

500 (Server Error) 281 An unexpected error occurred during the operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/reset-activation-profiles/DEFAULT HTTP/1.1
x-api-session: 5obf0hwsfv1sg9kr5f93cph3zt6o5cptb6lcl538wuyebdyzu4

Figure 278. Get Reset Activation Profile Properties: Request

592 HMC Web Services API

Update Reset Activation Profile Properties
The Update Reset Activation Profile Properties operation updates one or more writeable properties of
the Reset Activation Profile designated by {reset-activation-profile-name}.

HTTP method and URI
POST /api/cpcs/{cpc-id}/reset-activation-profiles/{reset-activation-profile-name}

URI variables:

Variable Description

{cpc-id} Object ID of the target CPC object.

{reset-activation-profile-name} Reset Activation Profile name

Request body contents

The request body is expected to contain one or more field names representing writable Reset Activation
Profile properties, along with the new values for those fields.

The response body can and should omit fields for properties whose values are not to be changed by this
operation. Properties for which no input value is provided remain unchanged by this operation.

Description

The request body object is validated against the data model for the Reset Activation Profile to ensure that
the request body contains only writeable properties and the data types of those properties are as
required. If the request body is not valid, status code 400 (Bad Request) is returned with a reason code
indicating the validation error encountered.

On successful execution, the value of each corresponding property of the Reset Activation Profile is
updated with the value provided by the input field, and status code 204 (No Content) is returned.

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 17:16:18 GMT
content-type: application/json;charset=UTF-8
content-length: 384
{

"class": "reset-activation-profile",
"description": "This is the default Reset profile.",
"element-uri": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/reset-activation-profiles/
DEFAULT",
"end-timeslice-on-wait": false,
"iocds-name": "a0",
"name": "DEFAULT",
"parent": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340",
"processor-running-time": 0,
"processor-running-time-type": "system-determined"

}

Figure 279. Get Reset Activation Profile Properties: Response

Chapter 14. Core System z resources 593

When this operation changes the value of any property for which property-change notifications are due,
those notifications are emitted asynchronously to this operation.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC object designated by {cpc-id}
v Action/task permission for the Customize/Delete Activation Profiles task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

300 The provided update values would result in an illegal state. Verify that the
values are both internally consistent and consistent with the current state of
the profile.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

260 The activation profile name in the URI ({reset-activation-profile-name}) does not
designate an existing activation profile.

409 (Conflict) 2 The operation was rejected by the Support Element (SE), because the SE is
currently performing processing that requires exclusive control of the SE.
Retry the operation at a later time.

500 (Server Error) 281 An unexpected error occurred during the operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Image activation profile
An Image activation profile is used by an Activate operation to activate a logical partition of a previously
activated CPC.

An activation profile can only be created or deleted from the Hardware Management Console or the
Support Element.

See the Support Element Operations Guide for details on customizing activation profiles.

Data model
For definitions of the qualifier abbreviations in the following tables, see “Property characteristics” on
page 32.

594 HMC Web Services API

This element includes the following type-specific properties. Some properties have additional notes
associated with them. Refer to the table notes at the end of this table.

Table 142. Image activation profile: type-specific properties

Name Qualifier Type Description

element-uri — String/URI The canonical URI path of the Image Activation Profile object,
of the form /api/cpcs/{cpc-id}/image-activation-profiles/
{image-activation-profile-name} where
{image-activation-profile-name} is the value of the name
property (Image Activation Profile name).

parent — String/URI The canonical URI path of the associated CPC object.

class — String The class of an Image Activation Profile object is
"image-activation-profile".

name — String (0-16) The activation profile name, which uniquely identifies this
profile within the set of activation profiles for the CPC object
designated by {cpc-id}.

description (w) String (0-50) The activation profile description

ipl-address15 (w) String (0-5) The hexadecimal address of an I/O device that provides
access to the control program to be loaded. The input value
will be right justified and padded with zeros to 5 characters.
An empty string indicates that the value for this property is
to be retrieved from the IOCDS used during a subsequent
Load operation.

Valid values are in the range "00000" to "nFFFF" where "n" is
the number of subchannel sets provided by the CPC minus 1.
So, for example, on a CPC that provides 3 subchannel sets,
the valid range is "00000" to "2FFFF".

ipl-parameter (w) String (0-8) Some control programs support the use of this property to
provide additional control over the outcome of a Load
operation. Refer to the configuration documentation for the
control program to be loaded to see if this parameter is
supported and if so, what values and format is supported. An
empty string indicates that the value for this property is to be
retrieved from the IOCDS used during a subsequent Load
operation. Valid characters are 0-9, A-Z, blank and period. On
an Update, a non-empty string is left justified and right
padded with blanks to 8 characters.

initial-processing-
weight1

(w) Integer The relative amount of shared general purpose processor
resources allocated to the logical partition.

Get:

0 The Image Activation Profile does not represent a logical
partition with at least one shared general purpose
processor.

1-999
Represents the relative amount of shared general purpose
processor resources initially allocated to the logical
partition.

Update:

1-999
Define the relative amount of shared general purpose
processor resources allocated to the logical partition.

Chapter 14. Core System z resources 595

Table 142. Image activation profile: type-specific properties (continued)

Name Qualifier Type Description

initial-processing-
weight-capped1, 2, 3

(w) Boolean Whether the initial processing weight for general purpose
processors is a limit or a target.

True:
Indicates that the initial general purpose processor
processing weight for the logical partition is capped. It
represents the logical partition's maximum share of
general purpose processor resources.

False:
Indicates that the initial general purpose processor
processing weight for the logical partition is not capped.
It represents the share of general purpose processor
resources guaranteed to a logical partition when all
general purpose processor resources are in use.
Otherwise, when excess general purpose processor
resources are available, the logical partition can use them
if necessary.

minimum-processing-
weight1

(w) Integer The minimum relative amount of shared general purpose
processor resources allocated to the logical partition.

Get:

0 The Image Activation Profile does not represent a logical
partition with at least one shared general purpose
processor.

1-999
Represents the minimum relative amount of shared
general purpose processor resources allocated to the
logical partition.

Update:

0 There is no minimum value for the processing weight.

1-999
Define the minimum relative amount of shared general
purpose processor resources allocated to the logical
partition. The value must be less than or equal to the
initial-processing-weight property.

596 HMC Web Services API

Table 142. Image activation profile: type-specific properties (continued)

Name Qualifier Type Description

maximum-processing-
weight1

(w) Integer The maximum relative amount of shared general purpose
processor resources allocated to the logical partition.

Get:

0 The Image Activation Profile does not represent a logical
partition with at least one shared general purpose
processor.

1-999
Represents the maximum relative amount of shared
general purpose processor resources allocated to the
logical partition.

Update:

1-999
Defines the maximum relative amount of shared general
purpose processor resources allocated to the logical
partition. Must be greater than or equal to the
initial-processing-weight property.

workload-manager-
enabled4

(w) Boolean Whether or not z/OS Workload Manager is allowed to
change processing weight related properties.

True:
Indicates that z/OS Workload Manager is allowed to
change processing weight related properties for this
logical partition.

False:
Indicates that z/OS Workload Manager is not allowed to
change processing weight related properties for this
logical partition.

defined-capacity (w) Integer The defined capacity expressed in terms of Millions of Service
Units (MSU)s per hour. MSU is a measure of processor
resource consumption. The amount of MSUs a logical
partition consumes is dependent on the model, the number of
logical processors available to the partition, and the amount
of time the logical partition is dispatched. The defined
capacity value specifies how much capacity the logical
partition is to be managed to by z/OS Workload Manager for
the purpose of software pricing.

0: No defined capacity is specified for this logical partition.

1-nnnn:
Represents the amount of defined capacity specified for
this logical partition

ipl-type (w) String Enum One of:

v "ipltype-standard" - This image activation profile is used to
perform a standard load.

v "ipltype-scsi" - This image activation profile is used to
perform a SCSI load.

v "ipltype-scsidump" - This image activation profile is used
to perform a SCSI dump.

worldwide-port-name15 (w) String (1-16) Worldwide port name of the target SCSI device, used for a
SCSI load or SCSI dump, in hexadecimal.

Chapter 14. Core System z resources 597

Table 142. Image activation profile: type-specific properties (continued)

Name Qualifier Type Description

disk-partition-id (w) Integer
(0-30)

The disk partition number (also called the boot program
selector) for the activation profile, used for a SCSI load or
SCSI dump.

logical-unit-number15 (w) String (1-16) Logical unit number value for the activation profile, used for
a SCSI load or SCSI dump, in hexadecimal.

boot-record-lba15 (w) String (1-16) Boot record logical block address for the activation profile,
used for a SCSI load or SCSI dump, in hexadecimal.

os-specific-load-
parameters

(w) String
(0-256)

Operating system-specific load parameters for the activation
profile, used for a SCSI load or SCSI dump. On an Update,
value is left justified and right padded with blanks to 256
characters.

initial-aap-processing-
weight5

(w) Integer The relative amount of shared Application Assist Processor
(zAAP) processor resources allocated to the logical partition
at activation.

Get:

0 The Image Activation Profile does not represent a logical
partition with at least one shared Application Assist
Processor (zAAP) processor.

1-999
Represents the relative amount of shared Application
Assist Processor (zAAP) processor resources initially
allocated to the logical partition.

Update:

1-999
Define the relative amount of shared Application Assist
Processor (zAAP) processor resources allocated to the
logical partition.

initial-aap-processing-
weight-capped3, 5, 6

(w) Boolean Whether the initial processing weight for Application Assist
Processor (zAAP) processors is a limit or a target.

True:
Indicates that the initial Application Assist Processor
(zAAP) processor processing weight for the logical
partition is capped. It represents the logical partition's
maximum share of Application Assist Processor (zAAP)
processor resources, regardless of the availability of
excess Application Assist Processor (zAAP) processor
resources.

False:
Indicates that the initial Application Assist Processor
(zAAP) processor processing weight for the logical
partition is not capped. It represents the share of
Application Assist Processor (zAAP) processor resources
guaranteed to a logical partition when all Application
Assist Processor (zAAP) processor resources are in use.
Otherwise, when excess Application Assist Processor
(zAAP) processor resources are available, the logical
partition can use them if necessary.

598 HMC Web Services API

Table 142. Image activation profile: type-specific properties (continued)

Name Qualifier Type Description

minimum-aap-
processing-weight5

(w) Integer The minimum relative amount of shared Application Assist
Processor (zAAP) processor resources allocated to the logical
partition.

Get:

0 The Image Activation Profile does not represent a logical
partition with at least one shared Application Assist
Processor (zAAP) processor.

1-999
Represents the minimum relative amount of shared
Application Assist Processor (zAAP) processor resources
initially allocated to the logical partition.

Update:

0 No minimum value for the processing weight.

1-999
Define the minimum relative amount of shared
Application Assist Processor (zAAP) processor resources
allocated to the logical partition.

maximum-aap-
processing-weight5

(w) Integer The maximum relative amount of shared Application Assist
Processor (zAAP) processor resources allocated to the logical
partition.

Get:

0 The Image Activation Profile does not represent a logical
partition with at least one shared Application Assist
Processor (zAAP) processor.

1-999
Represents the maximum relative amount of shared
Application Assist Processor (zAAP) processor resources
initially allocated to the logical partition.

Update:

1-999
Define the maximum relative amount of shared
Application Assist Processor (zAAP) processor resources
allocated to the logical partition.

Chapter 14. Core System z resources 599

Table 142. Image activation profile: type-specific properties (continued)

Name Qualifier Type Description

initial-ifl-processing-
weight7

(w) Integer The relative amount of shared Integrated Facility for Linux
(IFL) processor resources allocated to the logical partition at
activation.

Get:

0 The Image Activation Profile does not represent a logical
partition with at least one shared Integrated Facility for
Linux (IFL) processor.

1-999
Represents the relative amount of shared Integrated
Facility for Linux (IFL) processor resources initially
allocated to the logical partition.

Update:

1-999
Define the relative amount of shared Integrated Facility
for Linux (IFL) processor resources allocated to the
logical partition.

initial-ifl-processing-
weight-capped3, 7, 8

(w) Boolean Whether the initial processing weight for Integrated Facility
for Linux (IFL) processors is a limit or a target.

True:
Indicates that the initial Integrated Facility for Linux
(IFL) processor processing weight for the logical partition
is capped. It represents the logical partition's maximum
share of Integrated Facility for Linux (IFL) processor
resources, regardless of the availability of excess
Integrated Facility for Linux (IFL) processor resources.

False:
Indicates that the initial Integrated Facility for Linux
(IFL) processor processing weight for the logical partition
is not capped. It represents the share of Integrated
Facility for Linux (IFL) processor resources guaranteed to
a logical partition when all Integrated Facility for Linux
(IFL) processor resources are in use. Otherwise, when
excess Integrated Facility for Linux (IFL) processor
resources are available, the logical partition can use them
if necessary.

600 HMC Web Services API

Table 142. Image activation profile: type-specific properties (continued)

Name Qualifier Type Description

minimum-ifl-
processing-weight7

(w) Integer The minimum relative amount of shared Integrated Facility
for Linux (IFL) processor resources allocated to the logical
partition.

Get:

0 The Image Activation Profile does not represent a logical
partition with at least one shared Integrated Facility for
Linux (IFL) processor.

1-999
Represents the minimum relative amount of shared
Integrated Facility for Linux (IFL) processor resources
initially allocated to the logical partition.

Update:

0 There is no minimum value for the processing weight.

1-999
Define the minimum relative amount of shared
Integrated Facility for Linux (IFL) processor resources
allocated to the logical partition.

maximum-ifl-
pocessing-weight7

(w) Integer The maximum relative amount of shared Integrated Facility
for Linux (IFL) processor resources allocated to the logical
partition.

Get:

0 The Image Activation profile does not represent a logical
partition with at least one shared Integrated Facility for
Linux (IFL) processor.

1-999
Represents the maximum relative amount of shared
Integrated Facility for Linux (IFL) processor resources
initially allocated to the logical partition.

Update:

1-999
Define the maximum relative amount of shared
Integrated Facility for Linux (IFL) processor resources
allocated to the logical partition.

Chapter 14. Core System z resources 601

Table 142. Image activation profile: type-specific properties (continued)

Name Qualifier Type Description

initial-internal-cf-
processing-weight9

(w) Integer The relative amount of shared Internal Coupling Facility (ICF)
processor resources allocated to the logical partition at
activation.

Get:

0 The Image Activation Profile does not represent a logical
partition with at least one shared Internal Coupling
Facility (ICF) processor.

1-999
Represents the relative amount of shared Internal
Coupling Facility (ICF) processor resources initially
allocated to the logical partition.

Update:

1-999
Define the relative amount of shared Internal Coupling
Facility (ICF) processor resources allocated to the logical
partition.

initial-internal-cf-
processing-weight-
capped3, 9, 10

(w) Boolean Indicates whether the initial processing weight for Internal
Coupling Facility (ICF) processors is a limit or a target.

True:
Indicates that the initial Internal Coupling Facility (ICF)
processor processing weight for the Image associated
with the logical partition is capped. It represents the
logical partition's maximum share of Internal Coupling
Facility (ICF) processor resources, regardless of the
availability of excess Internal Coupling Facility (ICF)
processor resources.

False:
Indicates that the initial Internal Coupling Facility (ICF)
processor processing weight for the logical partition is
not capped. It represents the share of Internal Coupling
Facility (ICF) processor resources guaranteed to a logical
partition when all Internal Coupling Facility (ICF)
processor resources are in use. Otherwise, when excess
Internal Coupling Facility (ICF) processor resources are
available, the logical partition can use them if necessary.

602 HMC Web Services API

Table 142. Image activation profile: type-specific properties (continued)

Name Qualifier Type Description

minimum-internal-cf-
processing-weight9

(w) Integer The minimum relative amount of shared Internal Coupling
Facility (ICF) processor resources allocated to the logical
partition at activation.

Get:

0 The Image Activation Profile does not represent a logical
partition with at least one shared Internal Coupling
Facility (ICF) processor.

1-999
Represents the minimum relative amount of shared
Internal Coupling Facility (ICF) processor resources
initially allocated to the logical partition.

Update:

1-999
Define the minimum relative amount of shared Internal
Coupling Facility (ICF) processor resources allocated to
the logical partition.

maximum-internal-cf-
processing-weight9

(w) Integer The maximum relative amount of shared Internal Coupling
Facility (ICF) processor resources allocated to the logical
partition.

Get:

0 The Image Activation Profile does not represent a logical
partition with at least one shared Internal Coupling
Facility (ICF) processor

1-999
Represents the maximum relative amount of shared
Internal Coupling Facility (ICF) processor resources
initially allocated to the logical partition.

Update:

1-999
Define the maximum relative amount of shared Internal
Coupling Facility (ICF) processor resources allocated to
the logical partition.

Chapter 14. Core System z resources 603

Table 142. Image activation profile: type-specific properties (continued)

Name Qualifier Type Description

initial-ziip-processing-
weight11

(w) Integer The relative amount of shared Integrated Information
Processors (zIIP) processor resources allocated to the logical
partition at activation.

Get:

0 The Image Activation Profile does not represent a logical
partition with at least one shared Integrated Information
Processors (zIIP) processor.

1-999
Represents the relative amount of shared Integrated
Information Processors (zIIP) processor resources initially
allocated to the logical partition.

Update:

1-999
Define the relative amount of shared Integrated
Information Processors (zIIP) processor resources
allocated to the logical partition.

initial-ziip-processing-
weight-capped3, 11, 12

(w) Boolean Whether the initial processing weight for Integrated
Information Processors (zIIP) processors is a limit or a target.

True:
Indicates that the initial Integrated Information
Processors (zIIP) processor processing weight for the
logical partition is capped. It represents the logical
partition's maximum share of Integrated Information
Processors (zIIP) processor resources, regardless of the
availability of excess Integrated Information Processors
(zIIP) processor resources.

False:
Indicates that the initial Integrated Information
Processors (zIIP) processor processing weight for the
logical partition is not capped. It represents the share of
Integrated Information Processors (zIIP) processor
resources guaranteed to a logical partition when all
Integrated Information Processors (zIIP) processor
resources are in use. Otherwise, when excess Integrated
Information Processors (zIIP) processor resources are
available, the logical partition can use them if necessary.

604 HMC Web Services API

Table 142. Image activation profile: type-specific properties (continued)

Name Qualifier Type Description

minimum-ziip-
processing-weight11

(w) Integer The minimum relative amount of shared Integrated
Information Processors (zIIP) processor resources allocated to
the logical partition.

Get:

0 The Image Activation Profile does not represent a logical
partition with at least one shared Integrated Information
Processors (zIIP) processor.

1-999
Represents the minimum relative amount of shared
Integrated Information Processors (zIIP) processor
resources initially allocated to the logical partition.

Update:

0 There is no minimum value for the processing weight.

1-999
Define the minimum relative amount of shared
Integrated Information Processors (zIIP) processor
resources allocated to the logical partition.

maximum-ziip-
processing-weight11

(w) Integer The maximum relative amount of shared Integrated
Information Processors (zIIP) processor resources allocated to
the logical partition.

Get:

0 The Image Activation Profile does not represent a logical
partition with at least one shared Integrated Information
Processors (zIIP) processor.

1-999
Represents the maximum relative amount of shared
Integrated Information Processors (zIIP) processor
resources initially allocated to the logical partition.

Update:

1-999
Define the maximum relative amount of shared
Integrated Information Processors (zIIP) processor
resources allocated to the logical partition.

group-profile-uri (w) String/ URI The canonical URI of the Group profile to be used for the
logical partition activated by this profile, which provides the
group capacity value. On a Get, a null object is returned if no
Group profile is associated with this activation profile. On an
Update, a null object indicates that no Group profile is to be
associated with this activation profile.

load-at-activation (w) Boolean If true, the logical partition will be loaded at the end of the
activation.

central-storage (w) Integer Defines the amount of central storage, measured in
megabytes (MB), to be allocated for the logical partition's
exclusive use at activation. This value must be a multiple of
the storage granularity value.

Chapter 14. Core System z resources 605

Table 142. Image activation profile: type-specific properties (continued)

Name Qualifier Type Description

reserved-central-
storage

(w) Integer Defines the amount of central storage, measured in
megabytes (MB), dynamically reconfigurable to the logical
partition after activation. This value must be a multiple of the
storage granularity value.

expanded-storage (w) Integer Defines the amount of expanded storage, measured in
megabytes (MB), to be allocated for the logical partition's
exclusive use at activation. This value must be a multiple of
the storage granularity value.

reserved-expanded-
storage

(w) Integer Defines the amount of expanded storage, measured in
megabytes (MB), dynamically reconfigurable to the logical
partition after activation. This value must be a multiple of the
storage granularity value.

processor-usage (w) String Enum Defines how processors are allocated to the logical partition.
One of the following values:

v "dedicated" - all processor types in the logical partition are
to be exclusively available to this specific logical partition.

v "shared" - all processors types in the logical partition are to
be shareable across logical partitions.

number-dedicated-
general-purpose-
processors13

(w) Integer Defines the number of general purpose processors to be
allocated for the logical partition's exclusive use at activation.

number-reserved-
dedicated-general-
purpose-processors13

(w) Integer Defines the number of dedicated general purpose processors
to be reserved for the logical partition, which can be
dynamically configured after activation.

number-dedicated-aap-
processors13

(w) Integer Defines the number of Application Assist Processor (zAAP)
processors to be allocated for the logical partition partition's
exclusive use at activation.

number-reserved-
dedicated-aap-
processors13

(w) Integer Defines the number of dedicated Application Assist Processor
(zAAP) processors to be reserved for the logical partition,
which can be dynamically configured after activation.

number-dedicated-ifl-
processors13

(w) Integer Defines the number of Integrated Facility for Linux (IFL)
processors to be allocated for the logical partition partition's
exclusive use at activation.

number-reserved-
dedicated-ifl-
processors13

(w) Integer Defines the number of dedicated Integrated Facility for Linux
(IFL) processors to be reserved for the logical partition, which
can be dynamically configured after activation.

number-dedicated-icf-
processors13

(w) Integer Defines the number of Integrated Coupling Facility (ICF)
processors to be allocated for the logical partition partition's
exclusive use at activation.

number-reserved-
dedicated-icf-
processors13

(w) Integer Defines the number of dedicated Integrated Coupling Facility
(ICF) processors to be reserved for the logical partition, which
can be dynamically configured after activation.

number-dedicated-
ziip-processors13

(w) Integer Defines the number of Integrated Information Processors
(zIIP) processors to be allocated for the logical partition
partition's exclusive use at activation.

number-reserved-
dedicated-ziip-
processors13

(w) Integer Defines the number of dedicated Integrated Information
Processors (zIIP) processors to be reserved for the logical
partition, which can be dynamically configured after
activation.

606 HMC Web Services API

Table 142. Image activation profile: type-specific properties (continued)

Name Qualifier Type Description

number-shared-
general-purpose-
processors14

(w) Integer Defines the number of shared general purpose processors to
be allocated for the logical partition at activation.

number-reserved-
shared-general-
purpose-processors14

(w) Integer Defines the number of shared general purpose processors to
be reserved for the logical partition, which can be
dynamically configured after activation.

number-shared-aap-
processors14

(w) Integer Defines the number of shared Application Assist Processor
(zAAP) processors to be allocated for the logical partition at
activation.

number-reserved-
shared-aap-processors14

(w) Integer Defines the number of shared Application Assist Processor
(zAAP) processors to be reserved for the logical partition,
which can be dynamically configured after activation.

number-shared-ifl-
processors14

(w) Integer Defines the number of shared Integrated Facility for Linux
(IFL) processors to be allocated for the logical partition at
activation.

number-reserved-
shared-ifl-processors14

(w) Integer Defines the number of shared Integrated Facility for Linux
(IFL) processors to be reserved for the logical partition, which
can be dynamically configured after activation.

number-shared-icf-
processors14

(w) Integer Defines the number of shared Integrated Coupling Facility
(ICF) processors to be allocated for the logical partition at
activation.

number-reserved-
shared-ifl-processors14

(w) Integer Defines the number of shared Integrated Coupling Facility
(ICF) processors to be reserved for the logical partition, which
can be dynamically configured after activation.

number-shared-ziip-
processors14

(w) Integer Defines the number of shared Integrated Information
Processors (zIIP) processors to be allocated for the logical
partition at activation.

number-reserved-
shared-ziip-
processors14

(w) Integer Defines the number of shared Integrated Information
Processors (zIIP) processors to be reserved for the logical
partition, which can be dynamically configured after
activation.

basic-cpu-counter-
authorization-control

(w) Boolean If true, the basic CPU counter facility for the logical partition
is enabled.

problem-state-cpu-
counter-authorization-
control

(w) Boolean If true, the problem state CPU counter facility for the logical
partition is enabled.

crypto-activity-cpu-
counter-authorization-
control

(w) Boolean If true, the crypto activity CPU counter facility for the logical
partition is enabled.

extended-cpu-counter-
authorization-control

(w) Boolean If true, the extended CPU counter facility for the logical
partition is enabled.

coprocessor-cpu-
counter-authorization-
control

(w) Boolean If true, the coprocessor group CPU counter facility for the
logical partition is enabled.

basic-cpu-sampling-
authorization-control

(w) Boolean If true, the basic CPU sampling facility for the logical
partition is enabled.

permit-aes-key-import-
functions

(w) Boolean If true, importing of AES keys for the logical partition is
enabled.

permit-des-key-import-
functions

(w) Boolean If true, importing of DES keys for the logical partition is
enabled.

Chapter 14. Core System z resources 607

Table 142. Image activation profile: type-specific properties (continued)

Name Qualifier Type Description

liccc-validation-
enabled

(w) Boolean If true, ensure that the image profile data conforms to the
current maximum Licensed Internal Code Configuration
Control (LICCC) configuration.

global-performance-
data-authorization-
control

(w) Boolean If true, the logical partition can be used to view the
processing unit activity data for all other logical partitions
activated on the same CPC.

io-configuration-
authorization-control

(w) Boolean If true, the logical partition can be used to read and write any
Input/Output Configuration Data Set (IOCDS) in the
configuration.

cross-partition-
authority-
authorization-control

— Boolean If true, the logical partition can be used to issue control
program instructions that reset or deactivate other logical
partitions.

logical-partition-
isolation-control

(w) Boolean If true, reconfigurable channel paths assigned to the logical
partition are reserved for its exclusive use.

operating-mode (w) String Enum The operating mode for the logical partition:

v "esa390"

v "esa390-tpf"

v "coupling-facility"

v "linux-only"

v "zvm"

v "zaware"

clock-type (w) String Enum One of:

v "standard" – Set the logical partition's clock is set to the
same time set for the CPC's time source.

v "lpar" - Set the logical partition's clock using an offset from
the External Time Source's time of day.

time-offset-days (w) Integer
(0-999)

The number of days the logical partition's clock is to be offset
from the External Time Source's time of day.

time-offset-hours (w) Integer
(0-23)

The number of hours the logical partition's clock is to be
offset from the External Time Source's time of day.

time-offset-minutes (w) Integer
Enum

The number of minutes the logical partition�s clock is to be
offset from the External Time Source's time of day. Allowable
values are 0, 15, 30 or 45.

time-offset-increase-
decrease

(w) String Enum One of:

v "increase" – Set the logical partition's clock ahead of the
External Time Source's time of day.

v "decrease" – Set the logical partition's clock back from the
External Time Source's time of day.

zaware-host-name16 (w) String (1-64) The IBM zAware host name. Valid characters are: a-z,A-Z,0-9,
period(.), minus(-) and colon(:)

zaware-master-userid16 (w) String (1-32) The IBM zAware master userid. Valid characters are:
a-z,A-Z,0-9, period(.), minus(-) and underscore (_)

zaware-master-pw16 (w) String
(8-256)

The IBM zAware master password. Valid characters are:
a-z,A-Z,0-9 and !@#$%^&*()_+{}|<>?-=

This property is not returned on a Get request, it can only be
specified on an Update request.

608 HMC Web Services API

Table 142. Image activation profile: type-specific properties (continued)

Name Qualifier Type Description

zaware-network-info16 (w) Array of
zaware-
network
objects

The set of networks available to IBM zAware. A maximum of
100 networks are permitted.

On an Update request, this property fully replaces the
existing set.

zaware-gateway-info16 (w) ip-info
object

The default gateway IP address information.

zaware-dns-info16 (w) Array of
ip-info
objects

The DNS IP address information. A minimum of 0 entries and
a maximum of 2 entries are permitted.

Notes:
1. An Update of this property is only valid for an Image Activation Profile that represents a logical partition with

at least one shared general purpose processor.
2. The value returned for a Get request is always false when the Image Activation Profile does not represent a

logical partition or the Image Activation Profile does not represent a logical partition with at least one shared
general purpose processor.

3. This property and the workload-manager-enabled property are mutually exclusive and cannot both be enabled
at the same time. Therefore in order to enable this property it might be necessary to first disable the
workload-manager-enabled property.

4. This property and the various capping properties are mutually exclusive and cannot be enabled at the same
time. Therefore in order to enable this property it may be necessary to first disable any capping property that is
currently enabled.

5. An Update of this property is only valid for an Image Activation Profile that represents a logical partition with
at least one shared Application Assist Processor (zAAP) processor.

6. The value returned for a Get request is always false when the Image Activation Profile does not represent a
logical partition with at least one shared Application Assist Processor (zAAP) processor.

7. An Update of this property is only valid for an Image Activation Profile that represents a logical partition with
at least one shared Integrated Facility for Linux (IFL) processor.

8. The value returned for a Get request is always false when the Image Activation Profile does not represent a
logical partition with at least one shared Integrated Facility for Linux (IFL) processor.

9. An Update of this property is only valid for an Image Activation Profile that represents a logical partition with
at least one shared Internal Coupling Facility (ICF) processor.

10. The value returned for a Get request is always false when the Image Activation Profile does not represent a
logical partition with at least one shared Internal Coupling Facility (ICF) processor.

11. An Update of this property is only valid for an Image Activation Profile that represents a logical partition with
at least one shared Integrated Information Processors (zIIP) processor.

12. The value returned for a GET request is always false when the Image Activation profile does not represent a
logical partition with at least one shared Integrated Information Processors (zIIP) processor.

13. The value of this property is a null object if the processor-usage property is "shared"
14. The value of this property is a null object if the processor-usage property is "dedicated"
15. An Update request accepts any mixture of [a-f,A-F,0-9], however the original string value is not saved and a

subsequent Get request may not return the exact same set of lower/upper case letters.
16. On a Get request, this property is returned only when activation-mode is "zaware". On an Update request, this

property can be specified only when activation-mode is "zaware".

List Image Activation Profiles
The List Image Activation Profiles operation lists the Image Activation Profiles for the associated CPC
object.

HTTP method and URI
GET /api/cpcs/{cpc-id}/image-activation-profiles

In this request, the URI variable {cpc-id} is the object ID of the target CPC object.

Chapter 14. Core System z resources 609

Query parameters:

Name Type Rqd/Opt Description

name String Optional A regular expression used to limit returned objects to those that
have a matching name property. If matches are found, the response
will be an array with all objects that match. If no match is found,
the response will be an empty array.

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

image-activation-
profiles

Array of
image-
actprof-info
objects

Array of nested objects (described in the following table).

Each image-actprof-info object contains the following fields:

Field name Type Description

element-uri String/URI Canonical URI path of the Image Activation Profile object.

name String The name of the Image Activation Profile.

Description

This operation lists the Image Activation Profiles associated with a particular CPC.

If the name query parameter is specified, the returned list is limited to those Image Activation Profiles
that have a name property matching the specified filter pattern. If the name parameter is omitted, this
filtering is not done.

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the CPC object designated by {cpc-id}.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

610 HMC Web Services API

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

299 A query parameter has an invalid syntax.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

500 (Server Error) 281 An unexpected error occurred during the collection of the list of activation
profiles.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Get Image Activation Profile Properties
The Get Image Activation Profile Properties operation retrieves the properties of a single Image
Activation Profile designated by {image-activation-profile-name}.

GET /api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/image-activation-profiles HTTP/1.1
x-api-session: 5obf0hwsfv1sg9kr5f93cph3zt6o5cptb6lcl538wuyebdyzu4

Figure 280. List Image Activation Profiles: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 17:16:18 GMT
content-type: application/json;charset=UTF-8
content-length: 506
{

"image-activation-profiles": [
{

"element-uri": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/image-activation-profiles/
APIVM1",
"name": "APIVM1"

},
{

"element-uri": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/image-activation-profiles/
DEFAULT",
"name": "DEFAULT"

},
{

"element-uri": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/image-activation-profiles/
ZOS1",
"name": "ZOS1"

}
]

}

Figure 281. List Image Activation Profiles: Response

Chapter 14. Core System z resources 611

HTTP method and URI
GET /api/cpcs/{cpc-id}/image-activation-profiles/{image-activation-profile-name}

URI variables:

Variable Description

{cpc-id} Object ID of the target CPC object.

{image-activation-profile-
name}

Image Activation Profile name

Response body contents

On successful completion, the response body provides the current values of the properties for the Image
Activation Profile as defined in the “Data model” on page 594.

Description

The URI path must designate an existing Image Activation Profile and the API user must have
object-access permission to the associated CPC object. If either of these conditions is not met, HTTP status
code 404 (Not Found) is returned.

On successful execution, HTTP status code 200 (OK) is returned and the response body contains all of the
current properties as defined by the Data Model for the Image Activation Profile object.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the CPC object designated by {cpc-id}.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

260 The activation profile name in the URI ({image-activation-profile-name}) does
not designate an existing activation profile.

500 (Server Error) 281 An unexpected error occurred during the operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

612 HMC Web Services API

Example HTTP interaction

GET /api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/image-activation-profiles/ZOS HTTP/1.1
x-api-session: 5obf0hwsfv1sg9kr5f93cph3zt6o5cptb6lcl538wuyebdyzu4

Figure 282. Get Image Activation Profile Properties: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 17:16:18 GMT
content-type: application/json;charset=UTF-8
content-length: 3352
{

"basic-cpu-counter-authorization-control": false,
"basic-cpu-sampling-authorization-control": false,
"boot-record-lba": "0",
"central-storage": 4096,
"class": "image-activation-profile",
"clock-type": "standard",
"coprocessor-cpu-counter-authorization-control": false,
"cross-partition-authority-authorization-control": false,
"crypto-activity-cpu-counter-authorization-control": false,
"defined-capacity": 0,
"description": "This is the ZOS Image profile.",
"disk-partition-id": 0,
"element-uri": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/image-activation-profiles/ZOS",
"expanded-storage": 0,
"extended-cpu-counter-authorization-control": false,
"global-performance-data-authorization-control": true,
"group-profile-uri": null,
"initial-aap-processing-weight": 0,
"initial-aap-processing-weight-capped": false,
"initial-ifl-processing-weight": 0,
"initial-ifl-processing-weight-capped": false,
"initial-internal-cf-processing-weight": 0,
"initial-internal-cf-processing-weight-capped": false,
"initial-processing-weight": 44,
"initial-processing-weight-capped": false,
"initial-ziip-processing-weight": 0,
"initial-ziip-processing-weight-capped": false,
"io-configuration-authorization-control": true,
"ipl-address": "00000",
"ipl-parameter": " ",
"ipl-type": "ipltype-standard",
"liccc-validation-enabled": true,
"load-at-activation": false,
"logical-partition-isolation-control": false,
"logical-unit-number": "0",
"maximum-aap-processing-weight": 0,
"maximum-ifl-processing-weight": 0,
"maximum-internal-cf-processing-weight": 0,
"maximum-processing-weight": 44,

Figure 283. Get Image Activation Profile Properties: Response (Part 1)

Chapter 14. Core System z resources 613

Update Image Activation Profile Properties
The Update Image Activation Profile Properties operation updates one or more writeable properties of
the Image Activation Profile designated by {image-activation-profile-name}.

HTTP method and URI
POST /api/cpcs/{cpc-id}/image-activation-profiles/{image-activation-profile-name}

URI variables:

Variable Description

{cpc-id} Object ID of the target CPC object.

"maximum-ziip-processing-weight": 0,
"minimum-aap-processing-weight": 0,
"minimum-ifl-processing-weight": 0,
"minimum-internal-cf-processing-weight": 0,
"minimum-processing-weight": 44,
"minimum-ziip-processing-weight": 0,
"name": "ZOS",
"number-dedicated-aap-processors": null,
"number-dedicated-general-purpose-processors": null,
"number-dedicated-icf-processors": null,
"number-dedicated-ifl-processors": null,
"number-dedicated-ziip-processors": null,
"number-reserved-dedicated-aap-processors": null,
"number-reserved-dedicated-general-purpose-processors": null,
"number-reserved-dedicated-icf-processors": null,
"number-reserved-dedicated-ifl-processors": null,
"number-reserved-dedicated-ziip-processors": null,
"number-reserved-shared-aap-processors": 0,
"number-reserved-shared-general-purpose-processors": 0,
"number-reserved-shared-icf-processors": 0,
"number-reserved-shared-ifl-processors": 0,
"number-reserved-shared-ziip-processors": 0,
"number-shared-aap-processors": 0,
"number-shared-general-purpose-processors": 1,
"number-shared-icf-processors": 0,
"number-shared-ifl-processors": 0,
"number-shared-ziip-processors": 0,
"operating-mode": "esa390",
"os-specific-load-parameters": "

",
"parent": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340",
"permit-aes-key-import-functions": true,
"permit-des-key-import-functions": true,
"problem-state-cpu-counter-authorization-control": false,
"processor-usage": "shared",
"reserved-central-storage": 0,
"reserved-expanded-storage": 0,
"time-offset-days": 0,
"time-offset-hours": 0,
"time-offset-increase-decrease": "decrease",
"time-offset-minutes": 0,
"workload-manager-enabled": false,
"worldwide-port-name": "0"

}

Figure 284. Get Image Activation Profile Properties: Response (Part 2)

614 HMC Web Services API

Variable Description

{image-activation-profile-
name}

Image Activation Profile name

Response body contents

The request body is expected to contain one or more field names representing writable Image Activation
Profile properties, along with the new values for those fields.

The response body can and should omit fields for properties whose values are not to be changed by this
operation. Properties for which no input value is provided remain unchanged by this operation.

Description

The request body object is validated against the data model for the Image Activation Profile to ensure
that the request body contains only writeable properties and the data types of those properties are as
required. If the request body is not valid, HTTP status code 400 (Bad Request) is returned with a reason
code indicating the validation error encountered.

On successful execution, the value of each corresponding property of the Image Activation Profile is
updated with the value provided by the input field, and HTTP status code 204 (No Content) is returned.

When this operation changes the value of any property for which property-change notifications are due,
those notifications are emitted asynchronously to this operation.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the CPC object designated by {cpc-id}
v Action/task permission for the Customize/Delete Activation Profiles task.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

300 The provided update values would result in an illegal state. Verify that the
values are both internally consistent and consistent with the current state of
the profile.

306 The provided update values are not valid for the current operating-mode,
the target image activation profile's operating-mode is not "zaware" or was
not specified as "zaware" in the request body.

Chapter 14. Core System z resources 615

HTTP error status
code

Reason
code Description

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

2 A URI in the request body does not designate an existing resource of the
expected type, or designates a resource for which the API user does not have
object-access permission.

260 The activation profile name in the URI ({image-activation-profile-name}) does
not designate an existing activation profile.

409 (Conflict) 2 The operation was rejected by the Support Element (SE), because the SE is
currently performing processing that requires exclusive control of the SE.
Retry the operation at a later time.

500 (Server Error) 281 An unexpected error occurred during the operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Load activation profile
A Load activation profile is used to load a previously activated logical partition with a control program
or operating system.

An activation profile can only be created or deleted from the Hardware Management Console or the
Support Element.

See the Support Element Operations Guide for details on customizing activation profiles.

Data model
For definitions of the qualifier abbreviations in the following tables, see “Property characteristics” on
page 32.

This element includes the following type-specific properties.

Table 143. Load activation profile: type-specific properties

Name Qualifier Type Description of specialization

element-uri — String/
URI

The canonical URI path of the Load Activation Profile object, of the
form /api/cpcs/{cpc-id}/load-activation-profiles/{load-
activation-profile-name} where {load-activation-profile-name} is the
value of the name property (Load Activation Profile name).

parent — String/
URI

The canonical URI path of the associated CPC object

class — String The class of a Load Activation Profile object is "load-activation-
profile".

name — String
(1-16)

The activation profile name, which uniquely identifies this profile
within the set of activation profiles for the CPC object designated by
{cpc-id}.

description (w) String
(1-50)

The load profile description

616 HMC Web Services API

Table 143. Load activation profile: type-specific properties (continued)

Name Qualifier Type Description of specialization

ipl-address (w) String (0-5) The hexadecimal address of an I/O device that provides access to the
control program to be loaded. The input value will be right justified
and padded with zeros to 5 characters. An empty string indicates that
the value for this property is to be retrieved from the IOCDS used
during a subsequent Load operation.

Valid values are in the range "00000" to "nFFFF" where "n" is the
number of subchannel sets provided by the CPC minus 1. So, for
example, on a CPC that provides 3 subchannel sets, the valid range is
"00000" to "2FFFF".

ipl-parameter1 (w) String (0-8) Some control programs support the use of this property to provide
additional control over the outcome of a Load operation. Refer to the
configuration documentation for the control program to be loaded to
see if this parameter is supported and if so, what values and format is
supported. An empty string indicates that the value for this property
is to be retrieved from the IOCDS used during a subsequent Load
operation. On an Update, a non-empty string is left justified and right
padded with blanks to 8 characters.

ipl-type (w) String
Enum

One of:
v "ipltype-standard" - Associated image activation profile is used to

perform a standard load.
v "ipltype-scsi" - Associated image activation profile is used to

perform a SCSI load.
v "ipltype-scsidump" - Associated image activation profile is used to

perform a SCSI dump.

worldwide-port-
name1

(w) String
(1-16)

Worldwide port name value for the activation profile, used for SCIS
load and SCSI dump, in hexadecimal.

disk-partition-id (w) Integer
(0-30)

Disk partition number (also called the boot program selector) for the
activation profile, used for SCIS load and SCSI dump.

logical-unit-
number1

(w) String
(1-16)

Logical unit number value for the activation profile, used for SCIS
load and SCSI dump, in hexadecimal.

boot-record-lba1 (w) String
(1-16)

Boot record logical block address for the activation profile, used for
SCIS load and SCSI dump, in hexadecimal.

os-specific-load-
parameters

(w) String
(0-256)

Operating system-specific load parameters for the activation profile,
used for SCIS load and SCSI dump.

clear-indicator (w) Boolean Whether memory should be cleared before performing the Load (true)
or not cleared (false). The default is to clear memory before
performing the Load. This property cannot be set to false when the
ipl-type is SCSI load or SCSI dump.

store-status-
indicator

(w) Boolean Whether the store status function should be invoked before
performing the Load (true) or not (false). The default is not to store
status before performing the Load. The store status function stores the
current values of the processing unit timer, the clock comparator, the
program status word, and the contents of the processor registers in
their assigned absolute storage locations. This property cannot be set
to true when the ipl-type is SCSI load or SCSI dump, or when the
ipl-type is "ipltype-standard" and clear-indicator is true.

1. An Update request accepts any mixture of [a-f, A-F, 0-9], however the original string value is not saved and a
subsequent Get request may not return the exact same set of lower/upper case letters.

Chapter 14. Core System z resources 617

List Load Activation Profiles
The List Load Activation Profiles operation lists the Load Activation Profiles for the associated CPC
object.

HTTP method and URI
GET /api/cpcs/{cpc-id}/load-activation-profiles

In this request, the URI variable {cpc-id} is the object ID of the target CPC object.

Query parameters:

Name Type Rqd/Opt Description

name String Optional A regular expression used to limit returned objects to those that
have a matching name property. If matches are found, the response
will be an array with all objects that match. If no match is found,
the response will be an empty array.

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

load-activation-
profiles

Array of
load-
actprof-info
objects

Array of nested objects (described in the next table).

Each load-actprof-info object contains the following fields:

Field name Type Description

element-uri String/URI Canonical URI path of the Load Activation Profile object.

name String The name of the Load Activation Profile.

Description

This operation lists the Load Activation Profiles for the associated CPC object.

If the name query parameter is specified, the returned list is limited to those Load Activation Profiles that
have a name property matching the specified filter pattern. If the name parameter is omitted, this
filtering is not done.

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the CPC object designated by {cpc-id}.

618 HMC Web Services API

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 618.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

299 A query parameter has an invalid syntax.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

500 (Server Error) 281 An unexpected error occurred during the collection of the list of activation
profiles.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/load-activation-profiles HTTP/1.1
x-api-session: 5obf0hwsfv1sg9kr5f93cph3zt6o5cptb6lcl538wuyebdyzu4

Figure 285. List Load Activation Profiles: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 17:16:19 GMT
content-type: application/json;charset=UTF-8
content-length: 363
{

"load-activation-profiles": [
{

"element-uri": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/load-activation-profiles/
DEFAULTLOAD",
"name": "DEFAULTLOAD"

},
{

"element-uri": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/load-activation-profiles/
MODIFYL",
"name": "MODIFYL"

}
]

}

Figure 286. List Load Activation Profiles: Response

Chapter 14. Core System z resources 619

Get Load Activation Profile Properties
The Get Load Activation Profile Properties operation retrieves the properties of a single Load Activation
Profile designated by {load-activation-profile-name}.

HTTP method and URI
GET /api/cpcs/{cpc-id}/load-activation-profiles/{load-activation-profile-name}

URI variables

Variable Description

{cpc-id} Object ID of the target CPC object.

{load-activation-profile-
name}

Load Activation Profile name.

Response body contents

On successful completion, the response body provides the current values of the properties for the Load
Activation Profile as defined in the “Data model” on page 616.

Description

The URI path must designate an existing Load Activation Profile and the API user must have
object-access permission to the associated CPC object. If either of these conditions is not met, status code
404 (Not Found) is returned.

On successful execution, HTTP status code 200 (OK) is returned and the response body contains all of the
current properties as defined by the Data Model for Load Activation Profiles.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the CPC object designated by {cpc-id}.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

260 The activation profile name in the URI ({load-activation-profile-name}) does not
designate an existing activation profile.

500 (Server Error) 281 An unexpected error occurred during the operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

620 HMC Web Services API

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Update Load Activation Profile Properties
The Update Load Activation Profile Properties operation updates one or more writeable properties of
the Load Activation Profile designated by {load-activation-profile-name}.

HTTP method and URI
POST /api/cpcs/{cpc-id}/load-activation-profiles/{load-activation-profile-name}

URI variables

Variable Description

{cpc-id} Object ID of the target CPC object.

{load-activation-profile-
name}

Load Activation Profile name.

GET /api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/load-activation-profiles/DEFAULTLOAD HTTP/1.1
x-api-session: 5obf0hwsfv1sg9kr5f93cph3zt6o5cptb6lcl538wuyebdyzu4

Figure 287. Get Load Activation Profile Properties: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 17:16:19 GMT
content-type: application/json;charset=UTF-8
content-length: 793
{

"boot-record-lba": "abcdef0123456789",
"class": "load-activation-profile",
"clear-indicator": true,
"description": "This is the default Load profile.",
"disk-partition-id": 0,
"element-uri": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/load-activation-profiles/
DEFAULTLOAD",
"ipl-address": "00D00",
"ipl-parameter": " ",
"ipl-type": "ipltype-scsi",
"logical-unit-number": "0",
"name": "DEFAULTLOAD",
"os-specific-load-parameters": "
",
"parent": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340",
"store-status-indicator": false,
"worldwide-port-name": "0"

}

Figure 288. Get Load Activation Profile Properties: Response

Chapter 14. Core System z resources 621

Request body contents

The request body is expected to contain one or more field names representing writable Load Activation
Profile properties, along with the new values for those fields.

The response body can and should omit fields for properties whose values are not to be changed by this
operation. Properties for which no input value is provided remain unchanged by this operation.

Description

The request body object is validated against the data model for the Load Activation Profile to ensure that
the request body contains only writeable properties and the data types of those properties are as
required. If the request body is not valid, HTTP status code 400 (Bad Request) is returned with a reason
code indicating the validation error encountered.

On successful execution, the value of each corresponding property of the Load Activation Profile is
updated with the value provided by the input field, and HTTP status code 204 (No Content) is returned.

When this operation changes the value of any property for which property-change notifications are due,
those notifications are emitted asynchronously to this operation.

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC object designated by {cpc-id}
v Action/task permission for the Customize/Delete Activation Profiles task

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

300 The provided update values would result in an illegal state. Verify that the
values are both internally consistent and consistent with the current state of
the profile.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

260 The activation profile name in the URI ({load-activation-profile-name}) does not
designate an existing activation profile.

409 (Conflict) 2 The operation was rejected by the Support Element (SE), because the SE is
currently performing processing that requires exclusive control of the SE.
Retry the operation at a later time.

500 (Server Error) 281 An unexpected error occurred during the operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

622 HMC Web Services API

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Group profile
A Group profile is used to define the group capacity value for all logical partitions belonging to that
group.

A logical partition becomes a member of a group profile by placing the group profile's URI in the image
activation profile used to activate the logical partition.

A group profile can only be created or deleted from the Hardware Management Console or the Support
Element.

See the Support Element Operations Guide for details on customizing activation profiles.

Data model
For definitions of the qualifier abbreviations in the following tables, see “Property characteristics” on
page 32.

This element includes the following type-specific properties.

Table 144. Group profile: type-specific properties

Name Qualifier Type Description of specialization

element-uri — String/
URI

The canonical URI path of the group profile object, of the form
/api/cpcs/{cpc-id}/group-profiles/{group-profile-name} where
{group-profile-name} is the value of the name property (group profile
name).

parent — String/
URI

The canonical URI path of the associated CPC object

class — String The class of a Group Profile object is "group-profile".

name — String
(1-16)

The group profile name, which uniquely identifies this profile within
the set of activation profiles for the CPC object designated by {cpc-id}

description (w) String
(1-50)

The group profile description

capacity (w) Integer The upper bound, in MSUs, beyond which the rolling 4-hour average
CPU utilization cannot exceed for the group. A value of 0 indicates
the setting is unused.

List Group Profiles
The List Group Profiles operation lists the Group Profiles for the associated CPC object.

HTTP method and URI
GET /api/cpcs/{cpc-id}/group-profiles

In this request, the URI variable {cpc-id} is the object ID of the target CPC object.

Query parameters:

Chapter 14. Core System z resources 623

Name Type Rqd/Opt Description

name String Optional A regular expression used to limit returned objects to those that
have a matching name property. If matches are found, the response
will be an array with all objects that match. If no match is found,
the response will be an empty array.

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

group-profiles Array of
group-
actprof-info
objects

Array of nested objects (described in the next table).

Each group-actprof-info object contains the following fields:

Field name Type Description

element-uri String/URI Canonical URI path of the Group Profile object.

name String The name of the Group Profile.

Description

This operation lists the Group Profiles for the associated CPC object.

If the name query parameter is specified, the returned list is limited to those Group Profiles that have a
name property matching the specified filter pattern. If the name parameter is omitted, this filtering is not
done.

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in the
Response Body Contents section.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the CPC object designated by {cpc-id}.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

299 A query parameter has an invalid syntax.

624 HMC Web Services API

HTTP error status
code

Reason
code Description

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

500 (Server Error) 281 An unexpected error occurred during the collection of the list of group
profiles.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Get Group Profile Properties
The Get Group Profile Properties operation retrieves the properties of a single Group Profile designated
by {group-profile-name}.

HTTP method and URI
GET /api/cpcs/{cpc-id}/group-profiles/{group-profile-name}

URI variables

Variable Description

{cpc-id} Object ID of the target CPC object.

{group-profile-name} Group Profile name.

GET /api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/group-profiles HTTP/1.1
x-api-session: 5obf0hwsfv1sg9kr5f93cph3zt6o5cptb6lcl538wuyebdyzu4

Figure 289. List Group Profiles: Request

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 17:16:19 GMT
content-type: application/json;charset=UTF-8
content-length: 182
{

"group-profiles": [
{

"element-uri": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/group-profiles/DEFAULT",
"name": "DEFAULT"

}
]

}

Figure 290. List Group Profiles: Response

Chapter 14. Core System z resources 625

Response body contents

On successful completion, the response body provides the current values of the properties for the Group
Profile as defined in the “Data model” on page 623.

Description

The URI path must designate an existing Group Profile and the API user must have object-access
permission to the associated CPC object. If either of these conditions is not met, HTTP status code 404
(Not Found) is returned.

On successful execution, HTTP status code 200 (OK) is returned and the response body contains all of the
current properties as defined by the Data Model for the Group Profile.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the CPC object designated by {cpc-id}.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

260 The activation profile name in the URI ({group-profile-name}) does not
designate an existing group profile.

500 (Server Error) 281 An unexpected error occurred during the operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

GET /api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/group-profiles/DEFAULT HTTP/1.1
x-api-session: 5obf0hwsfv1sg9kr5f93cph3zt6o5cptb6lcl538wuyebdyzu4

Figure 291. Get Group Profile Properties: Request

626 HMC Web Services API

Update Group Profile Properties
The Update Group Profile Properties operation updates one or more writeable properties of the Group
Profile object designated by {group-profile-name}.

HTTP method and URI
POST /api/cpcs/{cpc-id}/group-profiles/{group-profile-name}

URI variables

Variable Description

{cpc-id} Object ID of the target CPC object.

{group-profile-name} Group Profile name.

Request body contents

The request body is expected to contain one or more field names representing writable Group Profile
properties, along with the new values for those fields.

The response body can and should omit fields for properties whose values are not to be changed by this
operation. Properties for which no input value is provided remain unchanged by this operation.

Description

The request body object is validated against the data model for the Group Profile to ensure that the
request body contains only writeable properties and the data types of those properties are as required. If
the request body is not valid, HTTP status code 400 (Bad Request) is returned with a reason code
indicating the validation error encountered.

On successful execution, the value of each corresponding property of the Group Profile is updated with
the value provided by the input field, and HTTP status code 204 (No Content) is returned.

When this operation changes the value of any property for which property-change notifications are due,
those notifications are emitted asynchronously to this operation.

200 OK
server: zSeries management console API web server / 1.0
cache-control: no-cache
date: Fri, 25 Nov 2011 17:16:20 GMT
content-type: application/json;charset=UTF-8
content-length: 250
{

"capacity": 0,
"class": "group-profile",
"description": "This is the default Group profile.",
"element-uri": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340/group-profiles/DEFAULT",
"name": "DEFAULT",
"parent": "/api/cpcs/37c6f8a9-8d5e-3e5d-8466-be79e49dd340"

}

Figure 292. Get Group Profile Properties: Response

Chapter 14. Core System z resources 627

Authorization requirements

This operation has the following authorization requirements:
v Object access permission to the CPC object designated by {cpc-id}
v Action/task permission for the Customize/Delete Activation Profiles task

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

300 The provided update values would result in an illegal state. Verify that the
values are both internally consistent and consistent with the current state of
the profile.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

260 The activation profile name in the URI ({group-profile-name}) does not
designate an existing group profile.

409 (Conflict) 2 The operation was rejected by the Support Element (SE), because the SE is
currently performing processing that requires exclusive control of the SE.
Retry the operation at a later time.

500 (Server Error) 281 An unexpected error occurred during the operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Capacity records
A capacity record represents a temporary upgrade that can be applied to a CPC.

These upgrades are provided through the following offerings:
v On/Off Capacity on Demand (On/Off CoD) - This offering allows you to temporarily add additional

capacity or specialty engines due to seasonal activities, period-end requirements, peaks in workload, or
application testing.

v Capacity Backup (CBU) - This offering allows you to replace model capacity or specialty engines to a
backup server in the event of an unforeseen loss of server capacity because of an emergency.

v Capacity for Planned Events (CPE) - This offering allows you to replace model capacity or specialty
engines due to a relocation of workload during system migrations or a data center move.

Data model
For definitions of the qualifier abbreviations in the following tables, see “Property characteristics” on
page 32.

628 HMC Web Services API

This element includes the following type-specific properties.

Table 145. Capacity records: type-specific properties

Name Type Description

element-uri String/
URI

The canonical URI path of the capacity record object, of the form
/api/cpcs/{cpc-id}/capacity-records/{capacity-record-id} where
{cpc-id} is the value of the object-id property of the CPC object and
{capacity-record-id} is the value of the record-identifier property of the
Capacity Record object.

parent String/
URI

The canonical URI path for the associated CPC object

class String The class of a capacity record object is "capacity-record".

record-identifier String (1-8) The identifier for the capacity record.

record-type String
Enum

The type of capacity record. One of:
v "unknown" - the record does not specify a record-type
v "cbu" - a Capacity Backup Upgrade record
v "oocod" - an On/Off Capacity on Demand record
v "planned-event" - a Capacity for Planned Events record
v "loaner" - resources loaned to the installation.

activation-status String
Enum

An indication if any of the resources defined for the record are currently
activated. One of:
v "unknown" - the activation status of the record is not known
v "not-activated" - the record is not currently active
v "real" - the record is either active or pending activation, via an Add

Temporary Capacity operation with a test=false option
v "test" - the record is either active or pending activation via an Add

Temporary Capacity operation with a test=true option
v "can-be-activated" - the record is available for activation, but not

currently active.

activation-date Timestamp Defines the time stamp for when additional capacity for the record was
activated.

record-expiration-date Timestamp Defines the time stamp for when the capacity record will expire.

activation-expiration-date Timestamp Defines the time stamp for when the additional capacity activated for the
record will expire and no longer be active.

maximum-real-days Integer Defines the maximum days that real additional capacity can be activated
for the record. A value of -1 indicates that the number of days is
unlimited.

maximum-test-days Integer Defines the maximum days that test additional capacity can be activated
for the record. A value of -1 indicates that the number of days is
unlimited.

remaining-real-days Integer Defines the remaining number of days that additional real capacity can be
active for the record. A value of -1 indicates that the number of days is
unlimited.

remaining-test-days Integer Defines the remaining number of days that additional test capacity can be
active for the record. A value of -1 indicates that the number of days is
unlimited.

remaining-number-of-real-
activations

Integer Defines the number of times that real additional capacity can be activated
for the record. A value of -1 indicates that activation count is unlimited.

remaining-number-of-test-
activations

Integer Defines the number of times that test additional capacity can be activated
for the record. A value of -1 indicates that activation count is unlimited.

Chapter 14. Core System z resources 629

Table 145. Capacity records: type-specific properties (continued)

Name Type Description

processor-info Array of
caprec-
proc-info
objects

A nested object describing the processor capacities available with this
capacity record.

available-targets Array of
caprec-
target
objects

A nested object describing the set of possible activation and deactivation
targets contained within this capacity record. One of these targets is
chosen via the software-model request body field on the Add Temporary
Capacity or Remove Temporary Capacity operations.

Table 146. caprec-proc-info object

Name Type Description

type String
Enum

Identifies the type of specialty processor represented. One of:
v "cp" - central processor
v "aap" - Application Assist Processor
v "ifl" - Integrated Facility for Linux processor
v "icf" - Internal Coupling Facility processor
v "iip" - Integrated Information Processors processor
v "sap" - System Assist Processor.

processor-step Integer The number of processors steps available

speed-step Integer The CP processor speed activation step. A null object is returned for all
other processor types.

max-number-processors Integer The maximum number of processors available

remaining-processor-days Integer The remaining processor days for this processor type. A -1 indicates an
unlimited number of days.

remaining-msu-days Integer The remaining MSU days for this processor type. A -1 indicates an
unlimited number of days. A null object is returned for processor types
where this field is not meaningful.

Table 147. caprec-target object

Name Type Description

processor-step Integer The CPU processor step. This is the incremental delta CPUs compared to
the current activation level. The returned value may be negative.

speed-step Integer The CPU processor speed activation step. This is the incremental delta
speed steps compared to current activation level. The returned value may
be negative.

software-model String (1-3) The software model that this target represents

billable-msu-cost Integer The overall billable MSU cost for this target

billable-msu-delta Integer The change in billable MSU cost by activating this target. The value may
be negative.

List Capacity Records
The List Capacity Records operation lists the capacity record for a given CPC that are managed by this
HMC.

HTTP method and URI
GET /api/cpcs/{cpc-id}/capacity-records

In this request, the URI variable {cpc-id} is the object ID of the target CPC object.

630 HMC Web Services API

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

capacity-record Array of
objects

Array of nested objects (described in the next table).

Each nested object contains the following fields:

Field name Type Description

element-uri String/URI Canonical URI path of the Capacity Record object.

record-identifier String The record identifier of the Capacity Record

Description

This operation lists the capacity record for a given CPC that are managed by this HMC.

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in the
Response Body Contents section.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the CPC object designated by {cpc-id}.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents.”

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

500 (Server Error) 275 An unexpected error occurred during the operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Get Capacity Record Properties
The Get Capacity Record Properties operation retrieves the properties of a single Capacity Record
designated by {capacity-record-id} from the CPC object designated by {cpc-id}.

Chapter 14. Core System z resources 631

HTTP method and URI
GET /api/cpcs/{cpc-id}/capacity-records/{capacity-record-id}

URI variables

Variable Description

{cpc-id} Object ID of the target CPC object.

{capacity-record-id} Capacity Record identifier, returned by a previous List Capacity Records operation

Response body contents

On successful completion, HTTP status code 200 (OK) is returned and the response body provides the
current values of the properties for the Capacity Record as defined in “Data model” on page 628.

Description

The URI path must designate an existing Capacity Record and the API user must have object-access
permission to the associated CPC object. If either of these conditions is not met, status code 404 (Not
Found) is returned.

On successful execution, HTTP status code 200 (OK) is returned and the response body contains all of the
current properties as defined by the Data Model for the Capacity Record object.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to the CPC object designated by {cpc-id}.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in the
Response Body Contents section.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

276 The capacity record has expired, it can be deleted from the SE.

302 The capacity record identifier in the URI ({capacity-record-id}) must be 1 to 8
characters.

404 (Not Found) 1 The object ID in the URI ({cpc-id}) does not designate an existing CPC object,
or the API user does not have object access permission to the object.

274 The capacity record identifier in the URI ({capacity-record-id}) does not
designate an existing capacity record.

500 (Server Error) 275 An unexpected error occurred during the operation.

503 (Service
Unavailable)

1 The request could not be processed because the HMC is not communicating
with the SE needed to perform the requested operation.

632 HMC Web Services API

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Chapter 14. Core System z resources 633

634 HMC Web Services API

Chapter 15. Inventory and metrics services

The functions described in this chapter are termed “services” because unlike the interfaces described in
many of the other chapters of this document, the functions described here are service-oriented rather than
object-oriented in nature. That is, the functions of these services operate across multiple instances of
managed objects rather than being directed at particular managed object instances.

The Inventory Service provides an efficient mechanism for retrieving identify and configuration
information about all of the manageable resource instances that are managed by zManager. It provides
this information in bulk form via a single request, and thus is expected to be a much more efficient
means of determining this information than walking the entire resource tree one object at a time. It is
anticipated that this service supports the requirements of a “discovery” phase of a client application that
is interested in configuration information about all resources managed by zManager.

The Metrics Service provides a mechanism to retrieve performance metric data for resources that are
managed by zManager. This data is captured periodically and buffered on the HMC. The data may
include snapshots of performance data at a moment in time, or accumulated performance data, or both,
as appropriate. This service is designed to support client applications that provide monitoring function
for zManager managed resources.

Inventory services operations summary
The following operation is provided by the Inventory service:

Table 148. Inventory service: operations summary

Operation name HTTP method and URI path

“Get Inventory” on page 636 POST /api/services/inventory

Metrics service operations summary
The following operations are provided by the Metrics service:

Table 149. Metrics service: operations summary

Operation name HTTP method and URI path

“Create Metrics Context”
on page 642

POST /api/services/metrics/context

“Get Metrics” on page 645 GET /api/services/metrics/context/{metrics-context-id}

“Delete Metrics Context”
on page 649

DELETE /api/services/metrics/context/{metrics-context-id}

Table 150. Metrics service: URI variables

Variable Description

{metrics-context-id} Identifier of a metrics context object. Metrics contexts are associated with API sessions.
Thus, this identifier is assigned by the metrics service so that it is unique within an API
session and has a lifetime scoped to that session.

© Copyright IBM Corp. 2012, 2013 635

Inventory service
The Inventory Service is an API which allows the client application to fetch a list of ensemble resources
and their properties.

This service is intended to support clients that need to determine the inventory and properties of all of
the resources of the ensemble (or at least a large portion of those resources). Retrieving this information
in bulk form using this service is expected to be much more efficient than walking the resource tree one
object at a time using the object-oriented operations of the Web Services API.

The ability to filter the results to only certain classes of resources is provided.

A response to an inventory request is a series of JSON objects returned using HTTP chunked transfer
encoding. These objects will be in a format specified in the corresponding resource class's Inventory Data
Model sections.

Resources returned are those to which the API client has object-level authorization.

Get Inventory
The Get Inventory operation fetches ensemble resources and associated properties.

HTTP method and URI
POST /api/services/inventory

Request body contents

The request body can include a specification of the classes of resources that should be returned. It
contains the following field:

636 HMC Web Services API

Field name Type Description

resources Array of
String
Enum

An array of String values. Each element specifies a category or class of
resource that should be returned. A category is simply a grouping of classes,
so specifying a category is functionally equivalent to specifying all of its
member classes. The request may include both categories and classes.

Omitting the resources field, or providing an empty array, is equivalent to
specifying an array listing all of the supported classes.

Categories and associated class values:
v Category: "zvm-resources"

– Class: "zvm-virtualization-host"
– Class: "zvm-virtual-server"

v Category: "power-vm-resources"
– Class: "power-vm-virtualization-host"
– Class: "power-vm-virtual-server"

v Category: "x-hyp-resources"
– Class: "x-hyp-virtualization-host"
– Class: "x-hyp-virtual-server"

v Category: "prsm-resources"
– Class: "prsm-virtualization-host"
– Class: "prsm-virtual-server"

v Category: "virtual-server-common"
– Class: "power-vm-virtual-server-common"
– Class: "prsm-virtual-server-common"
– Class: "x-hyp-virtual-server-common"
– Class: "zvm-virtual-server-common"

v Category: "zbx-resources"
– Class: "zbx"
– Class: "rack"
– Class: "power-blade"
– Class: "system-x-blade"
– Class: "isaopt-blade"
– Class: "dpxi50z-blade"
– Class: "bladecenter"

v Category: "ensemble-wide-resources"
– Class: "ensemble"
– Class: "workload-resource-group"
– Class: "virtual-network"
– Class: "storage-resource"

v Category: "core-resources"
– Class: "cpc"
– Class: "logical-partition"

v Category: "console-resources"
– Class: "console"
– Class: "custom-group"

Notes:

v The various classes of virtual server, virtualization host, and blade above (for example, "x-hyp-virtual-server",
"prsm-virtualization-host", and "power-blade") are actually type-specific variations of the object classes
"virtual-server", "virtualization-host", and "blade". They are specified with type qualifiers in the names here to
allow distinguishing these types on inventory queries. The objects returned in the inventory response will be of
the actual object classes ("virtual-server", "virtualization-host", or "blade"), and will have appropriate type values
as defined in the data models for those classes.

v The various classes within the "virtual-server-common" category above represent inventory queries that return a
common subset of the virtual server’s properties rather than the entire set of properties defined in the Data
Model. They correspond to Get Virtual Server Properties requests with the properties=common query parameter
specified. Refer to the documentation for the Get Virtual Servers Properties operation and the discussion of
inventory service data for Virtual Server objects for specific information on the properties provided.

Chapter 15. Inventory and metrics services 637

Response body contents

On successful completion, the response body is a JSON array of JSON objects sent using HTTP chunked
transfer encoding. The order in which these objects are returned is unspecified.

The array element documents are of 2 types:
v For resources that were successfully inventoried, the document will be as specified in the

corresponding resource's inventory service data.
v For resources that were found but not successfully fully inventoried (i.e. the Object URI can be

determined but not the properties), an inventory error document will be returned. Note that, even if
one or more of these inventory error documents is contained in the response, an HTTP status code of
200 (OK) is still returned. The fields in the inventory error document are:

Field name Type Description

uri String/URI Canonical URI of the resource which could not be fully inventoried.

class String The class for these error documents is "inventory-error".

inventory-error-code Integer A reason code for the inventory failure. Note that all of these reasons
indicate success in locating a resource, but some sort of failure in gathering
its properties during inventory collection. A subsequent call to get the
properties for the URI in this error document may succeed.

v 1: Resource not found on target. Although the resource's URI was located
on the HMC, its properties were subsequently not located on the HMC or
SE on which the property data for the managed object is to be gathered.

v 2: Communication problem. Communication problems were experienced
with the SE on which the property data for the managed object is to be
gathered.

v 3: Plugin load error. The code responsible for capturing the properties of a
resource class experienced an unexpected problem loading.

v 4: Unknown plugin error. The code responsible for capturing the
properties of a resource returned an unrecognized error.

v 5: Unexpected plugin error. The code responsible for capturing the
properties of a resource returned an unexpected error.

v 6: Timeout error. The code responsible for capturing the properties of a
resource did not respond within the time allocated to it.

inventory-error-text String An error description for the inventory failure.

inventory-error-
details

inventory-
error-info
Object

A nested inventory-error-info object that provides additional diagnostic
information for unexpected inventory plugin errors. This field is provided if
the inventory-error-code field is 5 (indicating unexpected plugin error). It is
not provided for other inventory-error-code values. The format of the
inventory-error-info object is defined in the next table.

The inventory-error-info object contains the following fields:

Field name Type Description

http-status Integer HTTP status code for the request.

request-uri String The URI that caused this error response.

reason Integer Numeric reason code providing more details as to the nature of the error) than is
provided by the HTTP status code itself. This reason code is treated as a sub-code of
the HTTP status code and thus must be used in conjunction with the HTTP status
code to determine the error condition. Standard reason codes that apply across the
entire API are described in“Common request validation reason codes” on page 18.
Additional operation-specific reason codes may also be documented in the description
of the specific API operations.

638 HMC Web Services API

Field name Type Description

message String Message describing the error. This message is not currently localized.

stack String Internal HMC diagnostic information for the error. This field is supplied only on
selected 5xx HTTP status codes.

error-details Object A nested object that provides additional operation-specific error information. This field
is provided by selected operations, and the format of the nested object is as described
by that operation.

Description

The Get Inventory operation returns information on ensemble resources and associated properties.

A resource is included in the response if it matches any one of the list of resource classes in the request
body. Specifying a category is equivalent to specifying its member classes. If a class is repeated on the
request, either explicitly or effectively via categories, the operation will behave as if the class were only
specified once. If no resources are specified in the request body, all resources are returned.

Furthermore, a resource is included in the response only if the API user has object-access permission for
that resource. If an HMC is a manager of a resource but the API user does not have permission to it, that
resource is simply omitted from the response. A success status code is still returned.

If the HMC does not manage any resources to which the user has access, or if no resources are found that
match the request body specification, an empty response is returned with a 204 (No Content) status code.

In addition to objects for inventoried resources, the response may include objects for resources whose
URIs could be determined, but whose properties could not, for some reason, be obtained. Rather than
treat these resources as completely non-inventoried and omit them, the URI and an error reason are
returned.

The order in which the objects are returned is unspecified.

The Get Inventory implementation may choose to limit the number of simultaneous in-process inventory
requests. If such a limit is reached, further requests will return an HTTP 503 (Service Unavailable) error
status code until previous requests complete and the number of in-process inventory requests falls back
below the limit.

Authorization requirements

This operation has the following authorization requirement:
v Object access permission to any object to be included in the result.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 638. If there are no resources to provide, HTTP status code 204 (No
Content) is returned, along with an empty response body.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

Chapter 15. Inventory and metrics services 639

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

503 (Service
Unavailable)

200 The request could not be processed because of the number of currently
pending inventory requests. The request can be reissued at a later time.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Usage notes

The Get Inventory results represent a snapshot of inventory results as viewed from the HMC. The actual
inventory can change, even as the results are being streamed back to the API client. Therefore, if the
client wishes to stay informed about changes to the inventory and not risk missing any inventory
changes, it should use the API event mechanisms to subscribe to inventory-related events before even
issuing a Get Inventory request.

The Get Inventory results do not reflect all properties at a single moment in time. During the overall
inventory collection process multiple resource's states and other properties may change. Therefore, states
(or other properties) among two or more resources that might normally be expected to match (or have
some other expected relationship) at one moment in time may instead return apparently inconsistent
results in the Get Inventory response.

Example HTTP interaction

The following example illustrates a typical response for a Get Inventory request for the ensemble class of
resources. Responses for other classes will differ significantly from this because the data differs on a class
by class basis. The format of the data returned by the Inventory Service for each class of object is
described in a section entitled “Inventory Service Data” within the documentation for that object class.

POST /api/services/inventory HTTP/1.1
x-api-session: 38gu0i9so1y0vjemqyptpcadnwq0esu32pjd3ub4jy6lxadp72
content-type: application/json
content-length: 27
{

"resources": [
"ensemble"

]
}

Figure 293. Get Inventory: Request

640 HMC Web Services API

Metrics service
The zEnterprise (or later) Ensembles, Central Processing Complexes (CPCs), and their associated system
resources are instrumented at key points to collect performance and utilization data. The data is
forwarded by the metric data providers to a buffer on the HMC where it is made available to consumers
of this API.

The data collection instrumentation organizes and formalizes the data it collects into a series of named
metric groups. The Metrics Service API allows specification of the metric groups the client wishes to
query. The API returns some information about the format of the metrics that are being fetched.
Specifically, a structure called a metrics context is associated with any metrics retrieval, and that structure
includes metric group names, individual metric field names, and the associated individual metric data
types.

200 OK
transfer-encoding: chunked
server: zSeries management console API web server / 1.0
cache-control: no-cache, no-cache
date: Wed, 07 Dec 2011 03:42:15 GMT
content-type: application/json;charset=UTF-8
[

{
"acceptable-status": [

"alternate-communicating"
],
"class": "ensemble",
"cpu-perf-mgmt-enabled-power-vm": false,
"cpu-perf-mgmt-enabled-zvm": false,
"description": "long ensemble name",
"has-unacceptable-status": false,
"is-locked": false,
"load-balancing-enabled": false,
"load-balancing-ip-addresses": [],
"load-balancing-port": 3860,
"mac-prefix": "02:00:00:00:00:00",
"management-enablement-level": "automate",
"name": "HMC_R74_ENSEMBLE",
"object-id": "1f7ffb02-de39-11e0-88bd-00215e67351a",
"object-uri": "/api/ensembles/1f7ffb02-de39-11e0-88bd-00215e67351a",
"parent": null,
"power-consumption": 24474,
"power-rating": 65644,
"reserved-mac-address-prefixes": [],
"status": "alternate-communicating",
"unique-local-unified-prefix": "fd2c:34be:df2:0:0:0:0:0"

},
{

"class": "node",
"element-uri": "/api/ensembles/1f7ffb02-de39-11e0-88bd-00215e67351a/nodes/
9ba3b1aa-693a-3408-80ae-9d0808147ffa",
"member": "/api/cpcs/9ba3b1aa-693a-3408-80ae-9d0808147ffa",
"parent": "/api/ensembles/1f7ffb02-de39-11e0-88bd-00215e67351a",
"type": "cpc"

}
]

Figure 294. Get Inventory: Response

Chapter 15. Inventory and metrics services 641

The full metric group documentation, however, including descriptions of the data collected and the
frequency of collection, can be found in Chapter 16, “zManager metric groups,” on page 651.

Create Metrics Context
The Create Metrics Context operation creates a context under which metrics can be repeatedly retrieved.
This context will be associated with the API session under which it was created.

HTTP method and URI
POST /api/services/metrics/context

Request body contents

A request body must be specified. It has the following fields:

Field name Type Description

anticipated-
frequency-seconds

Integer The number of seconds the client anticipates will elapse between Get
Metrics calls against this context. The minimum accepted value is 15.

metric-groups Array of
Strings

Optional. Array of metric group names. If specified, then results from future
Get Metrics requests associated with this context will be limited to only
metrics with group names matching one of the specified values. If not
specified, or if an empty array is specified, then results will not be limited
with respect to metric group names.

Response body contents

On successful completion, the response body contains a JSON object with the following fields:

Field name Type Description

metrics-context-uri String/URI Canonical URI path of the metrics context object created by this operation
This includes the metrics-context-id. E.g. “/api/services/metrics/context/1”,
where “1” is the metrics-context-id.

metric-group-infos Array of
objects

Array of metric-group-info objects (described in the next table) that describe
the data format for each metric group that may be returned by future GETs
associated with this metric context.

Each nested metric-group-info object contains the following fields:

Field name Type Description

group-name String The name of the metric group for which we are providing descriptive
information.

metric-infos Array Array of metric-info objects (described in the next table). These describe each
metric for the group in the order that they will appear in future GETs
associated with this context.

Each nested metric-info object contains the following fields:

Field name Type Description

metric-name String The name of the metric.

642 HMC Web Services API

Field name Type Description

metric-type String
Enum

One of the following, describing the type of the metric:

"boolean-metric", "byte-metric", "double-metric", "long-metric",
"integer-metric", "short-metric", "string-metric"

See the Get Metrics “Response body contents” on page 646 for further
information on these metric types.

Description

This operation establishes a context for future Get Metrics operations that is valid for the current API
session. Because of the high frequency of invocation and large volume of data expected, the metrics
service interface has been structured to optimize the transmission of data on each Get Metrics request.
Thus, rather than use a self-describing representation for the results returned by each Get Metrics, the
metrics service instead provides the descriptive metadata as results from this Create Metrics Context
operation. It then returns the metric data in a compact format each time Get Metrics is invoked.

At a high level, the Create Metrics Context response communicates two primary pieces of information
back to the client. One is the metrics-context-uri, which includes the ID of the metrics context that must
be referenced on future GETs to associate them with this context. The other is the metric-groups
description data. That data provides the metric type and metric name information for each metric group
whose metrics may be returned by this context. This may be useful to the client for determining how to
parse future Get Metrics responses for this context, although the full documentation on metric group
formats is found in Chapter 16, “zManager metric groups,” on page 651.

The anticipated-frequency-seconds specification which is required on the request body tells the metrics
service how frequently the client anticipates issuing Get Metrics requests against this context. The metrics
service may take no action based on this frequency, but reserves the right to invalidate and delete the
metrics context if 4 times the specified frequency passes without receipt of an associated Get Metrics
operation.

Optional result filtering is provided by field metric-groups on the request body. If a non-empty
metric-groups arrays is specified, then future Get Metrics operations associated with this context will
return only groups with names listed there.

Additionally, if a metric-groups array of group names is specified on the Create Metrics Context request,
then the response JSON document will include only matching metric-group-info fields. If one or more
names in the metric-groups array does not represent a metric group registered on the HMC, then HTTP
error status code 400 (Bad Request) will be returned and the context will not be established.

Although the POST response fully describes and guarantees the ordering of metric-infos within a metric
group for that context, as a matter of policy the HMC will further guarantee that, for a given metric
group, any additions of new metrics to the group will be to the end of the list for the group.

Authorization requirements

There are no authorization restrictions on creating a metrics context. However any future metric results
returned by Get Metrics queries against that context will be restricted to managed objects accessible
according to the permissions associated with the API session under which the metrics context was
established.

Note that there is no indication via an HTTP status or reason code that future results may be restricted
due to authorization restrictions. Rather, success is indicated and future Get Metrics responses behave
just as if any restricted objects did not exist.

Chapter 15. Inventory and metrics services 643

HTTP status and reason codes

On success, HTTP status code 201 (Created) is returned and the response body is provided as described
in “Response body contents” on page 642. The URI for the newly created context is also provided in the
Location header of the response.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

Note: These are example rather than actual metrics group names.

POST /api/services/metrics/context HTTP/1.1
x-api-session: 6a9oz3ymut6rvjijrft0loqhfzgpp0rnu4mjishwh6d39jh31q
content-type: application/json
content-length: 96
{

"anticipated-frequency-seconds": 45,
"metric-groups": [

"virtualization-host-cpu-memory-usage"
]

}

Figure 295. Create Metrics Context: Request

644 HMC Web Services API

Get Metrics
The Get Metrics operation retrieves the current set of metrics associated with an established metrics
context.

201 Created
transfer-encoding: chunked
server: zSeries management console API web server / 1.0
cache-control: no-cache, no-cache
date: Wed, 07 Dec 2011 04:01:59 GMT
content-type: application/json;charset=UTF-8
{

"metric-group-infos": [
{

"group-name": "virtualization-host-cpu-memory-usage",
"metric-infos": [

{
"metric-name": "processor-usage",
"metric-type": "integer-metric"

},
{

"metric-name": "memory-usage",
"metric-type": "integer-metric"

},
{

"metric-name": "network-usage",
"metric-type": "integer-metric"

},
{

"metric-name": "storage-rate",
"metric-type": "integer-metric"

},
{

"metric-name": "physical-cpu-time",
"metric-type": "long-metric"

},
{

"metric-name": "memory-used",
"metric-type": "integer-metric"

},
{

"metric-name": "virt-host-management-cpu-time-used",
"metric-type": "long-metric"

},
{

"metric-name": "virt-host-page-ins",
"metric-type": "long-metric"

},
{

"metric-name": "virt-host-page-outs",
"metric-type": "long-metric"

}
]

}
],
"metrics-context-uri": "/api/services/metrics/context/1"

}

Figure 296. Create Metrics Context: Response

Chapter 15. Inventory and metrics services 645

HTTP method and URI
GET /api/services/metrics/context/{metrics-context-id}

In this request, the URI variable {metrics-context-id} is the identifier of the metrics context object for which
metrics are to be obtained.

Response body contents

On successful completion, the response body contains the set of metrics associated with the metrics
context. The response is sent using HTTP chunked transfer encoding and UTF-8 character encoding. A
MIME media type of application/vnd.ibm-z-zmanager-metrics is used and is specified in the
Content-Type header on the response.

Because performance and scalability are a major concern for the metrics service, the response body is in a
terse custom format, rather than being presented as a JSON object. The data type, name, and order
information required to parse and interpret the response is provided in a previous Create Metrics
Context response.

Data in this format will be delimited by newlines and commas.

Using a partial Extended Backus-Naur Form, where a comma (,) indicates concatenation and curly braces
({}) indicate 0 or more repetitions, we can express the format this way:

The MetricsGroupName is the name of the metrics group, as a StringValue as defined below.

The Timestamp is the time when the associated values were buffered (i.e. “cached”) on the HMC. It is
expressed as an “epoch” timestamp: a LongValue giving the milliseconds since January 1, 1970, 00:00:00
GMT (just as is expected, for example, by the constructor of a java.util.Date object).

The ObjectURI is the canonical URI of the object, as a StringValue as defined below.

NL is a single newline character (Unicode U+000A).

All the varieties of Value will be represented as strings according to the following rules and limits:
v BooleanValue

– Either the string true or the string false.
v ByteValue

– A string representation of a signed decimal integer in the range -128 to 127 (i.e. the range of a
signed 8 bit integer).

v DoubleValue

MetricsResponse = {MetricsGroup},NL

MetricsGroup = MetricsGroupName,NL,{ObjectValues},NL
MetricsGroupName = StringValue

NL = “\n”

ObjectValues = ObjectURI,NL,Timestamp,NL,ValueRows,NL

Timestamp = LongValue

ObjectURI = StringValue

ValueRows = ValueRow,{ValueRow}
ValueRow = Value,{“,”,Value},NL

Value = BooleanValue | ByteValue | DoubleValue | LongValue | IntegerValue | ShortValue | StringValue

646 HMC Web Services API

– A string representation of a 64 bit IEEE 754 floating point number in the range +/-4.9E-324 to
+/-3.4028235E+38. Note that, although IEEE 754 provides for representations of positive or negative
Infinity and NaN, such values are not allowed in the metric data feed and thus will not appear in a
metrics service result. For results with a magnitude greater than or equal to 10^-3 and less than
10^7, the string representation will be a dotted decimal (e.g. 1.7, -32.467). For results with
magnitudes outside that range, the string representation will be computerized scientific notation
(e.g. -4.23E127).

v LongValue
– A string representation of a signed decimal integer in the range -9223372036854775808 to

9223372036854775807 (i.e. the range of a signed 64 bit integer).
v IntegerValue

– A string representation of a signed decimal integer in the range -2147483648 to 2147483647 (i.e. the
range of a signed 32 bit integer).

v ShortValue
– A string representation of a signed decimal integer in the range -32768 to 32767 (i.e. the range of a

signed 16 bit integer).
v StringValue

– A string starting with a double-quote, ending with a double-quote, and with any embedded
double-quotes or backslashes escaped with a preceding backslash (i.e. escaped as \" and \\).

Description

On successful execution status code 200 (OK) is returned, with a response body as described above.

The URI path on the request must designate an existing metrics context for the current API session. If the
URI designates an unrecognized context for the API session, then status code 404 (Not Found) is
returned.

Note that under some circumstances the metrics service may delete a metrics context, requiring the client
to establish a new context in order to resume metric retrievals. For example, the metrics service may
choose to delete a given context if the time since the last associated Get Metrics request has exceeded 4
times the anticipated frequency specified when the context was created. In addition, the client may
explicitly delete a metrics context with the Delete Metrics Context operation. If the URI designates a
context that was once valid for the current API session, but no longer is, then status code 409 (Conflict) is
returned.

Authorization requirements

Only metrics referencing managed objects accessible according to the permissions associated with the API
session under which the Get Metrics is being issued will be returned. Note that there is no indication via
an HTTP status or reason code that results may have been restricted due to authorization restrictions.
Rather, success is indicated and the responses are just as if any restricted objects did not exist.

HTTP status and reason codes

On success, HTTP status code 200 (OK) is returned and the response body is provided as described in
“Response body contents” on page 646.

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

Chapter 15. Inventory and metrics services 647

HTTP error status
code

Reason
code Description

404 (Not Found) 1 The metrics context ID in the URI ({metrics-context-id}) does not designate a
metrics context for the associated API session.

490 (Conflict) 1 The metrics context ID in the URI ({metrics-context-id}) designates a metrics
context for the associated API session that is no longer valid.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Usage notes
v Repeated metrics retrievals, even consecutive retrievals against a common metrics context, will not

necessarily yield metrics for the exact same set of objects. Objects can come and go from the system's
inventory due to various circumstances unrelated to the metrics data. The metrics feed for a particular
metric group may stop for some reason, and the metrics data may therefore expire from the HMC's
buffer (i.e. the metrics cache). The access permissions of a user associated with a metrics context may
change, giving the user access to a smaller or larger set of objects (and therefore, perhaps, a smaller or
larger set of metrics data).

v It is possible that there may be no metrics to return for one or more metric groups associated with the
specified metrics context. For example, data for a metric group may not be buffered on the HMC at the
time of the Get Metrics invocation, or authorization restrictions related to objects in a requested metric
group may prevent any metrics for that group from being returned. If there is no metric data to be
returned for a metric group name, then that group name does not appear in the response body.
Furthermore, if there is no metric data to return for any metric group name associated with a context,
the response body format above specifies that the body will consist only of a single newline character.
This is nonetheless considered a successful response. In other words, an HTTP status code 200 (OK)
will still be returned with such a response.

Example HTTP interaction

GET /api/services/metrics/context/1 HTTP/1.1
x-api-session: 4g33uc2vith3v42vmce8wjr5q7x58x5ybh6hwd4vjpwr7jl4sz

Figure 297. Get Metrics: Request

648 HMC Web Services API

Delete Metrics Context
The Delete Metrics Context operation deletes a metrics context.

HTTP method and URI
DELETE /api/services/metrics/context/{metrics-context-id}

In this request, the URI variable {metrics-context-id} is the identifier of the metrics context object for which
metrics are to be obtained.

Description

This operation deletes the metrics context ID. That is, it disassociates it from the API session and cleans
up any data associated with it. Further Get Metrics requests against this context will result in status code
409 (Conflict).

The URI path must designate an existing valid metrics context for the current API session. If the URI
path represents an already invalidated metrics context for the current API session, status code 409
(Conflict) is returned. If the URI path does not represent a recognized metrics context for the current API
session, status code 404 (Not Found) is returned.

Authorization requirements

There are no authorization requirements for deleting a metrics context. The association with the API
session is implicit, so there is no possibility of deleting a context that was created by a different API
session. In other words, only the session which created a metrics context can delete it.

HTTP status and reason codes

On success, HTTP status code 204 (No Content) is returned and no response body is provided.

200 OK
transfer-encoding: chunked
server: zSeries management console API web server / 1.0
cache-control: no-cache, no-cache
date: Wed, 07 Dec 2011 04:38:20 GMT
content-type: application/vnd.ibm-z-zmanager-metrics;charset=UTF-8
"virtualization-host-cpu-memory-usage"
"/api/virtualization-hosts/2f7bf364-03f8-11e1-8eda-001f163805d8"
1323232689283
0,14,0,3,2942386000,4608,2942386000,0,0

"/api/virtualization-hosts/c14cde64-03e6-11e1-baf3-001f163805d8"
1323232689283
0,64,-1,-1,76028000,1311,-1,-1,-1

"/api/virtualization-hosts/5f805d28-03e6-11e1-baf3-001f163805d8"
1323232689283
3,72,-1,-1,1731046000,1485,-1,-1,-1

"/api/virtualization-hosts/634fa694-03f4-11e1-881f-001f163805d8"
1323232689283
4,36,-1,-1,55878116000,17920,-1,-1,-1
<3 blank lines here (consecutive new lines)>

Figure 298. Get Metrics: Response

Chapter 15. Inventory and metrics services 649

The following HTTP status codes are returned for the indicated errors, and the response body is a
standard error response body providing the reason code indicated and associated error message.

HTTP error status
code

Reason
code Description

400 (Bad Request) Various Errors were detected during common request validation. See “Common
request validation reason codes” on page 18 for a list of the possible reason
codes.

404 (Not Found) 1 The metrics context ID in the URI ({metrics-context-id}) does not designate a
metrics context for the associated API session.

490 (Conflict) 1 The metrics context ID in the URI ({metrics-context-id}) designates a metrics
context for the associated API session that is no longer valid.

Additional standard status and reason codes can be returned, as described in Chapter 3, “Invoking API
operations,” on page 13.

Example HTTP interaction

DELETE /api/services/metrics/context/1 HTTP/1.1
x-api-session: 6a9oz3ymut6rvjijrft0loqhfzgpp0rnu4mjishwh6d39jh31q

Figure 299. Delete Metrics Context: Request

204 No Content
date: Wed, 07 Dec 2011 04:01:59 GMT
server: zSeries management console API web server / 1.0
cache-control: no-cache, no-cache

<No response body>

Figure 300. Delete Metrics Context: Response

650 HMC Web Services API

Chapter 16. zManager metric groups

This chapter provides a description of the metric groups that can be retrieved using the Metrics Service.
For each metric group provided by the HMC, the material in this chapter describes the purpose and
general characteristics of the metric group, and then defines the content of the metric group via a table
that specifies the metric fields provided by the group. The order in which metric fields appear within
these tables corresponds to the order in which the data items appear in a value row returned by the Get
Metrics operation. For example, the metric field appearing in the first row of a metric group table (and
identified in a table below as being in position 1) will be the first data item provided in a value row for
that metric group; the metric field appearing in the second row (position 2) will be the next data item in
a value row, and so on. Thus, the order in which metric fields are documented here is considered
semantically significant and can be relied upon by client applications in order to simplify parsing of the
data retrieved using the Get Metrics operation.

The contents of metric groups may be extended in future versions of this API. If a metric group is
extended, new metric fields will be added to the end so as to not alter the relative positions of any of the
existing fields. Such new fields would not be understood by a client application designed for an earlier
version of the API. Therefore, applications must be developed using the philosophy of "ignore what you
don't understand/expect" when processing metric group data order to tolerate such possible future
extensions. See “Compatibility” on page 4 for more discussion on API compatibility principles.

Monitors dashboard metric groups
The Monitors Dashboard task is the current system monitoring interface on the HMC. It gives a
dashboard display to monitor system resources, such as power consumption, environmental data,
processor usage, etc.

In order to provide programmatic access to this same data, the utilization and environment data that is
displayed on the user interface is also provided via the Metrics Service in the following metric groups.

BladeCenter temperature and power metric group
This metric group reports the ambient temperature and power consumption for each BladeCenter on the
system.

Metric Group Name
"bladecenter-temperature-and-power"

Collection Interval
15 seconds

Applicable Managed Object Class
"bladecenter"

The following metrics are provided in each entry of this metric group:

Table 151. BladeCenter temperature and power metric group

Pos Metric field name Type Units Description

1 temperature-celsius Double Degrees
Celsius

The ambient temperature

2 power-consumption-watts Integer Watts The power consumption

© Copyright IBM Corp. 2012, 2013 651

Blade power
This metric group reports power consumption for each blade on the system.

Metric Group Name
"blade-power-consumption"

Collection Interval
15 seconds

Applicable Managed Object Class
"blade"

The following metrics are provided in each entry of this metric group:

Table 152. Blade power metric group

Pos Metric field name Type Units Description

1 power-consumption-watts Integer Watts The power consumption

Channels
This metric group reports the channel usage for each channel on the system. An instance of this metric
group is created for each channel of a CPC.

Metric Group Name
"channel-usage"

Collection Interval
15 seconds

Applicable Managed Object Class
"cpc"

The following metrics are provided in each entry of this metric group:

Table 153. Channels metric group

Pos Metric field name Type Units Description

1 channel-name String — The name of the channel in the form CSS.Chpid

2 shared-channel Boolean — True if the channel is shared among logical partitions, and
false if it is not

3 logical-partition-name String — For channel types for which logical partition names are
available, the name of the owning logical partition or the
value "shared" if the channel is shared. For other channel
types for which the name is not available (for example,
coupling channels), the value is always an empty string.

4 channel-usage Integer % The channel percent usage (0 – 100%)

CPC overview
This metric group reports the aggregated processor usage and channel usage, the ambient temperature,
and total system power consumption for each system. The cpc-processor-usage is the average of the
percentages of processing capacity for the physical processor lines in the active System Activity profile for
the CPC. The channel-usage is the average of the percentages of I/O capacity for the channel lines in the
active System Activity profile for the CPC.

Metric Group Name
"cpc-usage-overview"

652 HMC Web Services API

Collection Interval
15 seconds

Applicable Managed Object Class
"cpc"

The following metrics are provided in each entry of this metric group:

Table 154. CPC overview metric group

Pos Metric field name Type Units Description

1 cpc-processor-usage Integer % The processor percent usage.

2 channel-usage Integer % The channel percent usage.

3 power-consumption-watts Integer Watts The total system power consumption. This includes CPC,
BladeCenters, and blades.

4 temperature-celsius Double Degrees
Celsius

The ambient temperature.

5 cp-shared-processor-usage Integer % The processor percent usage for all CP shared processors.
Set to -1 if there are no processors of this type.

6 cp-dedicated-processor-usage Integer % The processor percent usage for all CP dedicated
processors. Set to -1 if there are no processors of this type.

7 ifl-shared-processor-usage Integer % The processor percent usage for all IFL shared processors.
Set to -1 if there are no processors of this type.

8 ifl-dedicated-processor-usage Integer % The processor percent usage for all IFL dedicated
processors. Set to -1 if there are no processors of this type.

9 icf-shared-processor-usage Integer % The processor percent usage for all ICF shared processors.
Set to -1 if there are no processors of this type.

10 icf-dedicated-processor-usage Integer % The processor percent usage for all ICF dedicated
processors. Set to -1 if there are no processors of this type.

11 iip-shared-processor-usage Integer % The processor percent usage for all zIIP shared processors.
Set to -1 if there are no processors of this type.

12 iip-dedicated-processor-usage Integer % The processor percent usage for all zIIP dedicated
processors. Set to -1 if there are no processors of this type.

13 aap-shared-processor-usage Integer % The processor percent usage for all zAAP shared
processors. Set to -1 if there are no processors of this type.

14 aap-dedicated-processor-
usage

Integer % The processor percent usage for all zAAP dedicated
processors. Set to -1 if there are no processors of this type.

15 all-shared-processor-usage Integer % The processor percent usage for all shared processors. Set
to -1 if there are no processors of this type.

16 all-dedicated-processor-usage Integer % The processor percent usage for all dedicated processors.
Set to -1 if there are no processors of this type.

Logical partitions
This metric group reports the processor usage and z/VM paging rate for each active logical partition (aka
Image, LPAR Image, Zone, PR/SM virtual server) on the system.

Metric Group Name
"logical-partition-usage"

Collection Interval
15 seconds

Chapter 16. zManager metric groups 653

Applicable Managed Object Class
"logical-partition"

The following metrics are provided in each entry of this metric group:

Table 155. Logical partitions metric group

Pos Metric field name Type Units Description

1 processor-usage Integer % The processor percent usage.

2 zvm-paging-rate Integer Pages
Per
Second

The z/VM paging rate. Only returned for logical partitions
running z/VM level 6.1 or higher that have the appropriate
agent running in them.

zCPC environmentals and power
This metric group reports environmental data and power consumption for the zCPC, which is the legacy
part of the system; i.e. without blades.

Metric Group Name
"zcpc-environmentals-and-power"

Collection Interval
15 seconds

Applicable Managed Object Class
"cpc"

The following metrics are provided in each entry of this metric group:

Table 156. zCPC environmentals and power metric group

Pos Metric field name Type Units Description

1 temperature-celsius Double Degrees
Celsius

The ambient temperature

2 humidity Integer % The relative humidity

3 dew-point-celsius Double Degrees
Celsius

The dew point

4 power-consumption-watts Integer Watts The power consumption in watts

zCPC processors
This metric group reports the processor usage for each physical zCPC processor on the system. This
includes the System Assist Processors (SAPs) and does not include blades. An instance of this metric
group is created for each processor of a CPC.

Metric Group Name
"zcpc-processor-usage"

Collection Interval
15 seconds

Applicable Managed Object Class
"cpc"

The following metrics are provided in each entry of this metric group:

654 HMC Web Services API

Table 157. zCPC processors metric group

Pos Metric field name Type Units Description

1 processor-name String The name of the zcpc processor in the form processor-type
+ processor ID. For example, IFL01.

2 processor-type String The type of zcpc processor. The valid types are: "cp", "ifl",
"icf", "iip", "aap", "sap".

3 processor-usage Integer % The processor percent usage.

Blade CPU and memory metric group
This metric group reports CPU and memory utilization for each of the blades in the ensemble. This group
provides data for all types of blades.

Metric Group Name
"blade-cpu-memory-usage"

Collection Interval
15 seconds

Applicable Managed Object Class
"blade"

The following metrics are provided in each entry of this metric group:

Table 158. Blade CPU and memory metric group

Pos Metric field name Type Units Description

1 processor-usage Integer % Processor utilization percentage (0-100%). Value for
current interval. If the value is not currently available,
for example if the blade is powered off, -1 is provided.

2 memory-usage Integer % Memory utilization percentage (0-100%). Value for
current interval. If the value is not currently available,
for example if the blade is powered off, -1 is provided.

Cryptos
This metric group reports the adapter usage for each crypto on the system. An instance of this metric
group is created for each crypto of a CPC. If a CPC has no crypto adapters, then no data will appear in
this metric group for that CPC.

Metric Group Name
"crypto-usage"

Collection Interval
15 seconds

Applicable Managed Object Class
"cpc"

The following metrics are provided in each entry of this metric group:

Table 159. Crypto metric group

Pos Metric field name Type Units Description

1 channel-id String The physical channel identifier of the crypto

2 crypto-id String The crypto identifier of the crypto, hex char 0-F

3 adapter-usage Integer % The adapter percent usage (0-100%)

Chapter 16. zManager metric groups 655

Flash Memory Adapters
This metric group reports the adapter usage for each Flash memory (Flash Express) adapter on the
system. An instance of this metric group is created for each Flash memory adapter of the CPC. If a CPC
has no flash memory adapters, then no data will appear in this metric group for that CPC.

Note: Flash Express has a planned exploitation of December 2012.

Metric Group Name
"flash-memory-usage"

Collection Interval
15 seconds

Applicable Managed Object Class
"cpc"

The following metrics are provided in each entry of this metric group:

Table 160. Flash memory adapters metric group

Pos Metric field name Type Units Description

1 channel-id String The physical channel identifier of the Flash memory
adapter

2 adapter-usage Integer % The adapter percent usage (0-100%)

Performance management metrics groups
Following are the performance management metrics groups.

Virtual server CPU and memory metrics group
This metric group is collected for all types of virtual servers: PowerVM, PR/SM, x Hyp, and z/VM.

Metric Group Name
"virtual-server-cpu-memory-usage"

Collection Interval
15 seconds for PR/SM, x Hyp and z/VM virtual servers

30 seconds for PowerVM virtual servers

Applicable Managed Object Class
"virtual-server"

The following metrics are provided in each entry of this metric group:

Table 161. Virtual server CPU and memory metric group

Pos Metric field name Type Units Description

1 processor-usage Integer % Physical utilization percentage (0-100%). Values
for current interval.

2 memory-usage Integer % Memory usage percentage (0-100%). Value for
current interval.

3 up-time Long Microseconds Time since the virtual server was started. Not
supported for PR/SM, will be reported as -1.

4 physical-cpu-time Long Microseconds Physical CPU time used by virtual server. This
time accumulates until the virtualization host or
the support element is restarted.

656 HMC Web Services API

Table 161. Virtual server CPU and memory metric group (continued)

Pos Metric field name Type Units Description

5 virt-host-cpu-delay-time Long Microseconds The virtual processors were ready to run but not
dispatched on physical processors due to
competition with other virtual servers. This time
accumulates until the virtualization host or the
support element is restarted.Not supported for
PR/SM, will be reported as -1.

6 elapsed-time Long Microseconds Elapsed time over which physical-cpu-time and
virt-host-cpu-delay-time have accumulated.

7 cpu-allocation Integer Share for z/VM,
and physical
CPU equivalent
for PowerVM,
and processing
weight for
PR/SM

Amount of CPU resource allocated to virtual
server. zManager adjusts this value when virtual
server management is enabled. For PowerVM,
this is the processing units setting. For z/VM
this is the CPU share value. For PS/SM this is
the general purpose processing weight setting.
Not supported for x Hyp or virtual servers with
dedicated virtual processors, will be reported as
-1.

8 current-physical-memory-
used

Integer Megabytes Amount of physical memory currently used by
virtual server.

9 os-total-cpu-using-samples1 Long Count Count of samples where virtual CPUs were seen
in use. Will be 0 if GPMP not running on virtual
server.

10 os-total-cpu-delay-samples1 Long Count Count of samples where threads were delayed
waiting for virtual CPUs. Will be 0 if GPMP not
running on virtual server.

11 os-total-paging-delay-
samples1

Long Count Count of samples where threads were delayed
waiting for page faults to be resolved. Will be 0
if GPMP not running on virtual server.

12 os-total-io-delay-sample1 Long Count Count of samples where threads were delayed
waiting for I/O to complete. Will be 0 if GPMP
not running on virtual server.

13 os-sampling-rate Integer Count Number of times per second OS samples are
collected. Will be 0 if GPMP not running on
virtual server.

14 os-total-other-samples1 Long Count Count of samples where processes where in a
state not included in the other sample counts.

15 gpmp-active Boolean True if the GPMP was active on the virtual
server at the end of the interval. False otherwise.

16 other-time Long Microseconds Sum of time any of the virtual processors of the
virtual server where in a state other than
dispatched on physical processors, delayed, or
idle.

17 idle-time Long Microseconds Sum of the time any of the virtual processors of
the virtual server were idle.

18 virtual-cpu-count Integer Count Number of virtual processors defined for the
virtual server, totaled across all types
(dedicated/shared, CP/IFL/zIIP/zAAP)

Chapter 16. zManager metric groups 657

Table 161. Virtual server CPU and memory metric group (continued)

Pos Metric field name Type Units Description

Note:

1. On an interval basis the GPMP samples the state of OS threads. Each sampling interval the GPMP counts
the number of threads in various states. Each of these states represents a sample type. The sample types
are:

v CPU Using: Each sample represents a thread found actively running on a virtual processor

v CPU delay: Each sample represents a thread waiting to be dispatched on a virtual processor

v Page Delay: Each sample represents a thread waiting for a page fault to be resolved

v I/O Delay: Each sample represents a threads waiting for I/O to complete

v Other: Each sample represents processes that had no threads in one of the above states.

The GPMP keeps a running total for each sample type. These running totals are returned in the sample
metrics that are part of the virtual-server-cpu-memory-usage metrics group. The sampling interval is
returned in the os-sampling-rate metric.

Virtualization host CPU and memory metrics group
Metric Group Name

"virtualization-host-cpu-memory-usage"

Collection Interval
15 seconds for PR/SM, x Hyp and z/VM virtualization hosts

30 seconds for PowerVM virtualization hosts

Applicable Managed Object Class
"virtualization-host"

The following metrics are provided in each entry of this metric group:

Table 162. Virtualization host CPU and memory metric group

Pos Metric field name Type Units Description

1 processor-usage Integer % Overall CPU utilization percentage for the
virtualization host (0-100%). Value for current
interval. For PR/SM only includes general
purpose processors.

2 memory-usage Integer % Memory usage percentage for the virtualization
host (0-100%). Value for current interval.

3 network-usage Integer % Network utilization percentage for the
virtualization host (0-100%). Value for current
interval. Not available for z/VM or PR/SM, will
be reported as -1.

4 storage-rate Integer Kbytes per sec Average Kbytes transferred to disk over interval.
Value for current interval. Not available for
z/VM or PR/SM, will be reported as -1.

5 physical-cpu-time Long Microseconds Physical CPU time used. Cumulative value.For
PR/SM only includes general purpose
processors.

6 memory-used Integer Mbytes Current memory in use by the virtualization
host.

658 HMC Web Services API

Table 162. Virtualization host CPU and memory metric group (continued)

Pos Metric field name Type Units Description

7 virt-host-management-cpu-time-
used

Long Microseconds CPU time used for virtualization host
management. Cumulative value. Note for
PowerVM this is the CPU used by the VIOS
partition. For x Hyp this is the Linux system
mode CPU time. Currently not supported for
z/VM or PR/SM, will be reported as -1.

8 virt-host-page-ins Long Count Paging activity by the virtualization host to
support hypervisor management. Page reads
from paging space. Cumulative value. For
PowerVM this represents VIOS paging. For x
Hyp it is the base Linux paging. Currently not
supported for z/VM or PR/SM, will be reported
as -1.

9 virt-host-page-outs Long Count Paging activity by the virtualization host to
support hypervisor management. Page written to
paging space. Cumulative value. For PowerVM
this represents VIOS paging. For x Hyp it is the
base Linux paging. Currently not supported for
z/VM or PR/SM, will be reported as -1.

10 cp-cpu-time1 Long Microsecond CPU time accumulated by the general purpose
processors owned by the virtualization host.
Only supported for z/VM, will be reported as -1
for other hypervisor types.

11 ifl-cpu-time1 Long Microsecond CPU time accumulated by the IFL processors
owned by the virtualization host. Only
supported for z/VM, will be reported as -1 for
other virtualization host types.

12 zaap-cpu-time1 Long Microsecond CPU time accumulated by the zAAP processors
owned by the virtualization host. Only
supported for z/VM, will be reported as -1 for
other virtualization host types.

13 ziip-cpu-time1 Long Microsecond CPU time accumulated by the zIIP processors
owned by the virtualization host. Only
supported for z/VM, will be reported as -1 for
other virtualization host types.

14 icf-cpu-time1 Long Microsecond CPU time accumulated by the ICF processors
owned by the virtualization host. Only
supported for z/VM, will be reported as -1 for
other virtualization host types.

Table Notes:

1. Provided for virtualization hosts on CPCs with SE version 2.12.0 or later; metric not present for CPCs with
earlier SE versions.

Workload service class data metrics group
This metric group reports workload performance data on a per-service-class basis. At each collection
interval for a given workload, one instance of this metric group is added to the metric cache for each
service class of the active policy for that workload.

Metric Group Name
"workload-service-class"

Collection Interval
15 seconds

Chapter 16. zManager metric groups 659

Applicable Managed Object Class
"workload"

The following metrics are provided in each entry of this metric group:

Table 163. Workload metrics group - service class data metric group

Pos Metric field name Type Units Description

1 policy-activation-time Long Time stamp Time of the last policy activation for this workload.
This is the last-activation-requested-date property
of the currently active policy.

2 service-class-name String
(1-64)

— Name of service class

3 velocity-numerator Long Microseconds Time value used for numerator of velocity
calculation. Cumulative value since last policy
activation.

4 velocity-denominator Long Microseconds Time value used for denominator of velocity
calculation. Cumulative value since last policy
activation.

Network management metrics
Following are the network management metric groups.

Virtualization host and virtual server metrics
The zManager Metrics Service provides network metrics for zEnterprise network resources. These metrics
are collected at the virtualization host (hypervisor) network layer. The virtualization host provides a
virtual LAN for network communications between the virtual servers it is hosting, and transparently
virtualizes the attached physical network interfaces providing server access to the physical network. In
many cases, this network virtualization function within the virtualization host is commonly referred to as
the “virtual switch” or “vSwitch”. In zManager, although only certain zManager platforms allow for
explicit external exposure and management of the vSwitch, the network metrics collected at this layer will
be exposed for each platform. In some cases, such as "zvm" and "prsm", the virtualization host supports
multiple vSwitches, and the vSwitches are externally identified within zManager. For example, in
zManager, OSX and IQD-X chpids are referred to as vSwitches. The term “vSwitch” is also used to
generically describe the network functions of the virtualization host. For "x-hyp", "power-vm", and
"prsm" virtualization host types, a specific vSwitch resource is not explicitly externalized for management
within zManager; therefore, it is the virtualization host itself that is associated with the metrics, and,
where the metric group provides a vSwitch name, this value will be “N/A”. In these cases, the
virtualization host implicitly represents a single vSwitch.

The network metrics provided at the virtualization host are the following:
v Virtualization host uplink metrics: Virtual network (i.e. per VLAN ID) metrics are not provided for

uplinks. . Metrics collected are provided on an interval. These metrics can be collected from the
Virtualization Host (vSwitch) Uplink Metric Group. Metrics for two types of uplinks are provide:
– Real Uplinks: These are metrics which are captured between the virtualization host or virtualization

host's vSwitch and the attached physical network interfaces. These metrics can show the bandwidth
that the virtualization host is contributing to the IEDN.

– Virtual Uplinks: These metrics are captured by these vSwitch ports which are not directly attached
to a physical vSwitch that attaches to the IEDN. The following describe the supported virtual
uplinks:
- An IQD-X chpid that is attached to a z/VM LPAR's vSwitch bridge port. The z/VM vSwitch

bridge port provides the uplink from the IQD-X vSwitch.

660 HMC Web Services API

- A z/VM vSwitch virtual uplink. A virtual uplink connects a vSwitch to a z/VM virtual server. In
this case, traffic is forwarded to this server, which may be useful for packet collection for
debugging or analysis.

v Virtualization host by vSwitch by virtual network metrics: These metrics are captured between the
virtualization host and its virtual servers. In cases, such as z/VM, where a virtualization host has
multiple vSwitches, the metrics are captured by virtualization host by vSwitch by virtual network.
These metrics can be collected from the Virtualization Host (vSwitch) by Virtual Network Metric
Group.

v Network metrics from virtualization host for each attached virtual server's virtual network adapter by
virtual network (VLAN ID): These metrics can be collected from the Attached Virtual Servers Network
Adapter Metric Group.

In general, for the Virtualization Host by Virtual Network Metrics Group and the Attached Virtual
Servers Network Adapter Metric Group, the metrics are collected at the virtualization host level for the
attached virtual server virtual network adapter by virtual network (VLAN ID). The network metrics
collected at this level provide a view of the performance between the virtual switch and the virtual
server, with metrics such as bytes sent and bytes received. Other metrics such as packets dropped or
discarded can help to determine if problems are occurring. Metrics are collected and provided on an
interval, and each metric provided is the total cumulative value, and not a delta.

Providing metrics at the virtualization host's virtual network adapters provides a level of granularity that
allows for the consumer to aggregate these metrics. Use of these metrics along with configuration data
provided through the zManager external API allow the client application to determine resource utilization
relationships.

Virtualization host (vSwitch) uplink metric group
This metric group provides virtualization host (hypervisor)-based network metrics for the uplink ports.
The metrics provided by this group represent the uplink metrics between the vSwitch and the physical
network interface. These metrics are from the perspective of the vSwitch sending to and receiving from
the physical network interfaces.

In the case of z/VM, there may be multiple uplink interfaces; therefore, multiple instances of this metric
group may be provided for a single z/VM virtualization host. This is also true for a PR/SM
virtualization host. For a PR/SM virtualization host, there may be multiple OSX's for which the uplink
information provides the metrics between the OSX and the physical network.

Metrics are collected and provided on an interval, and each metric provided is the total cumulative value,
and not a delta.

Metric Group Name
"network-virtualization-host-uplink"

Collection Interval
30 seconds

Applicable Managed Object Class
"virtualization-host"

The following metrics are provided in each entry of this metric group:

Chapter 16. zManager metric groups 661

Table 164. Virtualization host (vSwitch) uplink metric group

Pos Metric field name Type Units Description

1 uplink-id String Name of the uplink interface.

The uplink names are described as follows and the
naming convention will be unique based upon the type
property of the virtualization-host object:
v "power-vm" - The names will be the platform-defined

names of the physical network interfaces, for example
“entx” or “enty”. Where x and y are numeric values.

v "x-hyp" - The names will be the platform-defined
names of the physical network interfaces, for example
“entx” or “enty”. Where x and y are numeric values.

v "prsm" - where the uplink is an OSX, the uplink is the
pchid. The name will be in the format of “OSX
pchid.port”

v "prsm" - where the uplink is an IQDX chpid that is
connected to a z/VM vSwitch bridge port. The name
will be in the form “IQDX css.chpid:zvm lpar
name.vswitch name.”

v "zvm" - If the uplink is OSX, then the uplink will
identify the OSA css and chpid, the z/VM LPAR name
and virtual device number of the OSX. The name will
be in the format of “OSX css.chpid:zvm lpar name.vdev
number”.

2 uplink-type String
Enum

The uplink type is:
v "real"
v "virtual"

3 vswitch-name String Name of the vSwitch. In the case where the vSwitch is
not uniquely identified for a virtual host then this will be
“N/A”.

“N/A” is returned for all virtualization-host objects
except where the type property of the virtualization-host
object is "zvm".

4 bytes-sent Long Count Number of bytes sent from the uplink interface to the
physical network.

5 bytes-received Long Count Number of bytes received by the uplink interface from
the physical network.

6 packets-sent Long Count Number of packets sent from the uplink interface to the
physical network.

7 packets-received Long Count Number of packets received by this uplink interface from
the physical network.

8 packets-sent-dropped Long Count Number of packets that were dropped when sending
from this uplink interface to the physical network.

Packets may be dropped due to conditions related to
resource constraints such as a buffer shortage.

9 packets-received-dropped Long Count Number of packets received by this uplink interface from
the physical network that were dropped.

Packets may be dropped due to conditions related to
resource constraints such as a buffer shortage.

662 HMC Web Services API

Table 164. Virtualization host (vSwitch) uplink metric group (continued)

Pos Metric field name Type Units Description

10 packets-sent-discarded Long Count Number of packets that were discarded when sending
from the uplink interface to the physical network.

Packets may be discarded due to errors associated with
the packet, such as malformed packets.

11 packets-received-discarded Long Count Number of packets received by this uplink interface that
were discarded.

Packets may be discarded due to errors associated with
the packet, such as malformed packets.

12 multicast-packets-sent Long Count Number of multicast packets sent from the uplink
interface to the physical network.

13 multicast-packets-received Long Count Number of multicast packets received by the uplink
interface from the physical network.

14 broadcast-packets-sent Long Count Number of broadcast packets sent from the uplink
interface to the physical network.

15 broadcast-packets-received Long Count Number of broadcast packets received by this uplink
interface from the physical network.

16 interval-bytes-sent Long Bytes Number of bytes sent by this uplink interface to the
physical network over the collection interval.

17 interval-bytes-received Long Bytes Number of bytes received by this uplink interface from
the physical network over the collection interval.

18 bytes-per-second-sent Long Bytes per
Second

Number of bytes sent per second by this uplink interface
to the physical network over the collection interval.

19 bytes-per-second-received Long Bytes per
Second

Number of bytes received per second by this uplink
interface from the physical network over the collection
interval.

20 mac-address String The MAC address of this uplink, if known. If it is not
known then “N/A”.

21 flags Long Flags indicating the types of metrics that are reported by
this uplink. The value of this field should be interpreted
as a bitmask. The meaning of each bit is as follows:
v 0x02 - Byte counts are supported
v 0x04 – Packet counts are supported
v 0x08 – Drop counts are supported
v 0x10 – Discard counts are supported
v 0x20 – Multicast counts are supported
v 0x40 – Broadcast counts are supported
v 0x80 – Interval bytes sent and received are supported

Virtualization host (vSwitch) by virtual network metric group
The virtualization host (vSwitch) Virtual Network metric collection group provides virtual network
metrics by virtualization host by vSwitch by virtual network. These metrics are collected at the
virtualization host's vSwitch port level by virtual network and aggregated to provide metrics for each
vSwitch by virtual network. For each virtualization host there will be an instance of these metrics for
each vSwitch (in cases where multiple vSwitches are associated with the virtualization host) for each
virtual network (vlan-id); therefore, there may be multiple instances within the group. In cases where a
“vSwitch” is not externalized for the virtualization host, the name of the vSwitch is “N/A” and the
metrics are associated with the virtualization host. These metrics are essentially an aggregation of the
metrics from the “Attached virtual server network adapters metric group” on page 665.

Chapter 16. zManager metric groups 663

Metrics are collected and provided on an interval, and each metric provided is the total cumulative value,
and not a delta.

Metric Group Name
"network-vswitch-by-virtual-network"

Collection Interval
30 seconds

Applicable Managed Object Class
"virtualization-host"

The following metrics are provided in each entry of this metric group:

Table 165. Virtualization host (vSwitch) by virtual network metric group

Pos Metric field name Type Units Description

1 vswitch-name String Name of the vSwitch. In the case where the vSwitch is
not uniquely identified for a virtual host then this will
be “N/A”.

“N/A” is returned for all virtualization-host objects
except where the type property of the virtualization-host
object is "zvm".

2 vlan-id Integer VLAN ID of the virtual network for which metrics are
being provided. This value corresponds to the vlan-id
property of the related virtual network object.

There may be cases where this field is 0 when metrics
are reported and the VLAN ID is unable to be
determined.

3 bytes-sent Long Count Number of bytes sent from this virtualization host or
virtualization host's vSwitch to the attached virtual
servers.

4 bytes-received Long Count Number of bytes received by this virtualization host or
virtualization host's vSwitch from the attached virtual
servers.

5 packets-sent Long Count Number of packets sent from this virtualization host or
virtualization host's vSwitch to the attached virtual
servers.

6 packets-received Long Count Number of packets received by this virtualization host or
virtualization host's vSwitch from the attached virtual
servers.

7 packets-sent-dropped Long Count Number of packets that were dropped when sending
from this virtualization host or virtualization host's
vSwitch to the attached virtual servers.

Packets may be dropped due to conditions related to
resource constraints such as a buffer shortage.

8 packets-received-dropped Long Count Number of packets received by this virtualization host or
virtualization host's vSwitch from the attached virtual
servers that were dropped.

Packets may be dropped due to conditions related to
resource constraints such as a buffer shortage.

664 HMC Web Services API

Table 165. Virtualization host (vSwitch) by virtual network metric group (continued)

Pos Metric field name Type Units Description

9 packets-sent-discarded Long Count Number of packets that were discarded when sending
from this virtualization host or virtualization host's
vSwitch to the attached virtual servers.

Packets may be discarded due to errors associated with
the packet, such as malformed packets.

10 packets-received-discarded Long Count Number of packets received by this virtualization host or
virtualization host's vSwitch from the virtual servers that
were discarded.

Packets may be discarded due to errors associated with
the packet, such as malformed packets

11 multicast-packets-sent Long Count Number of multicast packets sent from this
virtualization host or virtualization host's vSwitch to the
attached virtual servers.

12 multicast-packets-received Long Count Number of multicast packets received by this
virtualization host or virtualization host's vSwitch from
the attached virtual servers.

13 broadcast-packets-sent Long Count Number of broadcast packets sent from this
virtualization host or virtualization host's vSwitch to the
attached virtual servers.

14 broadcast-packets-received Long Count Number of broadcast packets received by this
virtualization host or virtualization host's vSwitch from
the attached virtual servers.

15 interval-bytes-sent Long Bytes Number of bytes sent by this virtual switch, for the
VLAN specified by vlan-id, over the collection interval.

16 interval-bytes-received Long Bytes Number of bytes received by this virtual switch, for the
VLAN specified by vlan-id, over the collection interval.

17 bytes-per-second-sent Long Bytes per
Second

Number of bytes sent per second by this virtual switch,
for the VLAN specified by vlan-id, over the collection
interval.

18 bytes-per-second-received Long Bytes per
Second

Number of bytes received by this virtual switch, for the
VLAN specified by vlan-id, over the collection interval.

19 flags Long Flags indicating the types of metrics that are supported.
The value of this field should be interpreted as a
bitmask. The meaning of each bit is as follows:
v 0x02 - Byte counts are supported
v 0x04 – Packet counts are supported
v 0x08 – Drop counts are supported
v 0x10 – Discard counts are supported
v 0x20 – Multicast counts are supported
v 0x40 – Broadcast counts are supported
v 0x80 – Interval bytes sent and received are supported

Attached virtual server network adapters metric group
This metric group provides metrics for each virtual server's virtual network adapter by virtual network.
Each virtual network adapter may be associated with multiple virtual networks; therefore, there may be
multiple instances of these metrics within the group. These metrics are collected at the virtualization
host's (vSwitch) port level for the attached virtual server virtual network adapter by virtual network.
These metrics are provided from the perspective of the virtualization host or virtualization host's vSwitch
sending data to and receiving data from the virtual server's network adapter. However, there is an
exception to this in the case of the PowerVM virtualization host. In this case, the metrics are collected at

Chapter 16. zManager metric groups 665

the virtual server's guest O/S level. The metrics are included in this list for consistency, allowing for a
good approximation of the data flowing over the interfaces. Therefore, the metric counters are reversed
from what is provided for the metric in this group. Counters like drops and discards are from the
perspective of the guest O/S for this interface and not the virtualization host.

The resource ID of the associated virtual server's network adapter is provided to allow the client
application to correlate the metrics with a particular virtual server.

Metrics are collected and provided on an interval, and each metric provided is the total cumulative value,
and not a delta.

Metric Group Name
"network-virtual-server-attached-network-adapter"

Collection Interval
30 seconds

Applicable Managed Object Class
"virtual-server"

The following metrics are provided in each entry of this metric group:

Table 166. Attached virtual server network adapters metric group

Pos Metric field name Type Units Description

1 network-adapter-id String Element identifier of the virtual servers' network
adapter. This value corresponds to the
{network-adapter-id} portion of the URI for the network
adapter. The full URI can be constructed using this
value together with the URI of the parent virtual
server.

2 vlan-id Integer VLAN ID of the virtual network for which metrics are
being provided. This value corresponds to the vlan-id
property of the related virtual network object.

There may be cases where this field is 0 when
zManager is unable to determine the per virtual
network metrics for this interface.

3 mac-address String MAC address of this interface.

4 bytes-sent Long Bytes Number of bytes sent to this Virtual Server network
interface for the virtual network.

5 bytes-received Long Bytes Number of bytes received from this Virtual Server
network interface for the virtual network.

6 packets-sent Long Count Number of packets sent on this interface to the Virtual
Server for the virtual network.

7 packets-received Long Count Number of packets received from this Virtual Server
network interface for the virtual network.

8 packets-sent-dropped Long Count Number of packets that were dropped when sending
to this Virtual Server Network interface for the virtual
network.

Packets may be dropped due to conditions related to
resource constraints such as a buffer shortage.

666 HMC Web Services API

Table 166. Attached virtual server network adapters metric group (continued)

Pos Metric field name Type Units Description

9 packets-received-dropped Long Count Number of packets received from this Virtual Server
network interface and for this virtual network that
were dropped.

Packets may be dropped due to conditions related to
resource constraints such as a buffer shortage.

10 packets-sent-discarded Long Count Number of packets that were discarded when sending
to this Virtual Server network interface for this virtual
network.

Packets may be discarded due to errors associated
with the packet, such as malformed packets.

11 packets-received-discarded Long Count Number of packets received from this virtual server
network interface for this virtual network that were
discarded.

Packets may be discarded due to errors associated
with the packet, such as malformed packets

12 multicast-packets-sent Long Count Number of multicast packets sent to this virtual server
network interface for this virtual network.

13 multicast-packets-received Long Count Number of multicast packets received from this virtual
server network interface for this virtual network.

14 broadcast-packets-sent Long Count Number of broadcast packets sent to this virtual server
virtual network interface for this virtual network.

15 broadcast-packets-received Long Count Number of broadcast packets received from this
virtual server virtual network interface for this virtual
network.

16 interval-bytes-sent Long Bytes Number of bytes sent by this network adapter over
the collection interval.

17 interval-bytes-received Long Bytes Number of bytes received by this network adapter
over the collection interval.

18 bytes-per-second-sent Long Bytes per
Second

Number of bytes sent per second by this network
adapter over the collection interval.

19 bytes-per-second-received Long Bytes per
Second

Number of bytes received per second by this network
adapter over the collection interval.

20 flags Long Flags indicating the types of metrics that are
supported by this interface. The value of this field
should be interpreted as a bitmask. The meaning of
each bit is as follows:
v 0x02 - Byte counts are supported
v 0x04 – Packet counts are supported
v 0x08 – Drop counts are supported
v 0x10 – Discard counts are supported
v 0x20 – Multicast counts are supported
v 0x40 – Broadcast counts are supported
v 0x80 – Interval bytes sent and received are

supported

Optimizer network metrics
Network metrics are provided for optimizer blades. The following metric groups are provided:
v Optimizer IEDN Virtual Network Interface Metric Group
v Optimizer IEDN Physical Network Adapter Metric Group

Chapter 16. zManager metric groups 667

Optimizer IEDN virtual network interface metric group
This metric group provides metrics for an optimizer's IEDN attached network interfaces by virtual
network. Currently the following optimizers are supported for this metric group: Datapower.

Metrics are collected and provided on an interval, and each metric provided is the total cumulative value,
and not a delta.

Metric Group Name
"network-optimizer-attached-iedn-interface"

Collection Interval
30 seconds

Applicable Managed Object Class
"blade"

The following metrics are provided in each entry of this metric group:

Table 167. Optimizer IEDN virtual network interface metric group

Pos Metric field name Type Units Description

1 iedn-interface-id String Element identifier of the optimizer's IEDN interface.
This value corresponds to the {iedn-interface-id}
portion of the URI for the interface. The full URI
can be constructed using this value together with
the URI of the parent blade.

2 vlan-id Integer VLAN ID of the virtual network for which metrics
are being provided. This value corresponds to the
vlan-id property of the related virtual network
object.

There may be cases where this field is 0 when
zManager is unable to determine the per virtual
network metrics for this interface.

3 mac-address String MAC address of this interface.

4 bytes-sent Long Count Number of bytes sent from this interface.

5 bytes-received Long Count Number of bytes received by this interface.

6 packets-sent Long Count Number of packets sent from this interface.

7 packets-received Long Count Number of packets received by this interface.

8 packets-sent-dropped Long Count Number of packets that were dropped when
sending to this Virtual Server Network interface for
the virtual network.

Packets may be dropped due to conditions related
to resource constraints such as a buffer shortage.

9 packets-received-dropped Long Count Number of packets received by this interface that
were dropped.

Packets may be dropped due to conditions related
to resource constraints such as a buffer shortage.

10 packets-sent-discarded Long Count Number of packets that were discarded when
sending from this interface.

Packets may be discarded due to errors associated
with the packet, such as malformed packets.

668 HMC Web Services API

Table 167. Optimizer IEDN virtual network interface metric group (continued)

Pos Metric field name Type Units Description

11 packets-received-discarded Long Count Number of packets received by this interface that
were discarded.

Packets may be discarded due to errors associated
with the packet, such as malformed packets.

12 multicast-packets-sent Long Count Number of multicast packets sent from this
interface.

13 multicast-packets-received Long Count Number of multicast packets received by this
interface

14 broadcast-packets-sent Long Count Number of broadcast packets sent from this
interface.

15 broadcast-packets-received Long Count Number of broadcast packets received to this
interface.

16 interval-bytes-sent Long Bytes Number of bytes sent by this interface over the
collection interval.

17 interval-bytes-received Long Bytes Number of bytes received by this interface over the
collection interval

18 bytes-per-second-sent Long Bytes per
Second

Number of bytes sent per second by this interface
over the collection interval.

19 bytes-per-second-received Long Bytes per
Second

Number of bytes received per second by this
interface over the collection interval.

20 flags Long Flags indicating each types of metrics are
supported. The value of this field should be
interpreted as a bitmask. The meaning of each bit is
as follows:
v 0x02 - Byte counts are supported
v 0x04 – Packet counts are supported
v 0x08 – Drop counts are supported
v 0x10 – Discard counts are supported
v 0x20 – Multicast counts are supported
v 0x40 – Broadcast counts are supported
v 0x80 – Interval bytes sent and received are

supported

Optimizer IEDN physical network adapter metric group
This metric group provides metrics for an optimizer's IEDN attached network interfaces. Currently the
following optimizers are supported for this metric group: Datapower.

Metrics are collected and provided on an interval, and each metric provided is the total cumulative value,
and not a delta.

Metric Group Name
"optimizer-physical-network-adapter"

Collection Interval
30 seconds

Applicable Managed Object Class
"blade"

This metric collection provides metrics for an optimizer's physical network adapters.

Chapter 16. zManager metric groups 669

Table 168. Optimizer IEDN physical network adapter metric group

Pos Metric field name Type Units Description

1 network-adapter-id String The network-adapter-id is the name of the
optimizer's physical network adapter.

For the DataPower optimizer, there are two physical
network interfaces. For example, names are
commonly "eth7" and "eth9".

2 mac-address String MAC address of this interface

3 bytes-sent Long Count Number of bytes sent from this interface.

4 bytes-received Long Count Number of bytes received by this interface

5 packets-sent Long Count Number of packets sent from this interface

6 packets-received Long Count Number of packets received by this interface.

7 packets-sent-dropped Long Count Number of packets that were dropped when sending
from this interface.

8 packets-received-dropped Long Count Number of packets received by this interface that
were dropped.

9 packets-sent-discarded Long Count Number of packets that were discarded when
sending from this interface.

Packets may be discarded due to errors associated
with the packet, such as malformed packets.

10 packets-received-discarded Long Count Number of packets received by this interface that
were discarded.

Packets may be discarded by the virtual or physical
due to errors associated with the packet, such as
malformed packets.

11 multicast-packets-sent Long Count Number of multicast packets sent from this interface.

12 multicast-packets-received Long Count Number of multicast packets received by this
interface.

13 broadcast-packets-sent Long Count Number of broadcast packets sent from this
interface.

14 broadcast-packets-received Long Count Number of broadcast packets received by this
interface.

15 interval-bytes-sent Long Bytes Number of bytes sent by this network adapter over
the collection interval.

16 interval-bytes-received Long Bytes Number of bytes received by this network adapter
over the collection interval.

17 bytes-per-second-sent Long Bytes per
Second

Number of bytes received per second by this
network adapter over the collection interval.

18 bytes-per-second-received Long Bytes per
Second

Number of bytes sent per second by this network
adapter over the collection interval.

670 HMC Web Services API

Table 168. Optimizer IEDN physical network adapter metric group (continued)

Pos Metric field name Type Units Description

19 flags Long Flags indicating the types of metrics that are
reported by this uplink. The value of this field
should be interpreted as a bitmask. The meaning of
each bit is as follows:
v 0x02 - Byte counts are supported
v 0x04 – Packet counts are supported
v 0x08 – Drop counts are supported
v 0x10 – Discard counts are supported
v 0x20 – Multicast counts are supported
v 0x40 – Broadcast counts are supported
v 0x80 – Interval bytes sent and received are

supported

Physical switches
The physical switches provide the connectivity between the blades and CPCs in the zEnterprise
intraensemble data network (IEDN).

There are two types of Ethernet switches within each zBX:
v Top-of-Rack Switches (TORs) – A pair of TORs reside in each zBX and act as a primary and backup.

TORs connect the blades in the zBX to System z network interfaces, and to other external networking
equipment, such as routers.

v Ethernet Switch Modules (ESMs) - These switches connect the blades in the zBX to the IEDN and link
the blades to the TORs.

The initial configuration and setup of the physical switches are provided by zManager. Some TOR ports
can be managed by the user from the zManager UI. The ESMs are not accessible for configuration
changes through zManager's external management interfaces.

Metrics are provides for the following TOR port types:
v External - These ports that connect to customer's external network
v IEDN Host – These ports connect to System z IEDN network adapters, such as OSX.
v ISAOPT - These ports connect to ISAOPT Coordinator.
v BladeCenter ESM Ports – These ports connect to the ESM switches (other than ISAOPT).
v zBX to zBX- These ports connect the TOR in one zBX to the TOR in another zBX.

Metrics are provides for the following ESM port types:
v Uplinks to TOR – These ports connect the ESM to the TOR.
v Blade Ports – These ports connect the ESMs to the Blade network adapters.

Monitoring the physical switches can allow for determining the health and performance of the switches.
For example, metrics such as dropped and discarded packets can affect the over all performance of
workloads flowing through these switches. Bytes transferred metrics for ports provide the ability to
determine bandwidth utilization.

Top-of-rack switch ports metrics
This metric collection group provides metrics for the Top-of-Rack (TOR) switch ports for the TORs in
each zBX.

Metric Group Name
"top-of-rack-switch-ports"

Collection Interval
120 seconds

Chapter 16. zManager metric groups 671

Applicable Managed Object Class
"zbx"

This metric collection provides metrics for an optimizer's physical network adapters.

Table 169. Top-of-rack switch port metrics group

Pos Metric field name Type Units Description

1 switch-location-info String The location of the switch in the zBX that was set by
zManager.

The switch-location-info is a 4 character cage location
identifier. The first character identifies the zBX rack,
and the remaining characters identify the vertical
location within the rack

2 port-num Integer Switch port number

3 type String
Enum

v “B” (BladeCenter ESM port): attaches to an ESM
switch.

v “H” (Host port): attaches to System z network
adapters for the IEDN

v “E” (External port): attaches to external networking
equipment

v “I” (ISAOPT port): for ISAOPT
v “Z” (zBX port): attaches the zBX to another zBX
v “T” (TOR port): attaches to the other TOR switch in

the same zBX

4 remote-partner-info String The remote partner depends upon the port type:
v If type is “Z”: attached to a TOR in another zBX,

this will be the location of the top-of-rack-switch.
v If type is “E”: "N/A"
v If type is “H”: This is the cpc id.pchid of the

attached OSX.
v If type is “B”: The format of the remote-partner-info

is bladecenter chassis-id_ esm location-id The first 4
characters identify the blade center chassis within
this zBX. The last 4 characters identify the ESM
location ID

v If type is “I”: The name of the blade center chassis
containing the ISAOPT blades

v If type is “T”: The name of the other TOR switch.

5 bytes-sent Long Count Number of bytes sent from this port.

6 bytes-received Long Count Number of bytes received to this port.

7 packets-sent Long Count Number of packets sent from this port.

8 packets-received Long Count Number of packets received to this port.

9 packets-sent-dropped Long Count Number of packets that were dropped when sending
from this port.

10 packets-received-dropped Long Count Number of packets received to this port that were
dropped.

11 packets-sent-discarded Long Count Number of packets that were discarded when sending
from this port. Packets may be discarded due to errors
associated with the packet, such as malformed
packets.

12 packets-received-discarded Long Count Number of packets received by these ports that were
discarded. Packets may be discarded by the virtual or
physical due to errors associated with the packet, such
as malformed packets

672 HMC Web Services API

Table 169. Top-of-rack switch port metrics group (continued)

Pos Metric field name Type Units Description

13 multicast-packets-sent Long Count Number of multicast packets sent from this port.

14 multicast-packets-received Long Count Number of multicast packets received to this port.

15 broadcast-packets-sent Long Count Number of broadcast packets sent from this port.

16 broadcast-packets-received Long Count Number of broadcast packets received to this port.

17 interval-bytes-sent Long Bytes Number of bytes sent by this switch port over the
collection interval.

18 interval-bytes-received Long Bytes Number of bytes received by this switch port over the
collection interval.

19 bytes-per-second-sent Long Bytes per
Second

Number of bytes sent per second by this switch port
over the collection interval.

20 bytes-per-second-received Long Bytes per
Second

Number of bytes received per second by this switch
port over the collection interval.

21 flags Long Flags indicating the types of metrics that are reported
by this uplink. The value of this field should be
interpreted as a bitmask. The meaning of each bit is
as follows:
v 0x02 - Byte counts are supported
v 0x04 – Packet counts are supported
v 0x08 – Drop counts are supported
v 0x10 – Discard counts are supported
v 0x20 – Multicast counts are supported
v 0x40 – Broadcast counts are supported
v 0x80 – Interval bytes sent and received are

supported

ESM switch port metrics
This metric group provides metrics for the ESM switch ports for each ESM in each zBX.

Metric Group Name
"ethernet-switch-module-ports"

Collection Interval
120 seconds

Applicable Managed Object Class
"zbx"

This metric collection provides metrics for an optimizer's physical network adapters.

Table 170. Optimizer IEDN physical network adapter metric group

Pos Metric field name Type Units Description

1 switch-location-info String The location of the switch in the zBX that was set
by zManager.

The switch-location-info is a 4 character cage
location identifier. The first character identifies the
zBX rack, and the remaining characters identify the
vertical location within the rack.

2 port-num Integer Switch port number

Chapter 16. zManager metric groups 673

Table 170. Optimizer IEDN physical network adapter metric group (continued)

Pos Metric field name Type Units Description

3 type String
Enum

v “I” (Internal port): This port is connected to a
Blade.

v “E” (External port): This port is connected to a
TOR.

4 remote-partner-info String Information about the remote element connected to
the port. The value depends on the type of the port.
In the case where the port type is:
v If type is “E”: This field is the name of the

top-of-rack-switch connected to this ESM port.
This TOR resides in the same zBX as the ESM.

v If type is “I”: This field is the name of the
attached blade. The blade resides in the same zBX
and blade center chassis as the ESM.

5 bytes-sent Long Count Number of bytes sent from this port.

6 bytes-received Long Count Number of bytes received to this port.

7 packets-sent Long Count Number of packets sent from this port.

8 packets-received Long Count Number of packets received to this port.

9 packets-sent-dropped Long Count Number of packets that were dropped when
sending from this port.

10 packets-received-dropped Long Count Number of packets received to this port that were
dropped.

11 packets-sent-discarded Long Count Number of packets that were discarded when
sending from this port. Packets may be discarded
due to errors associated with the packet, such as
malformed packets.

12 packets-received-discarded Long Count Number of packets received by these ports that
were discarded. Packets may be discarded by the
virtual or physical due to errors associated with the
packet, such as malformed packets.

13 multicast-packets-sent Long Count Number of multicast packets sent from this port.

14 multicast-packets-received Long Count Number of multicast packets received to this port.

15 broadcast-packets-sent Long Count Number of broadcast packets sent from this port.

16 broadcast-packets-received Long Count Number of broadcast packets received to this port.

17 interval-bytes-sent Long Bytes Number of bytes sent by this switch port over the
collection interval.

18 interval-bytes-received Long Bytes Number of bytes received by this switch port over
the collection interval.

19 bytes-per-second-sent Long Bytes per
Second

Number of bytes sent per second by this switch
port over the collection interval.

20 bytes-per-second-received Long Bytes per
Second

Number of bytes received per second by this switch
port over the collection interval.

674 HMC Web Services API

Table 170. Optimizer IEDN physical network adapter metric group (continued)

Pos Metric field name Type Units Description

21 flags Long Flags indicating the types of metrics that are
reported by this uplink. The value of this field
should be interpreted as a bitmask. The meaning of
each bit is as follows:
v 0x02 - Byte counts are supported
v 0x04 – Packet counts are supported
v 0x08 – Drop counts are supported
v 0x10 – Discard counts are supported
v 0x20 – Multicast counts are supported
v 0x40 – Broadcast counts are supported
v 0x80 – Interval bytes sent and received are

supported

Chapter 16. zManager metric groups 675

676 HMC Web Services API

Appendix A. XML document structure of a performance policy

To import a performance policy for a workload resource group through the HMC Workload Resource
Group Details task or the Import Performance Policy operation, you must first create an XML document
that defines the policy elements. Use this topic to create a properly structured XML document to import.

The XML document starts with the WorkloadPerformancePolicy element, which contains all the elements
of a workload resource group performance policy. The following sample shows the correct structure of
the major elements in the WorkloadPerformancePolicy element:
<WorkloadPerformancePolicy
xmlns=”http://www.ibm.com/PPM/WorkloadPerformancePolicy”>
<Name> SampleWorkloadPerformancePolicy </Name>
<Description> Sample performance policy for a workload </Description>
<Version> 3.00.00 </Version>
<UI> PPM Editor </UI>
<WorkloadImportance> High </WorkloadImportance>
<ServiceClasses> ... </ServiceClasses>
</WorkloadPerformancePolicy>

The following table describes the major elements in the WorkloadPerformancePolicy element.

Table 171. Performance policy XML elements

Element name Rqd/Opt Description

Name Required The display name specified for the performance policy. All Name
elements must be up to 64 characters long, consisting of alphanumeric
characters, blanks, periods, underscores, or dashes. Names must start
with an alphabetic character and end with an alphabetic character,
numeric character, underscore, period, or dash. Names must be unique
to other existing performance policies in the workload resource group.

Description Optional Arbitrary text describing the performance policy in up to 256 characters.

Version Required A version number, a release number, and a level number, which are each
separated by a period. The version number must be between 1 and 99.
The release and level numbers must be between 0 and 99.

UI Required The name of the product that last edited the XML document. UI has the
same length and content restrictions as the Name element.

WorkloadImportance Required The importance value assigned to the performance policy, which is one
of the following: highest, high, medium, low, or lowest

ServiceClasses Required The ServiceClasses element contains one or more service classes, as
defined in “XML structure of a ServiceClasses element.”

XML structure of a ServiceClasses element
The ServiceClasses element contains one or more ServiceClass elements that set the priority of and
classify resources within a performance policy. A service class is a group of virtual servers that has the
same service goals or performance objectives, resource requirements, or availability requirements.

The following sample shows the structure of a ServiceClass element within the ServiceClasses element:
<ServiceClasses>
<ServiceClass>
<Name> Web Hot </Name>
<Description> Critical web transactions </Description>
<Type> Server </Type>

© Copyright IBM Corp. 2012, 2013 677

<Goal> ... </Goal>

<RuleBuilderElement> ... </RuleBuilderElement>

</ServiceClasses>
</ServiceClasses>

ServiceClass elements are positional. After you import and activate the policy, zManager searches service
classes from low-ordered to high-ordered service class during classification to find a match.

The following table describes the elements in the ServiceClass element.

Table 172. Performance policy XML: Elements in a ServiceClass element

Element name Rqd/Opt Description

Name Required The name specified for the service class. The Name element must be a
valid identifier up to 64 characters long, consisting of alphanumeric
characters, blanks, periods, underscores, or dashes. Names must start
with an alphabetic character and end with an alphabetic character,
numeric character, underscore, period, or dash. Names must be unique to
other existing service classes in the performance policy.

Description Optional Arbitrary text describing the service class in up to 256 characters.

Type Required This element identifies the resource associated with the service class. The
Type value must be server to target specific virtual servers.

Goal Required The Goal element identifies the type of performance goal required for
this service class, as described in “XML structure of a Goal element.”

RuleBuilderElement Required The RuleBuilderElement contains the classification attributes for the
service class, which are described in “XML structure of a
RuleBuilderElement ” on page 679.

XML structure of a Goal element

The Goal element identifies the type of performance goal, which is either a velocity goal or a
discretionary goal. If you code the Velocity element, you also need to code the Importance element. The
following samples show how to code the XML for each type of goal:
<Goal>
<Discretionary/>

</Goal>

or
<Goal>
<Velocity>
<Importance> Medium </Importance>
<Level> Fast </Level>
</Velocity>

</Goal>

For every Goal element, you must code either the Discretionary element or the Velocity element. If you
code the Velocity element, you must code the Importance and Level elements as described in the
following table.

Table 173. Performance policy XML: Elements required for a Velocity element

Element name Rqd/Opt Description

Importance Required This field identifies the business importance level assigned to the service
class, which must be one of the following: highest, high, medium, low,
or lowest

678 HMC Web Services API

Table 173. Performance policy XML: Elements required for a Velocity element (continued)

Element name Rqd/Opt Description

Level Required This field identifies the velocity goal value of the service class, which
must be one of the following: fastest, fast, moderate, slow, or slowest

XML structure of a RuleBuilderElement

The RuleBuilderElement represents a classification rule for the service class. Each service class within a
performance policy has one or more classification rules that identify how hardware or software elements
of a workload resource group are associated with the service class. So each ServiceClass element can
have one or more RuleBuilderElements.

Each classification rule consists of one or more conditions that enable zManager to associate a service
class to incoming work. A condition is a group containing a filter type, filter operator and filter value. To
fully represent a classification rule, a RuleBuilderElement consists of one or more Filter elements, each
containing one FilterType, one FilterOperation, and one FilterValue element.

Classification rules within a service class are positional. Assign any RuleBuilderElement containing a
wildcard filter value to a high-order service class, and assign any RuleBuilderElement containing a
specific filter value to a low-order service class.

The following sample shows the XML structure of a simple RuleBuilderElement:
<RuleBuilderElement>

<RuleBuilderElementType> Rule </RuleBuilderElementType>
<Filter>

<FilterType> Virtual Server Name </FilterType>
<FilterOperation> stringMatch </FilterOperation>
<FilterValue> WebSales* </FilterValue

</Filter>
</RuleBuilderElement>

This RuleBuilderElement classifies all virtual servers with the string “WebSales” in the name as resources
to be managed according to the goals set for the service class.

All RuleBuilderElements must begin with RuleBuilderElementType, which identifies the type of
classification rule as one of the following:

Rule
Defines a simple filter that resolves to true or false based on its filter pattern compared to a specified
virtual server attribute.

And
Defines a complex set of two rules; during classification, both of the two rules imbedded within this
RuleBuilderElement must be true for the virtual server to be managed according to the goals for this
service class

Or Defines a complex set of two rules; during classification, only one of the two rules imbedded within
this RuleBuilderElement must be true for the virtual server to be managed according to the goals for
this service class

If you code a RuleBuilderElementType value of and or or, exactly two RuleBuilderElements must be
nested inside this RuleBuilderElement object so they can be logically compared. The following sample
shows nested RuleBuilderElements for a complex set of rules that are equivalent to the expression Rule
1 and (Rule 2 or Rule 3):
<RuleBuilderElement>

<RuleBuilderElementType>And</RuleBuilderElementType>

Appendix A. XML document structure of a performance policy 679

<RuleBuilderElement>
<RuleBuilderElementType>Rule</RuleBuilderElementType>
<Filter> ... filters for rule 1 ... </Filter>

</RuleBuilderElement>

<RuleBuilderElement>
<RuleBuilderElementType>Or</RuleBuilderElementType>

<RuleBuilderElement>
<RuleBuilderElementType>Rule</RuleBuilderElementType>
<Filter> ... filters for rule 2 ... </Filter>

</RuleBuilderElement>

<RuleBuilderElement>
<RuleBuilderElementType>Rule</RuleBuilderElementType>
<Filter> ... filters for rule 3 ... </Filter>

</RuleBuilderElement>

</RuleBuilderElement>

</RuleBuilderElement>

Within every Filter element, you must code one FilterType, one FilterOperation, and one FilterValue
element. These elements are described in the following table.

Table 174. Performance policy XML: Elements in a Filter element

Element name Rqd/Opt Description

FilterType Required This element identifies the virtual server attribute to be used during
classification. Valid values are:

Hostname
The host name of the virtual server. To use this value, a guest
platform management provider must be running on the operating
system on the virtual server.

Virtual Server Name
The virtual server ID for z/VM and x Hyp or the logical partition
(LPAR) ID for PowerVM and PR/SM. This ID is the same as the
name used on the Virtual Servers tab on the Ensemble Management
window in the primary HMC.

OS Type
The type of operating system, such as AIX® or Linux, that is running
on the virtual server. You can select this type only if he virtual server
definition contains the OS type. To use this value, a guest platform
management provider must be running on the operating system on
the virtual server.

OS Level
The release level of the operating system running on the virtual
server. To use this value, a guest platform management provider
must be running on the operating system on the virtual server.

OS Name
The name of the operating system image running on the virtual
server as known to its operating system. To use this value, a guest
platform management provider must be running on the operating
system on the virtual server.

680 HMC Web Services API

Table 174. Performance policy XML: Elements in a Filter element (continued)

Element name Rqd/Opt Description

FilterOperation Required This element identifies the logical filter operation, which must be one of
the following:
v stringMatch – the filter value must match the property defined by the

filter type
v stringNotMatch – the filter value must not match the property defined

by the filter type

FilterValue Required The value to be used for classification. Possible values vary based on the
value specified for the FilterType element. A filter value cannot be longer
than 255 characters. A filter value must be a regular expression that can
include one period (.) as a substitute for one character and one wildcard
(.*) as a substitute for multiple characters. This wildcard can be used only
at the end of an expression.

v For filter type Hostname, provide a fully qualified host name that
consists of the host name and the TCP domain name. The TCP domain
name specifies a group of systems that share a common suffix (domain
name). For example, given a fully qualified host name of
server1.us.ibm.com:
– server1 is the host name
– us.ibm.com is the TCP domain name

The fully qualified host name server1.us.ibm.com illustrates a
character-based format, but you can use a numerical-based name. The
numerical-based host name is not the same as the system's IP address.

v For filter type OS Level, provide the release level of the operating
system.

v For filter type OS Name, provide the LPAR name or virtual machine
ID.

v For filter type OS Type, provide the name of the operating system.

v For filter type Virtual Server Name, provide the virtual server name
shown in the Virtual Server Details window in the HMC.

Sample XML document for a performance policy
The following sample illustrates a correctly structured XML document for a workload resource group
performance policy.

This performance policy consists of two service classes:

SC1
This service class sets a performance goal of slow velocity and medium importance for virtual servers
with attributes that match both of the following classification rules:
v The virtual server name is “Server1”, and
v The hostname is “abc.pok.ibm.com”

SC2
This service class sets a performance goal of slow velocity and medium importance for virtual servers
with a virtual server name that matches “Lpar1”.

Appendix A. XML document structure of a performance policy 681

<?xml version="1.0" encoding="UTF-8"?>
<WorkloadPerformancePolicy
xmlns=”http://www.ibm.com/PPM/WorkloadPerformancePolicy”>

<Name>Workload Policy name</Name>
<Description>Workload performance policy for sample workload</Description>
<Version>1.00.00</Version>
<UI>PPM Editor</UI>
<WorkloadImportance>High</WorkloadImportance>

<ServiceClasses>

<ServiceClass>
<Name>SC1</Name>
<Description>SC1 Description</Description>
<Type>Server</Type>

<RuleBuilderElement>
<RuleBuilderElementType>And</RuleBuilderElementType>
<RuleBuilderElement>

<RuleBuilderElementType>Rule</RuleBuilderElementType>
<Filter>
<FilterType>Virtual Server Name</FilterType>
<FilterOperation>stringMatch</FilterOperation>
<FilterValue>Server1</FilterValue>
</Filter>

</RuleBuilderElement>
<RuleBuilderElement>
<RuleBuilderElementType>Rule</RuleBuilderElementType>
<Filter>
<FilterType>Hostname</FilterType>
<FilterOperation>stringMatch</FilterOperation>
<FilterValue>abc.pok.ibm.com</FilterValue>
</Filter>

</RuleBuilderElement>
</RuleBuilderElement>

<Goal>
<Importance>Medium</Importance>
<Velocity>Slow</Velocity>
</Goal>
</ServiceClass>

Figure 301. Policy XML example, Part 1

682 HMC Web Services API

<ServiceClass>
<Name>SC2</Name>
<Description>Service Class for virtual server</Description>
<Type>Server</Type>

<RuleBuilderElement>
<RuleBuilderElementType>Rule</RuleBuilderElementType>
<Filter>
<FilterType>Virtual Server Name</FilterType>
<FilterOperation>stringMatch</FilterOperation>
<FilterValue>Lpar1</FilterValue>
</Filter>
</RuleBuilderElement>

<Goal>
<Importance>Medium</Importance>
<Velocity>Slow</Velocity>
</Goal>
</ServiceClass>

</ServiceClasses>
</WorkloadPerformancePolicy>

Figure 302. Policy XML example, Part 2

Appendix A. XML document structure of a performance policy 683

684 HMC Web Services API

Appendix B. Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 USA

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “ AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

© Copyright IBM Corp. 2012, 2013 685

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks of International Business Machines Corp., registered in
many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on the web at “Copyright and trademark
information” at http://www.ibm.com/legal/copytrade.shtml.

Intel, and Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a trademark of Linux Torvalds in the United States, other countries, or both.

Other product and service names might be trademarks of IBM or other companies.

686 HMC Web Services API

http://www.ibm.com/legal/copytrade.shtml

Electronic emission notices
The following statements apply to this IBM product. The statement for other IBM products intended for
use with this product will appear in their accompanying manuals.

Federal Communications Commission (FCC) Statement

Note: This equipment has been tested and found to comply with the limits for a Class A digital device,
pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against
harmful interference when the equipment is operated in a commercial environment. This equipment
generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with
the instructions contained in the installation manual, may cause harmful interference to radio
communications. Operation of this equipment in a residential area is likely to cause harmful interference,
in which case the user will be required to correct the interference at his own expense.

Properly shielded and grounded cables and connectors must be used in order to meet FCC emission
limits. IBM is not responsible for any radio or television interference caused by using other than
recommended cables and connectors, by installation or use of this equipment other than as specified in
the installation manual, or by any other unauthorized changes or modifications to this equipment.
Unauthorized changes or modifications could void the user's authority to operate the equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
(1) this device may not cause harmful interference, and (2) this device must accept any interference
received, including interference that may cause undesired operation.

Canadian Department of Communications Compliance Statement

This Class A digital apparatus complies with Canadian ICES-003.

Avis de conformlté aux normes du ministère des Communications du Canada

Cet appareil numérique de la classe A est conform à la norme NMB-003 du Canada.

European Union (EU) Electromagnetic Compatibility Directive

This product is in conformity with the protection requirements of EU Council Directive 2004/108/EC on
the approximation of the laws of the Member States relating to electromagnetic compatibility. IBM cannot
accept responsibility for any failure to satisfy the protection requirements resulting from a
non-recommended modification of the product, including the fitting of non-IBM option cards.

This product has been tested and found to comply with the limits for Class A Information Technology
Equipment according to European Standard EN 55022. The limits for Class equipment were derived for
commercial and industrial environments to provide reasonable protection against interference with
licensed communication equipment.

Warning: This is a Class A product. In a domestic environment, this product may cause radio interference
in which case the user may be required to take adequate measures.

European Community contact:
IBM Deutschland GmbH
Technical Regulations, Department M372
IBM-Allee 1, 71139 Ehningen, Germany
Telephone: 0049 (0) 7032 15-2941
email: lugi@de.ibm.com

EC Declaration of Conformity (In German)

Appendix B. Notices 687

Deutschsprachiger EU Hinweis: Hinweis für Geräte der Klasse A EU-Richtlinie zur
Elektromagnetischen Verträglichkeit

Dieses Produkt entspricht den Schutzanforderungen der EU-Richtlinie 89/336/EWG zur Angleichung der
Rechtsvorschriften über die elektromagnetische Verträglichkeit in den EU-Mitgliedsstaaten und hält die
Grenzwerte der EN 55022 Klasse A ein.

Um dieses sicherzustellen, sind die Geräte wie in den Handbüchern beschrieben zu installieren und zu
betreiben. Des Weiteren dürfen auch nur von der IBM empfohlene Kabel angeschlossen werden. IBM
übernimmt keine Verantwortung für die Einhaltung der Schutzanforderungen, wenn das Produkt ohne
Zustimmung der IBM verändert bzw. wenn Erweiterungskomponenten von Fremdherstellern ohne
Empfehlung der IBM gesteckt/eingebaut werden.

EN 55022 Klasse A Geräte müssen mit folgendem Warnhinweis versehen werden:

"Warnung: Dieses ist eine Einrichtung der Klasse A. Diese Einrichtung kann im Wohnbereich
Funk-Störungen verursachen; in diesem Fall kann vom Betreiber verlangt werden, angemessene
Maßnahmen zu ergreifen und dafür aufzukommen."

Deutschland: Einhaltung des Gesetzes über die elektromagnetische Verträglichkeit von Geräten

Dieses Produkt entspricht dem “Gesetz über die elektromagnetische Verträglichkeit von Geräten
(EMVG)“. Dies ist die Umsetzung der EU-Richtlinie 89/336/EWG in der Bundesrepublik Deutschland.

Zulassungsbescheinigung laut dem Deutschen Gesetz über die elektromagnetische Verträglichkeit von
Geräten (EMVG) vom 18. September 1998 (bzw. der EMC EG Richtlinie 89/336) für Geräte der Klasse
A.

Dieses Gerät ist berechtigt, in Übereinstimmung mit dem Deutschen EMVG das EG-Konformitätszeichen
- CE - zu führen.

Verantwortlich für die Konformitätserklärung nach Paragraf 5 des EMVG ist die IBM Deutschland
GmbH, 70548 Stuttgart.

Informationen in Hinsicht EMVG Paragraf 4 Abs. (1) 4:

Das Gerät erfüllt die Schutzanforderungen nach EN 55024 und EN 55022 Klasse A.

update: 2004/12/07

People's Republic of China Class A Compliance Statement

This is a Class A product. In a domestic environment, this product may cause radio interference in which
case the user may need to perform practical actions.

Japan Class A Compliance Statement

688 HMC Web Services API

This is a Class A product based on the standard of the VCCI Council. If this equipment is used in a
domestic environment, radio interference may occur, in which case, the user may be required to take
corrective actions.

Korean Class A Compliance Statement

Taiwan Class A Compliance Statement

Warning: This is a Class A product. In a domestic environment, this product may cause radio interference
in which case the user will be required to take adequate measures.

� ��� ���(�)�	
������ � �����
��� �� ���� � �� ����� �� , !"#�
$%&' ���� *� +�	 ��-.

A

Appendix B. Notices 689

690 HMC Web Services API

Glossary

A.

advanced management module (AMM). A hardware
unit that provides system-management functions for all
the blade servers in a BladeCenter chassis.

alternate HMC. A System z Hardware Management
Console (HMC) that is paired with the primary HMC
to provide redundancy.

See also primary HMC.

AMM. See advanced management module.

appliance. A software device that provides a narrow
range of functions and generally runs on a hardware
platform.

application environment. The environment that
includes the software and the server or network
infrastructure that supports it.

ARM-instrumented application. An application in
which application response measurement (ARM) calls
are added to the source code so that management
systems can monitor the performance of the
application. ARM is an Open Group standard.

Automate suite (Automate). The second of two suites
of functionality associated with the IBM zEnterprise
Unified Resource Manager. The Automate suite
includes goal-oriented monitoring and management of
resources and energy management.

See also Manage suite.

B.

blade. A hardware unit that provides
application-specific services and components. The
consistent size and shape (or form factor) of each blade
allows it to fit in a BladeCenter chassis.

BladeCenter chassis. A modular chassis that can
contain multiple blades, allowing the individual blades
to share resources such as the management, switch,
power, and blower modules.

C.

central processor complex (CPC). A physical
collection of hardware that consists of main storage,
one or more central processors, timers, and channels. In
the zEnterprise environment, the CPC consists of a
zEnterprise mainframe and any attached IBM
zEnterprise BladeCenter Extension (zBX).

See also node and zCPC.

classification rule. A rule used by System z workload
resource group manager firmware and software to
assign a service class.

CPC. See central processor complex.

D.

DataPower XI50z. See IBM WebSphere® DataPower
Integration Appliance XI50 for zEnterprise.

discretionary goal. A service class performance goal
assigned to low priority work that does not have any
specific performance goal. Work is run when system
resources are available.

E.

ensemble. A collection of one or more zEnterprise
nodes (including any attached zBX) that are managed
as a single logical virtualized system by the Unified
Resource Manager, through the Hardware Management
Console.

ensemble member. A zEnterprise node that has been
added to an ensemble.

See also node.

F.

firmware. Licensed Internal Code (LIC) that is
shipped with hardware. Firmware is considered an
integral part of the system and is loaded and run at
power on. Firmware is not open for customer
configuration and is expected to run without any
customer setup.

G.

GPMP. See guest platform management provider.

guest platform management provider (GPMP). An
optional suite of applications that is installed in specific
z/OS, Linux, and AIX operating system images to
support platform management functions. For example,
the guest platform management provider collects and
aggregates performance data for virtual servers and
workload resource groups.

H.

Hardware Management Console (HMC). A user
interface through which data center personnel
configure, control, monitor, and manage System z
hardware and software resources. The HMC
communicates with each central processor complex
(CPC) through the Support Element. On an IBM
zEnterprise 196 (z196), using the Unified Resource

© Copyright IBM Corp. 2012, 2013 691

Manager on the HMCs or Support Elements, personnel
can also create and manage an ensemble.

See also primary HMC and alternate HMC.

HMC. See Hardware Management Console.

hypervisor. A program that allows multiple instances
of operating systems or virtual servers to run
simultaneously on the same hardware device. A
hypervisor can run directly on the hardware, can run
within an operating system, or can be imbedded in
platform firmware. Examples of hypervisors include
PR/SM, z/VM, and PowerVM Enterprise Edition.

I.

IBM blade. A customer-acquired, customer-installed
select blade to be managed by IBM zEnterprise Unified
Resource Manager. One example of an IBM blade is a
POWER7 blade.

IBM System z Advanced Workload Analysis Reporter
(IBM zAware). Firmware consisting of an integrated
set of applications that monitor software running on
z/OS and model normal system behavior. IBM zAware
pattern recognition techniques identify unexpected
messages, providing rapid diagnosis of problems
caused by system changes. Operational controls and
views of analytical data are available through the IBM
zAware graphical user interface (GUI).

IBM System z Application Assist Processor (zAAP).
A specialized processor that provides a Java execution
environment, which enables Java-based web
applications to be integrated with core z/OS business
applications and backend database systems.

IBM System z Integrated Information Processor
(zIIP). A specialized processor that provides
computing capacity for selected data and transaction
processing workloads and for selected network
encryption workloads.

IBM WebSphere DataPower Integration Appliance
XI50 for zEnterprise (DataPower XI50z). A
purpose-built appliance that simplifies, helps secure,
and optimizes XML and Web services processing.

IBM zAware. See IBM System z Advanced Workload
Analysis Reporter (IBM zAware).

IBM zAware disaster recovery environment. An IBM
zAware environment that is created expressly for
disaster recovery purposes.

IBM zAware environment. A configuration that
consists of an IBM zAware partition and the IBM
zAware monitored clients that are sending information
to the IBM zAware server that is running on the
partition. The IBM zAware monitored clients do not
have to run in the same IBM zAware host system that
contains the partition.

IBM zAware host system. The zEC12 central
processor complex (CPC) that contains the logical
partition (LPAR) in which the IBM System z Advanced
Workload Analysis Reporter (IBM zAware) runs.

IBM zAware model. A description of normal behavior
that an IBM zAware server generates for a specific
monitored z/OS system. Initially, this model is based
on prior data (system and application messages) from
the operations log (OPERLOG) for the z/OS system.
The model is updated periodically and can be modified
to include or exclude specific days of system operation.
The IBM zAware server uses this model to detect
system problems that are indicated in current data that
the server receives from the specific z/OS system.

IBM zAware monitored client. A z/OS partition that
sends OPERLOG logstream data to the IBM System z
Advanced Workload Analysis Reporter (IBM zAware)
for analysis. To detect problems, IBM zAware compares
the system and application messages in these log files
to a model of normal behavior for this z/OS system,
and highlights anomalous results through the IBM
zAware graphical user interface (GUI).

IBM zAware partition. The logical partition (LPAR) in
the zEC12 central processor complex (CPC) in which
only an IBM zAware server runs. The IBM zAware
graphical user interface (GUI) provides operational
controls and views of analytical data for IBM zAware
monitored clients.

IBM zAware server. An instance of the IBM System z
Advanced Workload Analysis Reporter (IBM zAware)
that is receiving data from monitored clients.

IBM zEnterprise 114 (z114). The newest generation of
the entry System z family of servers built on a new
processor chip, featuring a 14-way core design with
enhanced memory function and capacity, security, and
on demand enhancements to support existing
mainframe workloads and consolidation.

IBM zEnterprise 196 (z196). The previous generation
of the System z high end family of servers built on a
new processor chip, featuring a 96-way core design
with enhanced memory function and capacity, security,
and on demand enhancements to support existing
mainframe workloads and large scale consolidation.

IBM zEnterprise BladeCenter Extension (zBX). A
heterogeneous hardware infrastructure that consists of
a BladeCenter chassis attached to a zEC12, z196, or
z114. A BladeCenter chassis can contain IBM blades or
optimizers.

IBM zEnterprise BladeCenter Extension (zBX) blade.
Generic name for all blade types supported in an IBM
zEnterprise BladeCenter Extension (zBX). This term
includes IBM blades and optimizers.

IBM zEnterprise EC12 (zEC12). The newest
generation of the System z high end family of servers

692 HMC Web Services API

built on a new processor chip, featuring a 120-way core
design with enhanced memory function and capacity,
security, and on demand enhancements to support
existing mainframe workloads and large scale
consolidation.

IBM zEnterprise System (zEnterprise). A
heterogeneous hardware infrastructure that can consist
of a zEC12, z196, or z114 and an attached IBM
zEnterprise BladeCenter Extension (zBX), managed as a
single logical virtualized system by the Unified
Resource Manager.

IBM zEnterprise Unified Resource Manager. Licensed
Internal Code (LIC), also known as firmware, that is
part of the Hardware Management Console. The
Unified Resource Manager provides energy monitoring
and management, goal-oriented policy management,
increased security, virtual networking, and data
management for the physical and logical resources of a
given ensemble.

IEDN. See intraensemble data network (IEDN).

IEDN TOR switch. See intraensemble data network
(IEDN) TOR switch.

INMN. See intranode management network (INMN).

intraensemble data network (IEDN). A private
high-speed network for application data
communications within an ensemble. Data
communications for workload resource groups can flow
over the IEDN within and between nodes of an
ensemble. The Unified Resource Manager configures,
provisions, and manages all of the physical and logical
resources of the IEDN.

intraensemble data network (IEDN) TOR switch. A
top-of-rack switch that provides connectivity to the
intraensemble data network (IEDN), supporting
application data within an ensemble.

intranode management network (INMN). A private
service network that the Unified Resource Manager
uses to manage the resources within a single
zEnterprise node. The INMN connects the Support
Element to the zEC12, z196, or z114 and to any
attached IBM zEnterprise BladeCenter Extension (zBX).

M.

Manage suite (Manage). The first suite of
functionality associated with the IBM zEnterprise
Unified Resource Manager. The Manage suite includes
core operational controls, installation, and configuration
management, and energy monitoring.

management TOR switch. A top-of-rack switch that
provides a private network connection between a
zEC12, z196, or z114 Support Element and an IBM
zEnterprise BladeCenter Extension (zBX).

member. See ensemble member.

N.

network interface card (NIC). A printed circuit board
that plugs into a server. It controls the exchange of data
over a network and provides the electronic functions
for the data link protocol or access method, such as
token ring or Ethernet.

NIC. See network interface card.

node. A single zEC12, z196, or z114 and any
optionally attached IBM zEnterprise BladeCenter
Extension (zBX). A node can be a member of only one
ensemble.

See also central processor complex.

O.

optimizer. A special-purpose hardware component or
appliance that can perform a limited set of specific
functions with optimized performance when compared
to a general-purpose processor. Because of its limited
set of functions, an optimizer is an integrated part of a
processing environment, rather than a standalone unit.

One example of an optimizer is the IBM WebSphere
DataPower Integration Appliance XI50 for zEnterprise.

out-of-band monitoring solution. A type of
monitoring solution that runs on a dedicated server
rather than relying on the use of a monitoring agent
installed in the operating system. For example, the IBM
System z Advanced Workload Analysis Reporter (IBM
zAware) provides out-of-band monitoring because it
runs in a dedicated PR/SM partition and monitors
clients that run in other partitions in System z servers.

OSM. An OSA-Express channel path identifier
(CHPID) type that provides connectivity to the
intranode management network (INMN).

OSX. An OSA-Express channel path identifier
(CHPID) type that provides connectivity to the
intraensemble data network (IEDN).

P.

performance index. A number that indicates whether
the performance goal for a service class was achieved,
exceeded, or missed.

performance policy. A description of the performance
objectives and importance of a workload resource
group.

platform management. The subset of systems
management focused on hardware and virtualization
management.

PowerVM. See PowerVM Enterprise Edition.

Glossary 693

PowerVM Enterprise Edition (PowerVM). A
hypervisor that provides a set of comprehensive
systems technologies and services designed to enable
aggregation and management of IBM POWER blade
resources through a consolidated, logical view.

primary HMC. The System z Hardware Management
Console (HMC) through which data personnel create
and manage an ensemble. This HMC owns
configuration and policy information that the Unified
Resource Manager uses to monitor, manage, and adjust
resources for all members of this ensemble.

See also alternate HMC.

private system control network (PSCN). The private
subsystem of the System z servers that is controlled by
a fully redundant dual-Ethernet communications
network. This network provides communication to all
field-replaceable units (FRUs) and hierarchic control
through a mirrored system of control cards and IP
addresses. The PSCN provides a means for subsystems
to communicate and control the dynamic parameters of
system operation. The PSCN also supports error
reporting, failure data collection and recovery detection,
and correction of both the internal hardware and
firmware of the System z servers.

PSCN. See private system control network.

R.

rack. A free-standing structure or frame that can hold
multiple servers and expansion units, such as
BladeCenter blades.

response time goal. A service class performance goal
that defines end-to-end response time of work requests.

S.

service class. A collection of work that has the same
service goals or performance objectives, resource
requirements, or availability requirements.

static power save mode. A zEC12, z196, or z114
function used for periods of low utilization or
potentially when a CBU system is sitting idle waiting
to take over in the event of a failure. The server uses
frequency and voltage reduction to reduce energy
consumption of the system. The customer initiates
static power save mode by using the HMC or Support
Element or Active Energy Manager.

T.

top-of-rack (TOR) switch. A network switch that is
located in the first rack of an IBM zEnterprise
BladeCenter Extension (zBX).

TOR switch. See intraensemble data network (IEDN)
TOR switch and management TOR switch.

transaction. A unit of processing consisting of one or
more application programs, affecting one or more
objects, that is initiated by a single request.

U.

Unified Resource Manager. See IBM zEnterprise
Unified Resource Manager.

V.

velocity goal. A service class performance goal that
defines the acceptable amount of delay for work when
work is ready to run. Velocity is the measure of how
fast work should run when ready, without being
delayed by contention for managed resources.

virtual appliance. A prepackaged software application
that provides some well-defined business workflow,
making it easier to deploy a solution with minimal
configuration. Many tiers of operating system and
applications can be packaged as a single virtual
appliance. These tiers can depend on the hardware
resources of different architectures.

See also virtual server collection and virtual server
image.

virtual server. A logical construct that appears to
comprise processor, memory, and I/O resources
conforming to a particular architecture. A virtual server
can support an operating system, associated
middleware, and applications. A hypervisor creates and
manages virtual servers.

virtual server collection. A set of virtual servers that
supports a workload resource group. This set is not
necessarily static. The constituents of the collection at
any given point are determined by the virtual servers
involved in supporting the workload resource group at
that time.

See also virtual appliance and virtual server image.

virtual server image. A package containing metadata
that describes the system requirements, virtual storage
drives, and any goals and constraints for the virtual
machine (for example, isolation and availability). The
Open Virtual Machine Format (OVF) is a Distributed
Management Task Force (DMTF) standard that
describes a packaging format for virtual server images.

See also virtual appliance and virtual server collection.

virtual server image capture. The ability to store
metadata and disk images of an existing virtual server.
The metadata describes the virtual server storage,
network needs, goals, and constraints. The captured
information is stored as a virtual server image that can
be referenced and used to create and deploy other
similar images.

virtual server image clone. The ability to create an
identical copy (clone) of a virtual server image that can
be used to create a new similar virtual server.

694 HMC Web Services API

W.

workload. The amount of application processing that
a computer performs at a given time. In z/OS WLM, a
workload is a customer-defined collection of work to be
tracked, managed, and reported as a unit. For
zEnterprise, see workload resource group.

workload resource group. A collection of virtual
servers that perform a customer-defined collective
purpose. A workload resource group generally can be
viewed as a multi-tiered application. Each workload
resource group is associated with a set of policies that
define performance goals.

Z.

z/VM single system image (SSI) cluster. A collection
of z/VM systems (called members) that can be
managed, serviced, and administered as one system
within which workloads can be deployed. An SSI
cluster is intended to share a set of resources among all
members.

z114. See IBM zEnterprise 114 (z114).

z196. See IBM zEnterprise 196 (z196).

zEC12. See IBM zEnterprise EC12 (zEC12).

zAAP. See IBM System z Application Assist Processor.

zBX. See IBM zEnterprise BladeCenter Extension
(zBX).

zBX blade. See IBM zEnterprise BladeCenter
Extension (zBX) blade.

zCPC. The physical collection of main storage, central
processors, timers, and channels within a zEnterprise
mainframe. Although this collection of hardware
resources is part of the larger zEnterprise central
processor complex, you can apply energy management
policies to the zCPC that are different from those that
you apply to any attached IBM zEnterprise BladeCenter
Extension (zBX) or blades.

See also central processor complex.

zIIP. See IBM System z Integrated Information
Processor.

zEnterprise. See IBM zEnterprise System (zEnterprise).

Unified Resource Manager. See IBM zEnterprise
Unified Resource Manager.

Glossary 695

696 HMC Web Services API

Index

A
Activate a Blade 126, 128
Activate CPC 535
Activate Logical Partition 570
Activate Performance Policy 412
Activate Virtual Server 277
Activating a Virtualization Host 202
Add Group of Virtual Servers to a

Workload Resource Group 391
Add MAC Filters to Top-of-Rack Switch

Port 89
Add Member to Custom Group 509
Add Node to Ensemble 63
Add Temporary Capacity 541
Add Top-of-Rack Switch Port to Virtual

Networks 93
Add Virtual Server to a Workload

Resource Group 386
Add Virtualization Host Storage Resource

Paths 330
Add Virtualization Host Storage Resource

to Virtualization Host Storage
Group 346

API version number, function included
in 5

C
Change STP-only Coordinated Timing

Network 548
Create Custom Group 506
Create IEDN Interface for a DataPower

XI50z Blade 130
Create IEDN Virtual Switch 189
Create Metrics Context 642
Create Network Adapter 256
Create Performance Policy 405
Create QDIO Virtual Switch 192
Create Storage Resource 303
Create Virtual Disk 265
Create Virtual Network 358
Create Virtual Server 237
Create Virtualization Host Storage

Resource 325
Create Workload Resource Group 377

D
Deactivate CPC 537
Deactivate Logical Partition 572
Deactivate Virtual Server 279
Deactivating a Virtualization Host 203
Delete Completed Job Status 46
Delete Custom Group 507
Delete IEDN Interface for a DataPower

XI50z Blade 133
Delete Metrics Context 649
Delete Network Adapter 262
Delete Performance Policy 408
Delete Storage Resource 307

Delete Virtual Disk 268
Delete Virtual Network 360
Delete Virtual Server 242
Delete Virtual Switch 201
Delete Virtualization Host Storage

Resource 328
Delete Workload Resource Group 380
Discover Virtualization Host Storage

Resources 336

E
Export Performance Policy 415
Export Profiles 540
Export World Wide Port Names List 309

G
Generate Hypervisor Report 442
Generate Hypervisor Resource

Adjustments Report 449
Generate Load Balancing Report 474
Generate Service Class Hops Report 461
Generate Service Class Resource

Adjustments Report 456
Generate Service Class Virtual Server

Topology Report 466
Generate Service Classes Report 453
Generate Virtual Server CPU Utilization

Report 435
Generate Virtual Server Resource

Adjustments Report 437
Generate Virtual Servers Report 430
Generate Workload Resource Group

Performance Index Report 423
Generate Workload Resource Group

Resource Adjustments Report 426
Generate Workload Resource Groups

Report 419
Get Blade Properties 122
Get BladeCenter Properties 109
Get Capacity Record Properties 632
Get Console Properties 492
Get CPC Energy Management Data 149
Get CPC Properties 527
Get Custom Group Properties 504
Get Ensemble Properties 55
Get Group Profile Properties 625
Get Image Activation Profile

Properties 612
Get Inventory 636
Get Load Activation Profile

Properties 620
Get Logical Partition Properties 566
Get Metrics 646
Get Node Properties 61
Get Performance Management Velocity

Level Range Mappings 476
Get Performance Policy Properties 402
Get Rack Properties 100

Get Reset Activation Profile
Properties 591

Get Storage Resource Properties 302
Get Switch Controllers 195
Get Top-of-Rack Switch Port Details 85
Get Top-of-Rack Switch Properties 83
Get Virtual Disk Properties 270
Get Virtual Network Properties 354
Get Virtual Server Properties 243
Get Virtual Switch Properties 186
Get Virtualization Host Properties 179
Get Virtualization Host Storage Group

Properties 342
Get Virtualization Host Storage Resource

Properties 321
Get Workload Resource Group

Properties 375
Get zBX Properties 76

I
Import Performance Policy 413, 677
Import Profiles 539
Import Storage Access List 311
Initiate Virtual Server Dump 289
Inventory Service Data 204

J
Join STP-only Coordinated Timing

Network 549

L
Leave STP-only Coordinated Timing

Network 550
List BladeCenters in a Rack 105, 107
List Blades in a BladeCenter 117
List Blades in a zBX 119
List Capacity Records 630
List CPC Objects 523
List Custom Group Members 512
List Custom Groups 502
List Ensemble CPC Objects 525
List Ensemble Nodes 59
List Ensembles 53
List Group Profiles 623
List Groups of Virtual Servers of a

Workload Resource Group 390
List Image Activation Profiles 609
List Load Activation Profiles 618
List Logical Partitions of CPC 564
List Members of a Virtual Network 362
List Performance Policies 400
List Racks of a zBX 98
List Racks of a zBX of a zBX 81
List Reset Activation Profiles 589
List Storage Resources 299
List Virtual Networks 352
List Virtual Servers of a CPC 232

© Copyright IBM Corp. 2012, 2013 697

List Virtual Servers of a Virtualization
Host 235

List Virtual Servers of a Workload
Resource Group 383

List Virtual Servers of an Ensemble 230
List Virtual Switches 185
List Virtualization Host HBA Ports 316
List Virtualization Host Storage

Groups 339
List Virtualization Host Storage

Resources 318
List Virtualization Host Storage Resources

in a Virtualization Host Storage
Group 344

List Virtualization Hosts of a CPC 176
List Virtualization Hosts of an

Ensemble 173
List Workload Resource Groups of an

Ensemble 373
List zBXs of a CPC 72
List zBXs of a Ensemble 74
Load Logical Partition 578
Logoff 42
Logon 39

M
Make Console Primary 498
Migrate Virtual Server 286
Mount Virtual Media 280
Mount Virtual Media Image 283

P
policy XML document

description 677
example 681

PSW Restart 580

Q
Query API Version 38
Query Job Status 44

R
Remove Group of Virtual Servers from a

Workload Resource Group 393
Remove MAC Filters from Top-of-Rack

Switch Port 91
Remove Member from Custom

Group 510
Remove Node from Ensemble 65
Remove Temporary Capacity 543
Remove Top-of-Rack Switch Port from

the Virtual Networks 95
Remove Virtual Server from a Workload

Resource Group 388
Remove Virtualization Host Storage

Resource from Virtualization Host
Storage Group 348

Remove Virtualization Host Storage
Resource Paths 334

Reorder Network Adapter 263
Reorder Virtual Disks 274

Reset Clear 576
Reset Normal 574
Restart Console 497

S
SCSI Dump 586
SCSI Load 584
Set Blade Power Capping 158
Set Blade Power Save 156
Set BladeCenter Power Capping 153
Set BladeCenter Power Save 151
Set CPC Power Capping 143
Set CPC Power Save 141
Set STP Configuration 546
Set zCPC Power Capping 148
Set zCPC Power Save 146
Shutdown Console 499
SMAPI Error Response Body 203
Start Logical Partition 581
Stop Logical Partition 583
Summary of updates by API version

number 5
Swap Current Time Server 545

U
Unified Resource Manager 1
Unmount Virtual Media 285
Update CPC Properties 534
Update Ensemble Properties 57
Update Group Profile Properties 627
Update Image Activation Profile

Properties 614
Update Load Activation Profile

Properties 621
Update Logical Partition Properties 569
Update Network Adapter 259
Update Performance Policy 409
Update Reset Activation Profile

Properties 593
Update Storage Resource Properties 306
Update Top-of-Rack Switch Port

Properties 87
Update Virtual Disk Properties 272
Update Virtual Network Properties 356
Update Virtual Server Properties 252
Update Virtual Switch 197
Update Virtualization Host

Properties 183
Update Workload Resource Group 381

W
Web Services API 1
Workload Resource Group Details

task 677

X
XML document

description for performance
policy 677

example for performance policy 681

698 HMC Web Services API

����

Printed in USA

SC27-2617-01

	Contents
	Figures
	Tables
	Safety
	Safety notices
	World trade safety information

	Laser safety information
	Laser compliance

	About this publication
	Related publications
	Revision bars
	Accessibility
	How to send your comments

	Chapter 1. Introduction
	Overview
	Components of the API
	Web services interface
	Asynchronous notification facility

	Enabling and accessing the API
	Authentication and access control
	Alternate HMC considerations

	Compatibility
	API versioning
	Allowable changes within a major version
	Requirements on client applications

	Summary of API version updates

	Chapter 2. Base definitions
	Data types
	Input and output representation
	Representing API data types in JSON

	Chapter 3. Invoking API operations
	HTTP protocol standard
	Connecting to the API HTTP server
	HTTP header field usage
	Required request header fields
	Optional request headers
	Standard response headers
	Additional response headers

	Media types
	HTTP status codes
	Error response bodies
	Common request validation reason codes
	Common request processing reason codes

	Use of chunked response encoding
	Filter query parameters
	Regular expression syntax

	Chapter 4. Asynchronous notification
	JMS basics
	Connecting to the API message broker
	Per-session notification topics
	Notification message formats
	Common message characteristics
	Message format
	Grouping of notifications

	Status change notification
	Property change notification
	Inventory change notification
	Job completion notification

	Chapter 5. Data model definitions
	Data model concepts
	Objects in the data model
	Managed objects and element objects

	Properties in the data model
	Property characteristics

	Shared data model schema elements
	Base managed object properties schema
	Operational status properties

	Chapter 6. General API services
	General API services operations summary
	Session management services
	Query API Version
	Logon
	Logoff

	Asynchronous job processing
	Query Job Status
	Delete Completed Job Status

	Chapter 7. Ensemble composition
	Ensemble composition operations summary
	Ensemble object
	Data Model
	Class specific additional properties
	Node object

	Operations
	List Ensembles
	Get Ensemble Properties
	Update Ensemble Properties
	List Ensemble Nodes
	Get Node Properties
	Add Node (CPC) to Ensemble
	Remove Node from Ensemble
	Inventory service data
	Usage notes

	Chapter 8. zBX infrastructure elements
	zBX physical network overview
	zBX infrastructure operations summary
	zBX object
	Data model
	Class specific additional properties

	Operations
	List zBXs of a CPC
	List zBXs of a Ensemble
	Get zBX Properties
	Inventory service data

	zBX Top-of-Rack switches
	Data model
	Operations
	List Top-of-Rack Switches of a zBX
	Get Top-of-Rack Switch Properties
	Get Top-of-Rack Switch Port Details
	Update Top-of-Rack Switch Port Properties
	Add MAC Filters to Top-of-Rack Switch Port
	Remove MAC Filters from Top-of-Rack Switch Port
	Add Top-of-Rack Switch Port to Virtual Networks
	Remove Top-of-Rack Switch Port from the Virtual Networks

	Rack object
	Data model
	Class specific additional properties

	Operations
	List Racks of a zBX
	Get Rack Properties
	Inventory service data

	BladeCenter object
	Data model
	Class specific additional properties
	Energy Management Related Additional Properties

	Operations
	List BladeCenters in a Rack
	List BladeCenters in a zBX
	Get BladeCenter Properties
	Inventory service data

	Blade object
	Data model
	Class specific additional properties

	Operations
	List Blades in a BladeCenter
	List Blades in a zBX
	Get Blade Properties
	Activate a Blade
	Deactivate a Blade
	Create IEDN Interface for a DataPower XI50z Blade
	Delete IEDN Interface for a DataPower XI50z Blade
	Inventory service data

	Chapter 9. Energy management
	Groups
	Special states
	Power saving
	Group power saving

	Power capping
	Group capping

	Energy management operations summary
	Energy management for CPC object
	Data model
	Set CPC Power Save
	Set CPC Power Capping
	Set zCPC Power Save
	Set zCPC Power Capping
	Get CPC Energy Management Data

	Energy management for BladeCenter object
	Data model
	Set BladeCenter Power Save
	Set BladeCenter Power Capping

	Energy management for blade object
	Data model
	Set Blade Power Save
	Set Blade Power Capping

	Chapter 10. Virtualization management
	Virtualization host operations summary
	Virtual server operations summary
	Virtualization host object
	Data model
	Class specific additional properties
	Virtual switch objects
	qdio-virtual-switch object

	Operations
	List Virtualization Hosts of an Ensemble
	List Virtualization Hosts of a CPC
	Get Virtualization Host Properties
	Update Virtualization Host Properties
	List Virtual Switches
	Get Virtual Switch Properties
	Create IEDN Virtual Switch
	Create QDIO Virtual Switch
	Get Switch Controllers
	Update Virtual Switch
	Delete Virtual Switch
	Activating a Virtualization Host
	Deactivating a Virtualization Host
	SMAPI Error Response Body
	Inventory Service Data

	Virtual Server Object
	Data Model
	Class specific additional properties

	Operations
	List Virtual Servers of an Ensemble
	List Virtual Servers of a CPC
	List Virtual Servers of a Virtualization Host
	Create Virtual Server
	Delete Virtual Server
	Get Virtual Server Properties
	Update Virtual Server Properties
	Create Network Adapter
	Update Network Adapter
	Delete Network Adapter
	Reorder Network Adapter
	Create Virtual Disk
	Delete Virtual Disk
	Get Virtual Disk Properties
	Update Virtual Disk Properties
	Reorder Virtual Disks
	Activate Virtual Server
	Deactivate Virtual Server
	Mount Virtual Media
	Mount Virtual Media Image
	Unmount Virtual Media
	Migrate Virtual Server
	Initiate Virtual Server Dump

	Inventory service data

	Chapter 11. Storage Management
	Terms
	Object model overview
	Storage management operations summary
	Storage resource object
	Data model
	Class specific additional properties

	Operations
	List Storage Resources
	Get Storage Resource Properties
	Create Storage Resource
	Update Storage Resource Properties
	Delete Storage Resource
	Export World Wide Port Names List
	Import Storage Access List
	Inventory service data

	Virtualization host storage resource object
	Data model
	Operations
	List Virtualization Host HBA Ports
	List Virtualization Host Storage Resources
	Get Virtualization Host Storage Resource Properties
	Create Virtualization Host Storage Resource
	Delete Virtualization Host Storage Resource
	Add Virtualization Host Storage Resource Paths
	Remove Virtualization Host Storage Resource Paths
	Discover Virtualization Host Storage Resources
	Notifications
	Inventory service data

	Virtualization host storage group object
	Data model
	Operations
	List Virtualization Host Storage Groups
	Get Virtualization Host Storage Group Properties
	List Virtualization Host Storage Resources in a Virtualization Host Storage Group
	Add Virtualization Host Storage Resource to Virtualization Host Storage Group
	Remove Virtualization Host Storage Resource from Virtualization Host Storage Group
	Notifications
	Inventory service data
	Usage notes

	Chapter 12. Virtual network management
	Virtual network management operations summary
	Virtual network object
	Data model
	Class specific additional properties

	List Virtual Networks
	Get Virtual Network Properties
	Update Virtual Network Properties
	Create Virtual Network
	Delete Virtual Network
	List Members of a Virtual Network
	Inventory service data

	Chapter 13. Workload resource group management
	Overview
	Workload resource group operations summary

	Workload resource group object
	Data model
	List Workload Resource Groups of an Ensemble
	Get Workload Resource Group Properties
	Create Workload Resource Group
	Delete Workload Resource Group
	Update Workload Resource Group
	List Virtual Servers of a Workload Resource Group
	Add Virtual Server to a Workload Resource Group
	Remove Virtual Server from a Workload Resource Group
	List Groups of Virtual Servers of a Workload Resource Group
	Add Group of Virtual Servers to a Workload Resource Group
	Remove Group of Virtual Servers from a Workload Resource Group

	Performance policy object
	Data model
	Service class nested object
	Classification rule nested object
	Filter nested object

	Notifications of property changes to performance policies
	List Performance Policies
	Get Performance Policy Properties
	Create Performance Policy
	Delete Performance Policy
	Update Performance Policy
	Activate Performance Policy
	Import Performance Policy
	Export Performance Policy

	Performance management reports
	Generate Workload Resource Groups Report
	Generate Workload Resource Group Performance Index Report
	Generate Workload Resource Group Resource Adjustments Report
	Generate Virtual Servers Report
	Generate Virtual Server CPU Utilization Report
	Generate Virtual Server Resource Adjustments Report
	Generate Hypervisor Report
	Generate Hypervisor Resource Adjustments Report
	Generate Service Classes Report
	Generate Service Class Resource Adjustments Report
	Generate Service Class Hops Report
	Generate Service Class Virtual Server Topology Report
	Generate Load Balancing Report

	Get Performance Management Velocity Level Range Mappings
	Inventory service data

	Chapter 14. Core System z resources
	Operations Summary
	Console operations summary
	Custom groups operations summary
	CPC operations summary
	Logical partitions operation summary
	Activation profile operations summary
	Capacity record operations summary

	Shared nested objects
	Console object
	Data model
	Class specific additional properties

	Get Console Properties
	Restart Console
	Make Console Primary
	Shutdown Console

	Group Object
	Data model
	Class specific additional properties

	List Custom Groups
	Get Custom Group Properties
	Create Custom Group
	Delete Custom Group
	Add Member to Custom Group
	Remove Member from Custom Group
	List Custom Group Members

	CPC object
	Data model
	Class specific additional properties
	Energy management related additional properties

	List CPC Objects
	List Ensemble CPC Objects
	Get CPC Properties
	Update CPC Properties
	Activate CPC
	Deactivate CPC
	Import Profiles
	Export Profiles
	Add Temporary Capacity
	Remove Temporary Capacity
	Swap Current Time Server
	Set STP Configuration
	Change STP-only Coordinated Timing Network
	Join STP-only Coordinated Timing Network
	Leave STP-only Coordinated Timing Network

	Logical partition object
	Data model
	Class specific additional properties

	List Logical Partitions of CPC
	Get Logical Partition Properties
	Update Logical Partition Properties
	Activate Logical Partition
	Deactivate Logical Partition
	Reset Normal
	Reset Clear
	Load Logical Partition
	PSW Restart
	Start Logical Partition
	Stop Logical Partition
	SCSI Load
	SCSI Dump

	Reset activation profile
	Data model
	List Reset Activation Profiles
	Get Reset Activation Profile Properties
	Update Reset Activation Profile Properties

	Image activation profile
	Data model
	List Image Activation Profiles
	Get Image Activation Profile Properties
	Update Image Activation Profile Properties

	Load activation profile
	Data model
	List Load Activation Profiles
	Get Load Activation Profile Properties
	Update Load Activation Profile Properties

	Group profile
	Data model
	List Group Profiles
	Get Group Profile Properties
	Update Group Profile Properties

	Capacity records
	Data model
	List Capacity Records
	Get Capacity Record Properties

	Chapter 15. Inventory and metrics services
	Inventory services operations summary
	Metrics service operations summary
	Inventory service
	Get Inventory

	Metrics service
	Create Metrics Context
	Get Metrics
	Delete Metrics Context

	Chapter 16. zManager metric groups
	Monitors dashboard metric groups
	BladeCenter temperature and power metric group
	Blade power
	Channels
	CPC overview
	Logical partitions
	zCPC environmentals and power
	zCPC processors
	Blade CPU and memory metric group
	Cryptos
	Flash Memory Adapters

	Performance management metrics groups
	Virtual server CPU and memory metrics group
	Virtualization host CPU and memory metrics group
	Workload service class data metrics group

	Network management metrics
	Virtualization host and virtual server metrics
	Virtualization host (vSwitch) uplink metric group
	Virtualization host (vSwitch) by virtual network metric group
	Attached virtual server network adapters metric group

	Optimizer network metrics
	Optimizer IEDN virtual network interface metric group
	Optimizer IEDN physical network adapter metric group

	Physical switches
	Top-of-rack switch ports metrics
	ESM switch port metrics

	Appendix A. XML document structure of a performance policy
	XML structure of a ServiceClasses element
	Sample XML document for a performance policy

	Appendix B. Notices
	Trademarks
	Electronic emission notices

	Glossary
	Index
	A
	C
	D
	E
	G
	I
	J
	L
	M
	P
	Q
	R
	S
	U
	W
	X

